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Abstract So far, several agro-economic optimization

models have been developed in order to deal with agri-

cultural water resources planning and management, among

which the cropping pattern and water allocation opti-

mization models are of significant importance. However,

these models usually consider the land as a plain entirety

and fail to account for a number of important contributing

factors, including the private ownership of agricultural

lands and the unique characteristics of each land parcel.

Hence, the solutions provided by these models are not fully

applicable in real-world and are only meant to help the

decision-maker in analyses. In the present study, a new

model is developed in order to incorporate farm-level data,

and to propose optimal cropping pattern and conjunctive

use decisions at farm level. Furthermore, a modified

genetic algorithm has been developed by piecewise reor-

ganization of chromosome structure, namely piecewise

genetic algorithm (PWGA), and is presented in order to

tackle the nonlinearity and the high number of variables

involved in the model. A URM-based groundwater model

is also coupled with PWGA in order to improve the com-

putational efficiency of the framework. The proposed

model is then run for various scenarios and the results are

compared with those of the general approaches. The results

of this study demonstrate that the general plain-level

models tend to overestimate the expected net benefits.

Moreover, the proposed model is able to optimize the

cropping pattern and water allocation rules over the area

while supporting each land parcel with appropriate

decisions.

Keywords Conjunctive use � Cropping pattern

optimization � Genetic algorithm

Introduction

The optimal use of land and water for agriculture appears

to be a vital and unavoidable task due to water and land

limitations globally. Cropping pattern is one of the most

influential factors in irrigation management which is in

direct relationship with the optimal allocation of land and

water resources. With regards to cropping patterns man-

agement, two questions must be answered: (1) ‘‘Which

crop(s) should be planted?’’ and (2) ‘‘How much area

should be allocated to each crop?’’ Optimal use of water

resources and minimal damage to the environment should

also be considered when providing answers to these

questions. Therefore, the amount of irrigational water to be

applied is usually determined as a by-product of cropping

patterns optimization process.

A number of approaches including benefit-cost, func-

tional, programming, and simulation are often used in order

to determine the best cropping pattern and the amount of

water to be allocated for each crop (Noory et al. 2012;

Parsinejad et al. 2013; Sadegh and Kerachian 2011; Singh

2012). Meanwhile, the cost-benefit approach is quite
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popular, as most researchers aim at maximization of the

expected net income resulting from the proposed pattern

(Ghahraman and Sepaskhah 2002; Karamouz et al. 2008b).

Nevertheless, a number of models are intended to maxi-

mize the net social benefits (Soltani et al. 2009).

In order to construct cropping pattern models, various

modeling approaches have been employed, including linear

(Faramarzi et al. 2010; Haddad et al. 2009; Kehkha et al.

2005; Ramezani Etedali et al. 2013; Salami et al. 2009;

Soltani et al. 2009) and nonlinear models (Ghahraman and

Sepaskhah 2002, 2004; Kiani 2009; Montazar and Rahi-

mikob 2008). However, the high computational load

associated with solving complex environmental and water

resources models has led many researchers to use various

types of Evolutionary Algorithms (EA) for such purposes

(Afshar et al. 2009; Bazargan et al. 2011; Haddad et al.

2008; Monem and Namdarian 2005; Noory et al. 2011).

Among EAs, Genetic Algorithm (GA) has been the most

commonly applied EA within water resources planning and

management literature, due to its great ability to solve

nonlinear, non-convex, multimodal, and discrete problems

for which deterministic search techniques incur difficulty

or fail completely (Nicklow et al. 2009). To date, various

contributions have been made to improve the efficiency

and applicability of GA for agricultural water resources

planning (Karamouz et al. 2008a, b; Malekmohammadi

et al. 2009, 2011; Nagesh Kumar et al. 2006; Raju and

Kumar 2004; Raju et al. 2012; Zahraie et al. 2003, 2008).

Despite their implications, however, the cropping pat-

tern and water allocation optimization models tend to omit

the existence of land parcels and consider the agricultural

land as an entirety without any fragmentations. That is, the

area under investigation is considered as one single piece

of land with constant characteristics regardless of its extent

(i.e., farm, plain, or region). Nevertheless, this simplifica-

tion often results in neglecting a number of significant

contributing factors, including land and water resources

ownership, hydrological and agronomical characteristics of

fields, and investment capabilities of farmers, which all

vary from farm to farm. This is while most of the above-

mentioned field data—e.g., ownership, location and area of

parcels, availability of water resources to each, and the

present cropping patterns—are routinely collected by

agricultural management bodies in the form of multi-pur-

pose cadaster data.

On the other hand, high computational load associated

with incorporation of such a high level of details when

providing decisions at farm level is a limiting factor in the

development of farm-based cropping pattern and water

allocation optimization models.

In this paper, we present a simulation–optimization

framework which takes advantage of a novel algorithm,

namely piece-wise genetic algorithm (PWGA), in order to

model each farm separately and to support farm-based

cropping pattern and conjunctive use decisions. The pro-

posed framework is comprised of a groundwater modeling

module taking advantage of unit response matrix in order

to reduce the computational load, coupled with PWGA

cropping pattern optimization algorithm. As it will be

shown in the following, our proposed algorithm is able to

address the problems arising from incorporation of high

number of decision variables.

Materials and methods

Model formulation

Aproper and realistic model for optimization of the cropping

patterns and water allocation is a model that might optimally

allocate land andwater to various crops. In this vein, themain

objective of the proposed model is to maximize the differ-

ence between gross benefit of crop production and all costs

associated with agricultural activities. These costs are usu-

ally consist of the costs of planting, growing, and harvesting

crops, in addition to the costs of applied irrigational water.

Thus, the objective function of the optimization model could

be defined as Eq. (1):

Maximize Z ¼ B� C ð1Þ

where: Z = total net benefit of the cultivation plan during

the planning horizon, B = sum of gross benefits resulting

from cultivation plan, C = sum of costs associated with

cultivation plan.

Nevertheless, the novelty of the approach lies in the way

that the benefits and costs are calculated separately for each

farm, instead of each crop. The model constraints are

presented by Eqs. (2)–(18):

B ¼
XF

f¼1

XCr

c¼1

ðYafc � Prc � afc � Af Þ ð2Þ

C ¼
XF

f¼1

XCr

c¼1

Ccf � afc � Af þ
XT

t¼1

gfct � Pg þ sfct � Ps

 !

ð3Þ

where: F = number of fields, Cr = number of crops,

Yafc = actual crop production per area of crop c in field f,

Prc = market price of crop c, afc = percentage of allo-

cated area to specified crop c in field f, Af = agricultural

area in field f, Ccf = crop production cost of crop c in field

f, T = number of time periods in planning horizon.

gfct = allocated groundwater during period t to crop c in

field f. Pg = groundwater price per volume, Sfct = allo-

cated surface water during period t to crop c in field f,

Ps = surface water price per volume.
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Xfc ¼
1 crop c is planted in field f

0 otherwise

� �
ð4Þ

XCr

c¼1

afc � 1 8 f ð5Þ

XCr

c¼1

Xfc � 1 8 f ð6Þ

0� afc �Xfc ð7Þ

0� sfct �ðSmaxÞftXfc 8 f ; c; t ð8Þ

0�
XCr

c¼1

sfct �ðSmaxÞftXfc 8 f ; t ð9Þ

0� gfct �ðGmaxÞftXfc 8 f ; c; t ð10Þ

0�
XCr

c¼1

gfct �ðGmaxÞftxfc 8 f ; t ð11Þ

where: Xfc = decision variable determining whether crop

c is cultivated in field f, (Smin)ft and (Smax)ft = minimum

and maximum volume of available surface water for farm

f during time-step t. (Gmin)ft and (Gmax)ft = minimum and

maximum volume of available groundwater for farm

f during time-step t. It is worthy to note that Eq. 6 is

intended to restrict the model to allocate each farm to one

crop at a time. Nevertheless, by removing this constraint,

the model would be able to plant each farm with multiple

crops.

In order to calculate the amount of actual crop produc-

tion (Yafc ), a production function developed by Doorenbos

and Kassam (1979) and later extended by Ghahraman and

Sepaskhah (2004) is used, as follows:

ðYaÞfc ¼ xfc � ðYpÞc
YT

t¼1

1� Kyt 1�
ðWaÞfct
ðWpÞfct

 !" # !
8f ¼ 1; . . .;F

8c ¼ 1; . . .;C

� �

ð12Þ
wafct ¼ 1000ðsfct þ gfctÞ=ðafc � Af Þ8 f ; c; t ð13Þ

ðWpÞfct ¼
Ifct

ðEaÞf
8 f ; c; t ð14Þ

Ifct ¼ ðETaÞct � ðPeÞt8 f ; c; t ð15Þ

0� 1�
ðWaÞfct
ðWpÞfct

� xct8 f ; c; t ð16Þ

where: (Wa)fct = depth of water applied to crop c in farm f

during time-step t. (Wp)fct = actual irrigation requirement

of crop c in farm f during time-step t, Ifct = irrigation water

requirement of crop c in period t, (Ea)f = irrigation effi-

ciency in farm f, ðETaÞct = actual evapotranspiration of

crop c in period t, ðPeÞt = effective precipitation in period

t, xct = maximum tolerance of crop c to deficit irrigation in

period t.

Finally, the last constraint of the model restricts the

model to maintain the groundwater drawdown at each well

to a level lower than a preset boundary:

Dhkt ¼ Pðg1;1; g2;1; . . .; gk;1; g1;2; . . .; gk;tÞ ð17Þ

Dhkt � Dhð Þallowable ð18Þ

where: P = groundwater modeling function, g1,1 to

gk,t = volumes of groundwater pumped from well 1 to k in

period 1 to t, Dhkt = calculated drawdown of well k in

time-step t, Dhð Þallowable = maximum level of allowable

groundwater table drawdown.

As it could clearly be seen in Eqs. (2)–(18), this opti-

mization model allocates water from groundwater and

surface resources to each of the farms separately. Besides,

the cultivation fraction is exclusively addressed for each

farm, in contrast to defining the cultivation fraction for

each of the crops, which is general in cropping patterns

optimization models.

Simulation–optimization framework

As demonstrated in Eq. (17), the proposed optimization

model relies on a groundwater simulation model in order to

calculate water table drawdown. MODFLOW is a widely

recognized groundwater model (Harbaugh 2005) which has

been frequently used in conjunction with conjunctive use

optimization models (Bazargan-Lari et al. 2009; Karamouz

et al. 2005; Khare et al. 2007; Safavi et al. 2010). However,

the high computational load associated with the use of this

model makes it difficult to couple it with iterative-based

optimization algorithms. Larroque et al. (2008) and

Alimohammadi et al. (2005) were among those who

demonstrated that the use of Unit Response Matrix (URM)

is an efficient way of incorporating groundwater models in

optimization procedure, since URMs could significantly

reduce the computational run-time.

Figure 1 illustrates the architecture of the proposed

framework. As depicted in this figure, the base level of the

framework is made up roughly of two types of data. The

first strand is more or less related to farms characteristics,

and could be supplied through agricultural cadaster or

similar campaigns. The second strand, however, includes

the data that are generic and could be associated with all

farms (e.g., meteorological data, crop coefficients, and

economic data). Further, the data nested in the base level of

the framework supply all of the parameters presented in

‘‘Model formulation’’ (excluding the decision variables).

The next module of the framework is the GA-based

optimization model, which is comprised of the
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optimization algorithms bearing the responsibility of

searching for the optimal cropping pattern with regards to

the parameters derived from data module and the ground-

water model.

For the groundwater model, MODFLOW is used as the

main groundwater simulation model. However, an

embedded URM function is employed in conjunction with

the optimization algorithm for calculating water

table drawdown with respect to well discharge values.

Based on the additively principle, the URM function for

total of k wells is calculated as:

S k; tð Þ ¼
XT

t¼1

Xk

j¼1

bk k; j; T � t þ 1ð Þq j; tð Þ ð19Þ

where: S(k, t) = change of water table level at well k at the

end of the time period of t, bk(k, j, T - t ? 1) = the unit

response coefficient, which is defined as the unit change of

the water table at well k during t, due to the excitation

(withdrawal/recharge) at well j during t.

b is a function of the distance between wells, the well

diameters, the hydraulic conductivity of the aquifer, the

recharge of the aquifer, boundary conditions, and the

starting heads (Maddock 1972). The above equations could

also be used for multi-aquifer systems (Yazicigil 1990).

Piece-wise genetic algorithm

Genetic algorithms are a strand of evolutionary algorithms

that use a random search technique that ‘‘evolve’’ a

potential solution for a given system using the genetic

operators (Karamouz et al. 2007). GAs are usually char-

acterized by: (1) generation of an initial population of

potential solutions, each identified as a chromosome; (2)

computation of the objective function value, or fitness

metric of each solution and subsequent ranking of chro-

mosomes according to this metric; (3) some aspect of

chromosome ranking and selection of candidate solutions

to participate in a mating operator, where information from

two or more parent solutions are combined to create off-

spring solutions; and (4) mutation of each individual off-

spring to maintain diversity and prevent premature

convergence to local optima. These elements are repeated

in sequential generations until a suitable solution is

obtained (Nicklow et al. 2009).

The general structure of chromosomes used in most

cropping patterns optimization models is a vector consist-

ing of the following decision variables: number of Cr

variables, each representing the plantation fraction of a

crop, followed by T sequences of St and Gt which form the

Fig. 1 Architecutre of Farm-

based cropping pattern and

water allocation optimization

model
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water allocation scheme. Alternatively, St and Gt could

exclusively be defined for each of the crops. However, the

use of such vector-based approach would be problematic in

detailed models, since the incorporation of decision vari-

ables for each farm would result in a rather large vector.

The proposed chromosome structure to curb this issue is

a matrix-based chromosome, in which each row of the

matrix encodes the decision variables corresponding to a

farm. In such a structure, assuming that the farm decision

variables consist of a crop choice variable, a crop planta-

tion percentage variable, and 72 water allocation variables,

each of which correspond to either surface water or

groundwater decisions during 10 days, the chromosome

would be a matrix of n 9 74, instead of a relatively large

vector of 1 9 (n 9 74) length.

GA operators

The use of matrix to encode chromosomes allows for easier

handling of GA operations. For instance, two types of

crossover operations are defined in PWGA, namely hori-

zontal and vertical crossover operations (Fig. 2). In hori-

zontal crossover, the chromosomes exchange some

sequences of rows, while in the latter type columns are

exchanged between parents to form offspring. In this

context, the use of horizontal crossover provides higher

chance of survival for relatively successful farm plans and

has a tendency to repeatedly associate those plans with the

same farms. That is, by doing this the farm decisions

remain intact and are only exchanged between chromo-

somes. Therefore, any changes in farm decisions are solely

achieved using mutations. Nevertheless, vertical crossovers

tend to do a shuffle-like crossover during which the farm

plans cannot be preserved. Therefore, due to its inherent

randomness, this crossover operation has to be combined

with fewer mutations.

Handling the chromosomes as matrices also allows for

more flexibility during mutations. In the present study, the

mutation function performs mutations on each of the farm

plans. That is, a random point is proposed for each row of

the selected matrix. As the variables are comprised of

integers and real numbers, a mutation is then performed on

each selected element based on its nature and defined

boundaries. Nevertheless, whether each of the farms should

receive mutations and also the amount of mutation per-

formed on each farm could easily be managed when using

matrix chromosomes.

Variable concentration

As illustrated in Fig. 3, the first and second elements of the

chromosome rows consist of the number of proposed crop

(integer), followed by the plantation fraction (0 B a B 1).

However, instead of variables St and Gt, the deficit irriga-

tion fraction (xt) is used which is defined as:

xt ¼ 1� Wað Þt
Wpð Þt

� �
ð20Þ

Parent 1 Parent 2

Offspring 1 Offspring 2 Offspring 1 Offspring 2

Horizontal Crossover
Over row 4

Ver�cal Crossover
Over column 2

Fig. 2 Vertical and horizontal

crossover operations in PWGA
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In this scheme, the use of deficit irrigation with 5 time-

steps corresponding to 5 growth stages of crop Cf

(Ghahraman and Sepaskhah 2004) reduces the number of

decision variables from f 9 (2 ? 72) to the far smaller

value of f 9 (2 ? 5). Based on Eq. (20), and given the fact

that Wp is known, Wa could be derived from xt. Due to the

low price of the surface waters and the critical condition of

groundwater resources, the priority of each farm is to

consume all of its surface resources and then try to reach

the proposed deficit irrigation plan using groundwater

resources (if any). Hence, the corresponding Gt and St
could be evaluated for each farm, based on Cf, af, and x1 to

x5.

Stall handling

The proposed PWGA takes advantage of a semi-adaptive

stall handling mechanism. In order to prevent premature

convergence of the population and to avoid being trapped

in local optima—as this is expectable due to the non-con-

vex nature of the problem—the algorithm is able to

increase the population diversity when a persistent stall

occurs. To this end, the algorithm reduces the probabilities

of crossover and elitism and increases the rate of muta-

tions. In this context, elites are highly fit individuals

reaching the next generation without participating in

crossover or mutations. During the stall handling process,

the increased randomness due to the increased probability

of mutations helps to maintain population diversity. Nev-

ertheless, the best solutions are still preserved, since few

elites are still allowed to reach the next generations. Once

the desired level of diversity is achieved, the crossover

probability and the number of elites return to the previous

state.

Case study

The study area is Mobarakabad district, settled on Qader-

abad-Madarsoleiman plain in Fars province, Iran. As pre-

cipitation is limited due to the semi-arid climate of the

central parts of Iran, a large portion of the irrigational water

is withdrawn from the groundwater resources. Uncon-

trolled growth of the agricultural activities in the area has

caused the water table to drop 1.2 m per annum (Pouyan-

Shiraz-Consultants 2012).

Figure 4 shows the location and the cropping pattern of

Mobarakabad in 2007. The study area is comprised of 126

land parcels with 63 owners. The total cultivated area is

207.8 ha with an average of 1.647 ha per field (Ghasemi

et al. 2010). The majority of the farms are under the cul-

tivation of wheat. The only surface water resource is

Mobarakabad aqueduct’s fountain which is located outside

of the case study area and groundwater extraction is

determined to not have any effects on it. One aqueduct and

17 wells supply the agricultural water in this area. The

discharge of the aqueduct depends on climatic conditions

and ranges from 20 l/s during droughts up to 150 l/s in wet

years. The 10-day share of each field from surface water is

currently determined based on the area of each field.

In this study, various conditions are simulated bymeans of

altering the model parameters. Further, the results acquired

from PWGA are compared with those of the general plain-

level optimization models run for the same conditions. To

this end, the effects of wet, normal, and drought climatic

conditions are simulated by altering the meteorological

parameters and the availability of surface waters. Various

levels of allowable groundwater table drawdown formed the

second group of scenarios. Finally, various water priceswere

defined in order to investigate the effects ofwater price on the

Fig. 3 Proposed chromosome

structure for cropping pattern

planning

25 Page 6 of 12 Model. Earth Syst. Environ. (2016) 2:25

123



model’s output. However, since no water market was

established between the farmers, the market price for

groundwater was unknown. Thus, the base groundwater

price was calculated as the sum of the fixed and variable

annual costs of operating pumping wells. This value was

determined to be 109.7 Rials/m3, and four water price sce-

narios included 100 and 200 % increase of the groundwater

price (219.4 and 329.1 Rials/m3), in addition to 1000 and

2500 Rials/m3 fees.

Results and discussion

Cropping patterns optimization

The results for nine scenarios in both cases of using PWGA

and the general form of cropping pattern optimization

model which was solved using GA are provided in Table 1.

As it could be seen at first glance, the net benefits resulting

from more restrictive scenarios tend to be lower in com-

parison to those acquired from more permissive scenarios

(e.g., Dh B 1 m in comparison with Dh B 3 m).

Nevertheless, the most notable occurrence is the dif-

ferences between the results of PWGA and the plain-level

model. Table 1 clearly demonstrates that the plain-level

model has a tendency to overestimate the net benefits in all

of the nine cases. This is partially due to the fact that in

contrast with the real-world situations, the plain model has

been able to favorably allocate groundwater from all of the

17 wells to large areas of land. However, in real-world, the

private ownership of the wells would limit the areas that

enjoy using the groundwater resources. Moreover, given

the current situation in the study area, the withdrawal rate

of each farm from surface waters cannot exceed its pre-

determined share of water. Hence, the results acquired

from PWGA could be considered as more realistic in

comparison with those of the plain model.

Due to the spatial nature of the optimal decisions pro-

vided by PWGA, these results could easily be linked with

spatial databases and be presented in the form of maps/

spatial services. Figures 5 and 6 illustrate the proposed

cropping pattern, and plantation fractions obtained for the

first scenario (Dh B 1 m).

It is worthy to note that, due to the fact that a number of

parameters are calculated for chromosomes during the

optimization procedure, these parameters could also be

extracted for each desired chromosome when required.

These parameters include St, Gt, (Ya)f, Bf, Cf, and Dhk,t.

Fig. 4 Location and cropping pattern of the study area (Mokhtarabad) in 2007
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That is to say, although the conjunctive use decisions are

not directly incorporated as decision variables, they could

be easily derived from the chromosomes. For instance, due

to limited space in this paper, only the conjunctive use

decisions obtained for farms 18 and 77 under the second

scenario (Dh B 2 m) are presented in Fig. 7.

Stall handling

Figure 8 illustrates the convergence process of PWGA

populations and makes comparison between the algorithms

in presence and absence of the stall handling code. As

shown on the left side of Fig. 8, the mean fitness of the

population rapidly approaches the best fitness, showing that

the population is gradually dominated by highly fit indi-

viduals (premature convergence). In contrast, in case the

stall handling mechanism is enabled, the mutation rate is

increased and the mean fitness of the population drops

when encountering a persistent stall. This increase has led

to increase of the gene diversity within the population, and

the algorithm could eventually find better solutions. The

repetition of this process has contributed to a wavy form

noticeable in mean fitness of the population, and an overall

improvement in the algorithm’s efficiency.

Fig. 5 Parcel-level optimal

cropping pattern decisions for

the study area (Dh B 1 m)
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Summary and conclusion

In this paper, a novel approach to cropping patterns and

water allocation optimization was presented. The proposed

model aimed at supporting optimal cropping pattern and

conjunctive use decisions at land parcel level. For this

purpose, a URM groundwater model is coupled with a

modified genetic algorithm. The matrix-based genetic

algorithm, namely PWGA, was used in order to tackle the

large number of decision variables incorporated in such a

detailed model. As expected, the use of PWGA showed

that general cropping pattern optimization models tend to

overestimate the optimal net benefits, due to having an

unrealistic modeling approach to allocation of water

resources.

The proposed PWGA algorithm provides superior

capabilities for handling large numbers of decision vari-

ables, including the easier and more flexible crossover and

mutation operations. Besides, the dimensions of the prob-

lem are reduced by condensation of the water allocation

variables using a new approach.

The use of a semi-adaptive mechanism for handling

persistent generation stalls has also improved the perfor-

mance of the proposed optimization model in avoiding

convergence to local optimums. Nevertheless, this mech-

anism could be further developed in such a way that the

Fig. 6 Optimal plantation

fraction of Mokhtarabad farms

(Dh B 1 m)
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operation probabilities are dynamically determined for

each generation, based on the diversity estimates obtained

from the populations.

Although two crossover operations are presented in this

paper, PWGA used in this study could only use one of the

two types at a time. Nevertheless, the codes could be

extended to perform both crossover operations simultane-

ously and with different probabilities. Furthermore, the

authors did not incorporate any dynamism in severity of the

mutation and/or crossover operations.

Finally, in the present study we only tried to maximize

the overall net income of the plain by proposing decisions

at land parcel level, while maintaining a certain level of

groundwater exploitation. Nevertheless, the incorporation

of cadastral data including detailed ownership data has

made it possible to evaluate metrics regarding the equality

of water usages, distribution of income, and many other

factors for each of the proposed decision sets. The authors

conclude that incorporation of such disparity metrics in the

objective function would result in improving the applica-

bility of the optimization model in real-world scenarios.
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