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Abstract After the pioneering theoretical studies of

Lotka and Volterra, Gause and his co-workers replace the

previously used linear functional response by using a sat-

urating functional response with a discontinuity at a

threshold prey density. Here we assume that prey density at

below this threshold value is effectively and successfully in

a refuge patch. In this situation there is no food option for

predator and go to extinction. But above this threshold

value surplus density of prey is available to predator for its

diet. But the system does not show any future activities

when prey density is in the vicinity of the threshold den-

sity, system is ill posed because the trajectories are not well

defined here. In the present study, we redefine and analyze

the model by using Filippov regularization method. By this

continuation method, the system becomes well posed and

gives more results as predicted by Gause. Also predator

fully depends upon alternative diet to survive from

extinction risk when prey is in refuge patch and system

largely varies with the availability of alternative diet

resource but in the later case predator again switches to its

primary (essential) food. When prey density is in the

vicinity of the threshold density, then predator may choose

its deit preferentially from essential or alternative resources

according to its profit. Numerical examples support these

hypothesis and analytical results.

Keywords Discontinuous differential equation � Filippov
solution � Sliding motion � Adaptive prey refuge �
Alternative food � Predator preference

Introduction

Theoretical ecology is the scientific study and esthetic

analysis of interactions among organisms and their envi-

ronment. Ecosystem is composed of dynamically interact-

ing parts including organisms, the communities they make

up and the non-living components of their environment.

The dynamic relationship between predator and its prey has

long been and will continue to be one of the dominant

themes in both ecology and mathematical ecology due to

its universal existence and importance (Berryman 1992).

After the pioneering theoretical studies of Lotka (1925) and

Volterra (1931), their predictions are experimentally tested

by Gause (1934) and his co-workers (Gause et al. 1936).

Gause focuses on three experiments consisting of prey

(Aleuroglyphus agilis) and predatory (Cheyletus eruditus)

mites, prey (Paramecium caudatum) and predator (Di-

dinium nasatum) protists and yeast (Saccharomyces exi-

guus) and protists (Paramecium bursaria). The results of

these experiments are not consistent with the Lotka–Vol-

terra neutrally stable limit cycles, such as a prolong

coexistence of prey and predator are obtained by regularly

adding protists and mites where as, in a completely

homogeneous environment Didinium destructs all prey and

it collapses subsequently.

When the environment is not homogeneous and there is

a structural diversity of habitat, then the propagation of life

of both prey and predator and also their interrelationship

(Alstad 2001; Anderson 1984) largely depends and varies

upon the structure of habitat and more prominently their

habitat selection (Anderson 2001; Johnson 2006). Refuge

means a place or state of safety, provides in the literature is

rather elastic. An implicit definition of ‘‘refuge’’ is often

tied into the concept of barrier for population dispersal.

Meta-population, population makes up of sub populations
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of weak dispersal moving through weakly connected (due

to, for example, the presence of population barriers) net-

works of patches, face limited intraspecific competition and

as a consequence tend to be stable. Predator’s functional

response, defines as the amount of prey catch per predator

per unit of time, is affected by the structure of prey habitat

and predator’s hunting ability (Alstad 2001; Anderson

1984). The use of spatial refuge by prey is one of the more

relevant behavioral traits that decreases predation rate, e.g.,

spatial or temporal refuge, behavioral or physical refuge,

prey aggregation or reducing search activity by prey. The

smell, color, injection of some poisonous agent, size, skin,

body cover etc may be used as different form of refuges,

which can be used to save the prey species from its

predator. Environmental heterogeneity enhances spatial

refuges of prey which provides less accessible sites for

predator to capture prey. By using refuge, some numbers of

the prey population are protected against predator. The

work assumes physical (non-adaptive) refuge used by prey

- either a constant number or proportion of prey stays in the

refuge patch (Gonzalez-Olivares and Ramos-Jiliberto

2003; Kar 2005; Chen et al. 2010; Jana 2013, 2014).

However, due to the decreasing resource, prey fitness (food

intake or mating opportunity) gradually decreases. In the

refuge patch there is no predation risk for the prey popu-

lation and if their resources are not limiting the survival

rate is increased. So, it has been documented that due to

increasing foraging efficiency in an open patch, prey can

reduce their activities and change their suitable habitat

adaptively (Sih 1980, 1986, 1987; Ives and Dobson 1987;

Lima and Dill 1990; Ruxton 1995; Křivan 1997, 1998,

2011, 2013; Peacor and Werner 2001; Brown and Kotler

2004). There has been a great deal of research on the effect

of prey refuge (physical/ non-adaptive and behavioral/

adaptive) on the population dynamics (Kar 2005; Křivan

1997, 1998, 2011, 2013; Jana 2013, 2014).

Extinction is part of natural world. If we are to under-

stand the causes of extinction, we shall have to compre-

hend many aspects of ecology and evolution. Population

viability analysis (PVA) is a process of determining whe-

ther a particular recovery or restoration strategy will lead to

success. PVA involves the consideration of information

from all aspects of life history of the population (Ricklefs

and Miller 2000). So, to rescue the population at any tropic

level from extinction risk, for example, due to the lack of

essential food in a diverse habitat, is a very important PVA.

Alternative food source is a very important and prominent

strategy when any population is suffering from lack of

essential food. When a population moves through a habitat

in search of food, it sequentially encounters potential or

more available food with each encounter, the population is

confronted with the choice of pursuing and eating the

profitable food (Ricklefs and Miller 2000). Prey switching

is a frequency-dependent predation, where the predator

preferentially consumes the most common type of prey.

The phenomenon has also been described as apostatic

selection. The term ‘switching’ is first coined by the

ecologist Murdoch (1969) to describe the situation where a

predator eats disproportionately more of the most common

type of prey. Clarke (1962) describes a similar phe-

nomenon. The diet choice models (Charnov 1976; Ste-

phens and Krebs 1986) assume that predator feeds potential

prey type on the basis of their profitability and also predict

that at low preferred prey density, the interaction possi-

bility between prey and predator sharply decreases due to

their switching tendency to alternative food temporarily or

permanently. Since then the term prey switching has

mainly been used by ecologists. Different aspects of fre-

quency dependent selection is also very important for prey

population. Such a situation is more complex as prey fit-

ness not only depends on predator abundance but also their

own abundance. This phenomena makes the frequency

dependent prey fitness (Colombo and Křivan 1993;

Cressman and Křivan 2006, 2013; Křivan 1997, 1998,

2011, 2013) and finally the predator’s optimal foraging

strategy can create a behavioral prey refuge (Oaten and

Murdoch 1975; Charnov 1976; Holt 1983; Fryxell and

Lundberg 1994, 1997; Abrams and Matsuda 1996; Křivan

1997, 2011, 2013; Abrams 1999; Křivan and Eisner 2003;

Ma et al. 2003).

Ray and Straškraba (2001) notice that the prey species,

i.e., detritivorous fish and their predator species, carnivo-

rous fish coexist in Sundarban Mangrove ecosystem. In the

pristine part of the ecosystem where forest is dense, the

production of detritus is high and the detritivorous fish can

easily take refuge in the densely inundated bushy part of

the forest to avoid predation by carnivorous fish. In this

part the production and densities of both prey and predator

fish are high and coexist with each other. But in the

reclaimed part of the forest where there is huge anthro-

pogenic stress, production of detritus is less and due to lack

of bushy part of the forest the area for refuge of prey

species is minimum. In this reclaimed area prey density

(detritivorous fish) is reduced at an alarming level but

predator fish population is also slightly reduced because

this fish population has switched its food habit to other fish

and animals (Roy et al. 2008). In a completely homoge-

neous environment Didinium nasatum destructs all prey

and it collapses subsequently. When the environment is not

homogeneous and there is a refuge of total prey population,

the population survives in the refuge but the predator

population collapses. The situation is different when pro-

tists fed on the yeast, here a fraction of yeast population

undergoes refuse. This strong experimental evidence sug-

gests that in this type of situation population dynamics of

both prey and predator tend to a limit cycle. The above
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observations lead Gause et al. (1936) to search for dis-

crepancies in assumptions of the Lotka–Volterra prey-

predator model. First, they observe that protists are not able

to feed on yeast at low densities because at low yeast

densities the population hide into the sediment at the bot-

tom which is not accessible to predator inhabiting the water

column. Thus, prey is effectively and successfully in a

refuge when at low concentrations (Kar 2005; Křivan 1997,

1998, 2011, 2013; Jana 2013, 2014; Jana et al. 2015).

When prey reaches above the critical density, it reappears

in the water column and becomes accessible to predator

(Kar 2005; Křivan 1997, 1998, 2011, 2013; Jana 2013,

2014; Jana et al. 2015). So, when prey density is below its

critical density, then there is a possibility of predator’s

collapse. In that condition predator can switch their diet

resources to another prey in the context of behavioral prey

refuge (Oaten and Murdoch 1975; Charnov 1976; Holt

1983; Fryxell and Lundberg 1994, 1997; Abrams and

Matsuda 1996; Křivan 1997, 2011, 2013; Abrams 1999;

Křivan and Eisner 2003; Ma et al. 2003). This phenomena

can avoid predator extinction possibility. But when prey

density reaches above its critical density, predator switches

to its essential (primary) food. At the vicinity of critical

prey density predator starts switching from primary to

alternative food sources or vice versa.

In the next section, we construct the model on the basis

of Gause’s observation where the prey population is pro-

tected by a refuge of constant strength, when prey density

below this threshold strength they are effectively and

successfully in the refuge, above which only the surplus

density is available for predation. In the vicinity of the

critical value of prey density predator switches its primary

to alternative food and vice versa. Mathematically till now

the system is not defined in this vicinity because the tra-

jectories are not well studied. In ‘‘Filippov regularization’’,

we analyze the system at this vicinity by applying Filippov

regularization method for better understanding. Numerical

examples support all the assumptions and their corre-

sponding results throughout the study.

Model and analysis

Gause et al. (1936) consider the following form of Lotka–

Volterra prey-predator system as

dx

dt
¼ xf ðxÞ � ygðxÞ;

dy

dt
¼ ðegðxÞ � mÞy:

ð1Þ

Here, x and y are the densities of logistically growing prey

[with intrinsic growth rate r and carrying capacity k in the

form f ¼ rð1� x
k
Þ] and its predator population (with food

conversion efficiency e and mortality rate m) respectively.

Predator’s functional response is defined as the rate of prey

captured by a predator per unit of time and here g is the

Gause functional response which is specified bellow.

A constant number of the prey population is always

protected from the hunting ability of predator, this is the

refuge area and this sub-habitat conceives mostly a low

density of prey (say, xc) (Gause et al. 1936; Maynard

Smith 1974). These models assume that prey prefer to be

in the refuge and only when the refuge is fully occupied,

the surplus of prey moves outside. So, there are three

prominent distinct dynamical features of the predation

process.

1. Up to the critical prey population threshold (x\xc),

prey is not consumed by predator. This situation

corresponds to the refuge of prey in a constant size xc.

2. When the prey density is above its critical value

(x[ xc), then surplus of the prey population (x� xc) is

accessible for predation.

3. Consumption saturates with increasing prey density

(Gause et al. 1936).

The jump at the critical prey density is motivated by their

observation (Gause et al. 1936). This suggests that the

functional response in the vicinity of x ¼ xc is quite steep

and can be approximated by a functional response with a

jump discontinuity at x ¼ xc. Such a functional response is

given by (see Fig. 1a)

gðxÞ ¼
0 x\xc

aðx� xcÞ
1þ ahðx� xcÞ

x[ xc

8
<

:
ð2Þ

here a and h describe the attack rate and the handling time

that a predator needs to process one unit of prey. xc is the

intensity of prey refuge, i.e., a critical prey density below

which prey are not accessible to predator. Thus, for above

the critical prey density, g is the Holling type II functional

response (Holling 1959). For prey population density

below the threshold (x\xc), prey is not being eaten by

predator, grows logistically while predator dies exponen-

tially, i.e., model (1) becomes

dx

dt
¼ rxð1� x

k
Þ;

dy

dt
¼ �my:

ð3Þ

The nullclines define domains in the phase plane (xy-plane)

in which the population rate of change does not change

sign. The nullclines provide some insights regarding exis-

tence of equilibrium points and their stability behaviors.

The equilibrium point, formed by the intersection of the

prey and predator nullclines, is stable if dy
dx
\0, unstable if

dy
dx
[ 0 and Hopf bifurcation occurs at local maxia and
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minima (Robert 1976; Rosenzweig 1969; Rosenzweig and

MacArthur 1963). For small prey density which satisfying

x\xc (grey regions in the xy-plane of Fig. 2a–c), there is

only trivial prey nullcline, x ¼ 0 and trivial predator null-

cline, y ¼ 0 and their intersection defines the trivial

equilibrium point of the system (E0ð0; 0Þ) and dynamically

it is unstable node (UN). Thus, at each point of the prey-

predator density phase plane to the left of the critical prey

density x ¼ xc, trajectories move in the south-east direction

(grey regions in the xy-plane of Fig. 3i–iv).
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Fig. 1 a Gause functional response (2). b Filipov regularization (6) of Gause functional response. Parameters: a ¼ 0:45; h ¼ 0:0437
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Fig. 2 Nullclines of system (4). Parameters: r ¼ 3:3; k ¼ 900; a ¼ 0:45; e ¼ 0:215;m ¼ 1:06
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For prey population density above the threshold

(x[ xc), population dynamics (1) is given by the Lotka–

Volterra model with the Holling type-II functional

response [functional response (2)]

dx

dt
¼ rx 1� x

k

� �
� aðx� xcÞy
1þ ahðx� xcÞ

;

dy

dt
¼ eaðx� xcÞ

1þ ahðx� xcÞ
� m

� �

y:

ð4Þ

There is only one non trivial prey nullcline

y ¼ rxðk�xÞf1þahðx�xcÞg
akðx�xcÞ , this is a sigmoid curve with vertex at

x ¼ x which is the positive root/roots of

ðx� xcÞ½rðk � 2xÞf1þ ahðx� xcÞg þ rahxðk � xÞ�
� rxðk � xÞf1þ ahðx� xcÞg ¼ 0;

and intersects positive x-axis at x ¼ k. The predator null-

clines, where dy
dt
¼ 0, are y ¼ 0 and the vertical line

x ¼ m
aðe�mhÞ þ xc. If we vary intensity of prey refuge

parameter xc with h ¼ 0:17 (other parameters are as in

Fig. 1), we observe that when xc\184:27, then dy
dx

[ 0 and

E� is unstable; 184:27\xc\k, then dy
dx
\0 and E� is

stable and xc ¼ 184:27 there is a Hopf-bifurcation at E�

(Fig. 2a). Similarly if we vary h with xc ¼ 200 (other

parameters are as in Fig. 1), then system is stable in

ð0; h1Þ
S
ðh2; h3Þ, unstable in ðh1; h2Þ, Hopf-bifurcation

occurs at h1 and h2 and transcritical bifurcation occurs

between E� and Ek at h3, where h1 ¼ 0:1708 (Fig. 2b),

h2 ¼ 0:15 (Fig. 2c), h3 ¼ 0:199 . Thus, the dynamical

features of the model system (4) are given by Table 1.

Existence of limit cycle and its uniqueness

It is known for prey-predator system that the existence and

stability of a limit cycle is related to the existence and

stability of the interior equilibrium. If the interior equilib-

rium point E� exists and any limit cycle does not exist, then

the equilibrium point E� is globally asymptotically stable.

On the other hand, if an interior point exists and is unstable,

there must occur at least one limit cycle. Using the Theo-

rem 4.3 of Kuang and Freedman (1988), one can see that

the system (4) has exactly one limit cycle which is globally

asymptotically stable (green closed loop in Fig. 3iii, all

trajectories with different initial condition (x(0), y(0))

converges to the stable limit cycle) with respect to the set

fðx; yÞ=x[ 0; y[ 0gnE� if 0\xc\�xc (region R3 in

Fig. 3a), where �xc is the positive root (minimum root, if

both roots are positive) of x2c þ pxc þ q ¼ 0 p ¼ 2m
aðe�mhÞ �

h

k � 2em

ðe�mhÞ2 ; q ¼ emk

ðe�mhÞ2 �
2em2

aðe�mhÞ3 �
m

aðe�mhÞ ðk � m
aðe�mhÞÞ

i
.

It is interesting to observe whether prey refuge intensity is

capable of preventing the cyclic behavior of system pop-

ulation. Suppose the system parameters are such that the

system (4) admits a limit cycle. This limit cycle can be

prevented if all solutions of the system approach an equi-

librium point instead of a limit cycle. Let x̂c be the value of

xc for which the system (4) admits a limit cycle. Then

definitely x̂c 2 ð0; �xcÞ. Now, let ð�x; �yÞ be the required lim-

iting value for the solutions of the system. Let x̂c be such

that ðx�ðx̂cÞ; y�ðx̂cÞÞ ¼ ð�x; �yÞ. Clearly, ð�x; �yÞ will be

asymptotically stable if we select x̂c in such a way that

�xc\x̂c\k � m
aðe�mhÞ along with h\ e

m
� 1

ak ; eak[m (re-

gion
S2

i¼1 Ri in Fig. 3a and corresponding phase plane

diagrams are in Fig. 3i, ii, here all trajectories with dif-

ferent initial condition (x(0), y(0)) with xð0Þ[ xc converge

to the coexistence equilibrium point E�). Therefore, it is
possible to prevent oscillation of a prey-predator system to

a stable state varying the intensity of prey refuge. This

shows that intensity of prey refuge may increase stability of

a prey-predator interaction.

Bifurcation analysis

To obtain a complete classification of the qualitative

behavior of model (4), we analyze the bifurcation pattern

(Jana 2013; Jana and Bairagi 2014; Jana et al. 2015;

Solisa and Ku-Carrillo 2014) and illustrate the results

with two parameters, say intensity of prey refuge-xc and

handling time-h. The classification requires up to two

codimension-one bifurcations: Hopf bifurcation points in

which coexistence equilibrium point E� exchanges sta-

bility, limit points of cycles in which a stable and an

unstable cycles collide and bifurcation points tracking a

transcritical bifurcation between coexistence equilibrium

point E� and prey only equilibrium Ek, where these two

equilibria coincide and exchange their stability to each

other.

Hopf bifurcation

One-dimensional bifurcation analysis reveals the behavior

of the system when a particular system parameter is varied

for a long range. Here we observe the behavior of the

system when xc, the prey refuge intensity is varied. It can

be observed from the Eq. (4) that the characteristic roots

become purely imaginary when xc ¼ �xc. In this case,

ReðkÞjxc¼�xc
¼ 0, ImðkÞjxc¼�xc

6¼ 0 and d
dc
ReðkÞjxc¼�xc

\0 (we

use standard package of Mathematica to get these results)

and hence the transversality condition for a Hopf-bifurca-

tion is satisfied (Perko 2001). Therefore, there exists a

Hopf-bifurcation at xc ¼ �xc. The negative sign of
d
dc
ReðkÞjxc¼�xc

\0 implies that the oscillations in the

Model. Earth Syst. Environ. (2016) 2:24 Page 5 of 15 24

123



100 200 300 400 500 600 700 800 900
0

0.05

0.1

0.15

0.2

0.25

xc

h

A

Hb

tb
R2

R3

R4

R1

0 200 300 400 500 600 700
0

20

40

60

80

100

120

140

160

180

x

y

i : h=0.04

xc=100 0 200 300 400 500 600 700
0

20

40

60

80

100

120

140

160

180

200

x

y
ii : h=0.15

xc=100

0 200 300 400 500 600 700 800
0

20

40

60

80

100

120

140

160

180

200

x

y

iii : h=0.17

xc=100 0 200 300 400 500 600 700 800 900 1,000
0

20

40

60

80

100

120

140

160

x

y

iv : h=0.25

xc=100

24 Page 6 of 15 Model. Earth Syst. Environ. (2016) 2:24

123



population densities dampen as xc passes from lower value

to higher value through �xc (Fig. 4).
Similarly, if we analyze Hopf bifurcation with respect to

h, we see that Hopf-bifurcation occurs at h ¼ h1 and h ¼ h2
and the transversality conditions for a Hopf-bifurcation are
d
dh
ReðkÞjh¼h1

[ 0 and d
dh
ReðkÞjh¼h2

\0 (Fig. 5). Also, the

red line in Fig. 3a indicates the Hopf-bifurcation points in

the xch-plane.

Transcritical bifurcation

The system (4) undergoes a transcritical bifurcation

involving the two equilibria Ek and E�. It has been shown

that when ð0; h1Þ
S
ðh2; h3Þ (stability subregion

S3
i¼1 Ri in

Fig. 3a), the coexistence equilibrium E� is stable but the

prey only equilibrium Ek is unstable node. The two equi-

libria coincide at h ¼ h3 ¼ e
m
� 1

aðk�xcÞ (green line in

Fig. 3a) and exchange their stability. Once h[ h3, E�

becomes unstable node (in this case this equilibrium point

is biologically infeasible) and Ek becomes stable node

(stability subregion R4 in Fig. 3a). Here, we will prove that

the system undergoes a transcritical bifurcation at h ¼
h3 ¼ e

m
� 1

aðk�xcÞ using Sotomayer0s theorem (Perko 2001).

For h ¼ h3 ¼ e
m
� 1

aðk�xcÞ, there is only one prey only

equilibrium point Ek of the system. The Jacobian matrix

evaluated at Ek is

J ¼ Df ðx1; y1; h3Þ ¼
�r � m

e
0 0

 !

:

J has an eigenvalue n ¼ 0. Let V andW be the eigenvectors

corresponding to the eigenvalue n ¼ 0 for J and JT ,

respectively. Then one can calculate,

V ¼ � m

re
1

 !

and W ¼
0

1

� �

:

Using the expressions for V and W, we get

• WTfhðx1; y1; h3Þ ¼ 0;

• WT ½Dfhðx1; y1; h3ÞV� ¼ � m2k

aeðk�xcÞ2
\0 and

• WT ½D2f ðx1; y1; c1ÞðV;VÞ� ¼ � 2m2

rke
\0.

Thus, by Sotomayor’s theorem, we conclude that the model

system undergoes a transcritical bifurcation as the param-

eter h passes through the critical value h3. We draw a

bifurcation diagram with respect to xc when h is fixed

(Fig. 4) to demonstrate the system behavior more suc-

cinctly. We take initial condition as xð0Þ[ xc; yð0Þ[ 0

always, because system (4) is not define for x\xc. Observe

bFig. 3 a Stability region of system (4) in xch-plane where Ri

(i ¼ 1; 2; 3; 4) are different stability sub-regions. E�: stable node,

stable focus, unstable focus and infeasible in the region R1;R2;R3 and

R4 respectively. Ek: feasible in whole plane, unstable node and

stable node in
S3

i¼1 Ri and R4. A Hopf bifurcation occurs on Hb points

(red line) and a transcritical bifurcation between E� and Ek occurs on

tb points (green line). Panel i are phase plane diagrams of the system

(3) (grey block) and (4) (white block) corresponding to region Ri

where unstable and stable E� are indicated by red (iii) and green

bullet (i, ii), stable limit cycle is shown by green closed loop (iii) and

stable Ek is shown by blue bullet (iv). Parameters: r ¼ 3:3;
k ¼ 900; xc ¼ 100; a ¼ 0:45; e ¼ 0:215;m ¼ 1:06

Table 1 Equilibrium points of

the model system (4), their

feasibility and stability

conditions

Equilibrium point and coordinate Feasibility condition Stability condition

Ekðx1; y1Þ Always � SN:h[ h3; ðR4Þ
x1 ¼ k; y1 ¼ 0 � UN: h\h3; ð

S3
i¼1RiÞ

E�ðx�; y�Þ h\h3 � SN: a11\0&D[ 0; ðR1Þ
� SF:a11\0&D\0; ðR2Þ

where � Hopf bifurcation: a11 ¼ 0; ðHbÞ
x� ¼ m

aðe�mhÞ þ xc � UF: a11 [ 0&D\0; ðR3Þ

y� ¼ rx�ðk�x�Þf1þahðx��xcÞg
akðx��xcÞ

� Transcritical bifurcation

between

E�&EK at h ¼ h3 ¼ e
m
� 1

aðk�xcÞ ; ðtbÞ

Characteristic root k1;2 ¼ a11�
ffiffiffi
D

p

2
; h3 ¼ e

m
� 1

aðk�xcÞ

D ¼ a211 þ 4a12a21; a11 ¼ ðk � 2x�Þ � x�ðk � x�Þ
ðx� � xcÞf1þ ahðx� � xcÞg

;

a12 ¼ � aðx� � xcÞ
1þ ahðx� � xcÞ

; a21 ¼
rex�ðk � x�Þ

kðx� � xcÞf1þ ahðx� � xcÞg
;

SN stable node, SF stable focus, UF unstable focus, SP saddle point, UN unstable node, Riði ¼ 1; 2; 3; 4Þ
implies stability region i (Fig. 3a) , Hb&tb Hopf and transcritical bifurcation point (Fig. 3a)
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that population oscillate (blue for prey and black for

predator) around the unstable coexistence equilibrium

point (E�) (red solid lines for both x� and y�) at the lower

range of degree of prey refuge (xc), at lower threshold

value of xc (here xc ¼ 212) system experiences Hopf-bi-

furcation and becomes stable up to the upper threshold

value (here xc ¼ 810) (green solid line for x� and blue solid

line for y�) and till now the prey only equilibrium point Ek

remains unstable (red dash lines). At upper threshold value

of xc two equilibrium points E� and Ek coincide and

become Ek and transcritical bifurcation occurs. If further

we increase the value of xc, E
� becomes unstable node

(here it is biologically infeasible and indicated by grey

solid line) and system converges to prey only equilibrium
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Hopf bifurcation point

                 xc=810
transcritical bifurcation point

x1=k

x=xc

Fig. 4 Bifurcation diagram of system (4) with xc as the bifurcation

parameter. Solid and dash lines are respectively for coexistence

equilibrium E� and prey only equilibrium Ek . Grey colour represents

infeasibility of E�. Red and green for unstable and stable status of

each equilibrium points. A Hopf bifurcation of E� occurs at xc ¼ 212,

E� is unstable focus on 100\xc\212 and asymptotically stable on

212\xc\810. A transcritical bifurcation occurs as the degree of prey

refuge xc crosses the higher threshold value xc ¼ 810. Blue and black

solid curves are the stable limit cycles for prey and predator around x�

and y� [(the coordinates of unstable coexistence equilibrium E� (red

solid line)]. Parameters: r ¼ 3:3; k ¼ 900; a ¼ 0:45; e ¼ 0:215;m ¼
1:06; h ¼ 0:18
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h=0.199
transcritical bifurcation point

x*

Hopf−bifurcation point

x=xc

Fig. 5 Bifurcation diagram of system (4) with h as the bifurcation

parameter. Solid and dash lines are respectively for coexistence

equilibrium E� and prey only equilibrium Ek . Grey colour represents

infeasibility of E�. Red and green for unstable and stable status of

each equilibrium points. A Hopf bifurcation of E� occurs at h ¼
h1 ¼ 0:1708 and h2 ¼ 0:195, E� is unstable focus on h100\h\h2

and asymptotically stable on 0\h\h1 and h2\h\h3. A transcritical

bifurcation occurs as h crosses the higher threshold value h3 ¼ 0:199.
Blue and black solid curves are the stable limit cycles for prey and

predator around x� and y� [the coordinates of unstable coexistence

equilibrium E� (red solid line)]. Parameters: r ¼ 3:3; k ¼ 900; a ¼
0:45; e ¼ 0:215;m ¼ 1:06; xc ¼ 200
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point Ek (green dash lines). It is very interesting to observe

that prey density (x) never comes less the threshold density

(x ¼ xc, here the black dot line represents x ¼ xc). Simi-

larly we draw bifurcation diagram with respect to h with

fixed xc ¼ 200 in the similar fashion (Fig. 5).

Filippov regularization

The most interesting phenomena of Gause model is the fact

when a trajectory falls on the vertical part of the prey

nullcline, then it cannot be continued any further. Indeed,

as the ‘‘trajectory’’ cannot leave the line x ¼ xc and it

follows that dx
dt
¼ 0. In other words, the Gause model is not

well posed because trajectories are not defined when they

fall on the vertical part of the prey nullcline. This is a

consequence of the fact that the Gause functional response

has a ‘‘jump’’ at the critical prey density, because such

models may not have solutions. After Gause et al. (1936),

(Filippov 1960, 1988) introduces a new solution concept

for such models. The crucial step is provided through

suitable definition of the vector field at the critical prey

density, which we briefly describe now. The Filippov

solution concept (Filippov 1960, 1988; Colombo and Kři-

van 1993; Utkin et al. 2009; Yang et al. 2013) applied to

the Gause model defines a new vector field at the critical

prey density xc as the line segment with end points given

by the two adjacent vector fields F1 and F2. Here F1 ¼
ðrxcð1� xc

k
Þ;�myÞ stands for the vector field is defined by

the right-hand side of model (3) and F2 ¼ ðrxcð1� xc
k
Þ�

aðx� xcÞy
1þ ahðx� xcÞ

;
eaðx� xcÞy

1þ ahðx� xcÞ
� myÞ for the vector field is

defined by the right-hand side of model (4). This new

(multi valued) vector field is given by

F ¼ bF1 þ ð1� bÞF2 ð5Þ

where 0� b� 1. In other words, this vector field associates

to every point along the vertical part of prey nullcline, a

whole set of possible directions is given by F. The defi-

nition of the Filippov field redefines the functional

response (2) at the critical prey density to

gðxÞ ¼

0 x\xc�

0;
axc

1þ ahxc

�

x ¼ xc

aðx� xcÞ
1þ ahðx� xcÞ

x[ xc

8
>>>>><

>>>>>:

ð6Þ

It follows that under this new definition gðxcÞ is the line

segment

�

0; axc
1þahxc

�

that fills the gap in Gause functional

response (Fig. 1b). This definition is very natural as it

reflects the fact that at the critical prey density the func-

tional response does not specify exactly the prey con-

sumption by predators.

Existence and uniqueness of trajectories

of the Gause model

Let nðnx; nyÞ ¼ ð1; 0Þ be the vector perpendicular to the

line x ¼ xc in the prey-predator density phase plane. Pro-

jection of the two vector fields are given by the right hand

sides of (3) (denoted as F1) and (4) (denoted as F2) are

hn;F1i ¼ rxcð1� xc
k
Þ and hn;F2i ¼ rxcð1� xc

k
Þ � aðx�xcÞ

1þahðx�xcÞ.

The existence of trajectories for the Gause model follows

from general existence theorem that can be found in

Filippov (1988) (Colombo and Křivan 1993). Uniqueness

of trajectories for the Gause model follows from the fact

that hn;F1i ¼ hn;F2i þ aðx�xcÞ
1þahðx�xcÞ.

S1 ¼ fx : x\xcg; S2 ¼ fx : x[ xcg

and the manifold
X

¼ fx : x ¼ xcg:

In order to investigate the global dynamics of Filippov sys-

tem [system (1) with functional response (6)], the qualitative

behaviors of the subsystems which are determined by vector

field F1 or F2 and the dynamics which is defined on the

discontinuity manifold
P

are crucial. The dynamics for

vector fields F1 and F2 can be analyzed by using classical

qualitative techniques of differential dynamic systems pre-

viously. However, the dynamics on the switching manifold
P

can be complex and can be studied by using the well-

known Filippov’s convexmethod (Filippov 1988) or Utkin’s

equivalent control method (Utkin et al. 2009).

Let r ¼ hn;F1ihn;F2i, then
P

s ¼ fx 2
P

: r\0g.
The sliding mode domain

P
s can be distinguished by the

following regions (Kuznetsov et al. 2003; Buzzi et al.

2006, 2010):

1. Escaping region: if hn;F1i\0 and hn;F2i[ 0 which

would imply non-uniqueness of trajectories (Filippov

1988; Colombo and Křivan 1993).

2. Sliding region: if hn;F1i[ 0 and hn;F1i[ 0, trajec-

tories are pushed from both below and above to the

line x ¼ xc.

Thus, the state space is (S1
S
S2
SP

) and the model

equations are

dn

dt
¼ Fiðn; xcÞ where n 2 Si; i ¼ 1; 2 ð7Þ

where, Fi are described previously. Sliding occurs on the

segment
P

which is delimited by two intersections S1 and
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S2 of
P

with two nullclines dy
dt
¼ 0. As first pointed out by

Filippov, these points which are called the tangent points

(Kuznetsov et al. 2003) at which F2 is tangent to
P

is very

important for bifurcation analysis. Sliding motion on
P

obeys the smooth scalar differential equation

dx

dt
¼ F ð8Þ

where F is the unique convex combination of F1 and F2,

which is given by (5) and b ¼ 1� rðk�xcÞf1þahxcg
kay . Now the

system is well posed and all the trajectories are defined

throughout the range of x. This phenomena [system (1)

with functional response (6)] is shown by Fig. 6 (each

figures corresponds to the same in Fig. 3).

To analyze the Gause model (Gause 1934), it is very

important to know the dynamics of the system along the

vertical part of prey nullcline where the trajectories of

system (1) falls on the vertical part of the prey nullcline

and the predator density satisfies y[ rðk�xcÞf1þahxcg
ak ¼ yc,

the trajectories cannot leave the nullcline and moves ver-

tically, i.e., dx
dt
¼ 0, i.e., along b ¼ 1� rðk�xcÞf1þahxcg

kay . This

trajectory corresponds to the vector f F ¼ ð0; erxcð1� xc
k
Þ �

myÞ 2 F and the population dynamics is:

dx

dt
¼ 0;

dy

dt
¼ erxcð1�

xc

k
Þ � my:

ð9Þ

This equation depicts the dynamics of the system (1) along

the line x ¼ xc as long as y[ yc, then trajectories are

forced to leave the line x ¼ xc and enter the region x[ xc.

This also follows from the considerations of the existence

and uniqueness of trajectories of the Gause model.

Adaptive refuge use by the prey

The adaptation of an organism cannot easily be separated

from the environment in which it lives. Insect larvae from

stagnant aquatic environments in ditches and sloughs can

survive longer without oxygen than can related species

from well-aerated streams and rivers; species of marine

snails that occurs high in the intertidal zone, where they are

frequently exposed to air, tolerate desiccation better than

do species from lower levels. These are examples of spe-

cializations that suit organisms to particular, restricted

ranges of environmental conditions (Ricklefs and Miller

2000). It is very convenient that when predators are present

in the system, naturally prey decreases its activities or

changes suitable habitat to avoid predation risk (Werner

and Gilliam 1984; Holbrook and Schmitt 1988; Brown and

Alkon 1990; Brown 1998; Lima 1998a, b; Sih 1998; Peacor

and Werner 2001; Preisser et al. 2005). Reduction in prey

activities is a prominent example of a behavioral refuge

whether prey reduces their activities or moves to a physical

refuge leads to a trade-off due to live in the refuge (be-

havioral or physical) which increases the survival rate and

decreases the predation rate and other components of prey

fitness. The model of this trade-off is:

dx

dt
¼ r1u1x 1� u1x

ðk� xcÞ

� �

� au1xy
1þ ahu1x

þ r2u2x 1� u2x

xc

� �

;

dy

dt
¼ eau1x

1þ ahu1x
�m

� �

y: ð10Þ

Here, u1 is the proportions of prey out of the refuge and u2
is so for refuge and u1 þ u2 ¼ 1. Maximum refuge size is

xc, so in the reserve area prey grows logistically up to the

size xc and naturally in the unreserve area prey grows

logistically up to ðk � xcÞ, because k is the maximum

strength of prey in the total habitat in absence of predation.

r1 and r2 are the intrinsic growth rates of prey out and

inside the refuge. Figure 7 depicts the behavior of the

system with increasing the proportion of prey out of the

refuge u1 (decreasing the proportion of prey in the refuge

u2) as the bifurcation parameter. When u1\u2, i.e., max-

imum population can avoid the foraging efficiency of

predator, then predator either goes to extinction or survive

with very low density and at the intermediate range of

u1; u2 and u1 [ u2, then both population can survive at

their commensurate equilibrium density or at fluctuating

mode, this adaptive nature is validated by Fig. 7. Now the

question: What is the optimal prey strategy ðu1; u2Þ?
If proportion u1 of prey is out of the refuge, so their

payoff is V1 ¼ r1ð1� u1x
ðk�xcÞÞ �

ay
1þahu1x

. As the proportion of

prey out side the refuge ðu1Þ increases, payoff will

increase, because the chance that a single prey will be

captured by a predator decreases due to the risk dilution

effect (Foster and Treherne 1981). As we assume that prey

in the refuge is completely protected from predation, the

payoff in the refuge is V2 ¼ r2ð1� u2x
xc
Þ. Thus, fitness of a

mutant prey (with strategy ~u ¼ ð~u1; ~u2Þ) in a monomorphic

resident population (with distribution u ¼ ðu1; u2Þ) is given
by the mean payoff

Wð~u; uÞ ¼ ~u1V1 þ ~u2V2

¼ r1~u1 1� u1x

ðk � xcÞ

� �

� a~u1y
1þ ahu1x

þ r2~u2 1� u2x

xc

� �

:

ð11Þ

Mutant fitness is not only density dependent but also fre-

quency dependent, because it depends on the resident

strategy.
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Fig. 6 Panel i are phase plane diagrams of the filippov system with

functional response (6) corresponding to region Ri of Fig. 3, where

unstable and stable E� are indicated by red (iii) and green bullet (i, ii),

stable limit cycle is shown by green closed loop (iii) and stable Ek is

shown by blue bullet (iv). Parameters: r ¼ 3:3; k ¼ 900; xc ¼ 100;
a ¼ 0:45; e ¼ 0:215;m ¼ 1:06
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Fig. 7 Bifurcation diagram of

system (10) with increasing the

proportions of prey out of the

refuge u1 (decreasing the

proportions of prey in the refuge

u2) as the bifurcation parameter.

Parameters: r1 ¼ 3:3; r2 ¼ 2:5;
k ¼ 900; a ¼ 0:45; e ¼ 0:215;
m ¼ 1:06; h ¼ 0:18; xc ¼ 200
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Adaptive alternative food selection by predator

Optimization of diet choice by predator has been explored

theoretically by number of authors (Schoner 1969, 1971;

Rapport 1971; Cody 1974; Orians and Pearson 1979; Town-

send and Hughes 1981; Charnov and Stephens 1988; Krebs

and Kacelnik 1991). These treatments agree with MacArthur

and Pianka’s prediction (MacArthur and Pianka 1966).

Mathematically, the problem of optimal diet choice has been

characterized by the switching phenomena of ‘‘classic’’model

of diet choice (Ricklefs and Miller 2000). Prey switching is

frequency-dependent predation, where the predator prefer-

entially consumes the most common type of prey. The reason

a predator may switch from eating one prey to another, is

because it may increase an individual’s foraging efficiency

and therefore its inclusive fitness (Hughes and Croy 1993;

Cornell 1976). It has been argued that frequency-dependent

predation is predicted from optimal foraging theory (Hubbard

et al. 1982). Predator’s preference for prey might stabilize

prey-predator dynamics (Oaten and Murdoch 1975). Oaten

andMurdoch (1975) assume that the proportion of prey in the

predator’s diet choice increases with increasing prey propor-

tion in the environment faster than linearly what they call

switching. So, the Holling type II functional response for the

primary resource is (Holt 1983; Abrams 1999)

gðxÞ ¼ uaðx� xcÞ
1þ ahuðx� xcÞ þ aahauaxa

; ð12Þ

where uðua ¼ 1� uÞ is the predator’s preference for the

primary (alternative) prey xðxaÞ. At the extreme case where

predators attack on the more abundant species and the

functional response is piece-wise continuous (Fig. 1b)

gðxÞ ¼
0 x\xa

aðx� xcÞ
1þ ahðx� xcÞ

x[ xa

8
<

:
ð13Þ

and corresponding numerical response is

GðxÞ ¼

eaaaxa
1þ aahaxa

x\xa

eaðx� xcÞ
1þ ahðx� xcÞ

x[ xa

8
>><

>>:

ð14Þ

where xa is the alternative prey abundance and aa; ha; ea are
the attack rate, handling time and food conversion effi-

ciency of predator for their alternative prey. So, our model

system (1) becomes when x\xa

dx

dt
¼ rx 1� x

k

� �
;

dy

dt
¼ eaaaxay

1þ aahaxa
� my;

ð15Þ

at each point to the left of x ¼ xc in the prey-predator phase

space, prey population grows logistically and predator

increases (decreases) if xa [ m
aaðea�hamÞ ðxa\ m

aaðea�hamÞÞ.
When prey population density above the critical prey

density (x[ xc), then system (1) becomes

dx

dt
¼ rx 1� x

k

� �
� aðx� xcÞy
1þ ahðx� xcÞ

;

dy

dt
¼ eaðx� xcÞy

1þ ahðx� xcÞ
� my:

ð16Þ

The prey population decreases if predator population is

very large (y[ yc ¼ rxðk�xÞf1þahðx�xcÞg
aðx�xcÞ ) in the vicinity and

to the right of x ¼ xc. For x ¼ xc population dynamics is

dx

dt
¼ rx 1� x

k

� �
� uaðx� xcÞy
1þ ahuðx� xcÞ þ aahauaxa

;

dy

dt
¼
�

euaðx� xcÞ þ eauaaaxa
1þ ahuðx� xcÞ þ aahauaxa

� m

�

y:

ð17Þ

Here the trajectories can not leave the switching line x ¼ xc
when predator density is higher than yc, then corresponding

preference is

u ¼ rxðk � xÞð1þ aahaxaÞ
kaðx� xcÞyþ rxðk � xÞfaahaxa � ahðx� xcÞg

:

Then Eq. (17) becomes

dx

dt
¼ 0;

dy

dt
¼
�
erxðk � xÞ

k
þ eaaauaxay
1þ ahuðx� xcÞ þ aahauaxa

�

� my:

ð18Þ

This system has the equilibrium as

E�
a ¼ ðx�a; y�aÞ ¼

�

xa;
erxðk � xÞf1þ ahuðx� xcÞ þ aahauaxag
kfmþ ðmha � eaÞaauaxa þ mahuðx� xcÞg

�

:

There are three distinguish features depending upon the

abundance of alternative food source (xa).

• When alternative resource is very small, i.e., xa\x� [x�

is the equilibrium density of prey of model system (4)],

i.e., when predator feeds on primary prey only, then

both population coexist in limit cycle (Fig. 8i).

• When alternative food size is intermediate, i.e.,

x�\xa\Xa ¼ xc þ m
aaðea�mhaÞ, then there exists a

stable coexistence equilibrium point E�
aðx�a; y�aÞ where

x�a ¼ xa and y�a ¼
erxðk�xÞf1þahuðx�xcÞþaahauaxag
kfmþðmha�eaÞaauaxaþmahuðx�xcÞg (Fig. 8ii).

• If alternative food resource approaches to Xa, then

predator equilibrium is tending to infinity and when

xa [Xa, then there coexistence is not possible because

it is very unrealistic to assume that alternative resource

can reach such a high density and not be influenced by

predation or competition with essential resource

directly or apparently.
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Discussion

In the present study, we have analyzed a prey-predator

system which is introduced by Gause (1934) and his co-

workers (Gause et al. 1936) to examine some cycles of

prey-predator interaction in some experiments. They

replace the linear functional response of Lotka and Volterra

by some saturating functional response which is zero below

a critical prey density and is saturating above which with

respect to prey density. At the critical prey density there is

discontinuity as well as a ‘‘jump’’ of the functional

response of predator. So, trajectories are not well defined

throughout the range of prey density and also not well

posed. So, at the vicinity of the critical prey density there is

some confusion. But in nature any population may increase

or decrease their density over time. So, naturally it is very

convenient that prey density must cross this critical density

at any time, so analysis at that critical prey density is very

essential not only the purpose of ecological clarification but

also for mathematical interest. Natural habitat, mostly, is

patchy. Different patches or sites characterize differently.

Some sites are suitable for prey or some are for predator.

So patch selection by both population is a very essential

and important ecological phenomena. In this present study,

we consider that there is two patches, one is reserve for

prey and other is non reserve. In the reserve patch prey

population can successfully refuse the foraging efficiency

of predator. Here we consider the critical prey density, the

size of refuse limit of Gause model. After successful

refusing, the remaining prey population is not able to take

shelter in the reserve patch and then they come into the

interaction with predator. Here at this critical prey density

the system is not well defined. Below this critical density

predator is forced to go extinction due to lack of food and

prey population grows logistically without any predation

risk. But when prey density is above this critical density,

then surplus of prey and predator populations can survive

in the fashion of classical prey-predator relation and can

coexist in either limit cycle mode or at equilibrium. Where

as Gause et al. (1936) show that a prey refuge can lead to

prey-predator coexistence as the same model without

refuge. Also, here the cyclic behavior of both population

coincides with coexistence equilibrium or vice versa

through Hopf-bifurcation due to the size of refuse patch or

food handling ability of predator and also the decreasing

availability of food can able to make predator extinction

from the coexistence of population through transcritical

bifurcation. For searching the answer of discontinuity of

Gause model in this article, an approach is developed by

Filippov (1960) is used, we show how the trajectories in the

Gause model can be defined at the vicinity of prey density.

This technique can explain mathematically and ecologi-

cally the movement of trajectories in the vicinity of prey

density.

Generally, predator depends on more than a single prey

population. Predator population’s growth under a given set

of conditions behaves uniquely to the level of each of its

prey resources (Ricklefs and Miller 2000; Murdoch 1969;

Clarke 1962; Charnov 1976; Stephens and Krebs 1986).

According to Liebig’s law of minimum (Liebig 1840)

whichever the resources is reduced to the value of critical

density, first it limits the growth of predator population.

Here, in this model the primary prey is referred ecologi-

cally as essential resources, an interaction of the predator
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Fig. 8 Phase plane diagrams of the system which shows the adaptive

alternative food selection by predator. Parameters: r ¼ 3:3; k ¼ 900;
xa ¼ 100ðiÞ; xa ¼ 110ðiiÞa ¼ 0:45; aa ¼ 0:42; e ¼ 0:215; ea ¼ 0:25;
h ¼ 0:17; ha ¼ 0:15;m ¼ 1:06
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and the prey resources is considered when one of the prey

resource is essential and other is not. If essential prey

resource density drops at the critical level, the predator

population for their survival switches to non essential

resources (Ricklefs and Miller 2000; Murdoch 1969;

Clarke 1962; Charnov 1976; Stephens and Krebs 1986).

Our model depicts that the survivability and stability of

predator depend on switching behavior from essential to

non essential prey resources. Ecologically it is established

that if essential resource is decreased to the critical level

and if predator switch to the non essential one, then more

non essential resources will be consumed because non

essential resource will provide less nutrient than that of

essential resource. So, the condition i.e., the dependency of

predator on alternative prey (non essential resource) does

not persist for the long time. But during this time essential

prey density will again be increased due to the absence of

predation pressure on them and exceeds the critical density

and predator’s dependency on alternative prey is again

switched back to primary prey population.
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