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Abstract Salinity is one of the main factors in ground-

water quality monitoring. The main objectives of this study

are to investigate and compare the accuracy of three dif-

ferent neural computing techniques, multi-layer perceptron

neural network (MLP), radial basis function neural network

(RBFNN), and generalized regression neural network

(GRNN), in prediction of groundwater salinity of the

Tabriz plain confined aquifer, expressed by electrical

conductivity [EC (lS/cm)], and to employ an integrated

method to combine the advantages of neural network

models utilizing the concept of committee machine. To

develop the models, 93 data records of groundwater sam-

ples were collected from East Azarbaijan regional water

company. The data set including Ca2?, Mg2?, Na?, SO4
2-

and Cl- concentrations as the inputs and salinity [EC (lS/
cm)] as an output were divided into two subsets; training

and testing based on cross validation approach. After

training and testing of the models, the performance of the

models were evaluated using root mean square errors

(RMSE), determination coefficient (R2) and mean absolute

error (MAE). The performance criteria of the constructed

neural network models showed that RBFNN model has the

best performance in predicting salinity. The committee

neural network (CNN) combined the results of salinity

predicted from MLP, RBFNN and GRNN, each of them

has a weight factor showing its contribution in overall

prediction. The optimal weights were derived by a genetic

algorithm (GA). The results of salinity prediction derived

from CNN showed that the CNN performs better than any

one of the individual ANNs acting alone for predicting

groundwater salinity.

Keywords Groundwater salinity prediction � Neural
network models � Committee machine � Tabriz plain � Iran

Introduction

Groundwater is one of the major water resources for

domestic, industrial and agricultural uses in arid and

semiarid regions worldwide. It is important to monitor and

evaluate the quality of any groundwater that may be

potentially used for various purposes. Salinity is one of the

major hydrochemical parameters to evaluate groundwater

quality. Salinity is composed of hundreds of different ions,

including chloride (Cl-), sodium (Na?), nitrate (NO3
-),

calcium (Ca2?), magnesium (Mg2?), bicarbonate

(HCO3
-), and sulfate (SO4

2-). Moreover, toxic ions such

as boron (B), bromide (Br-) and iron (Fe) could be accu-

mulated at higher levels (Nasr and Zahran 2014).

Groundwater quality degradation can be caused by

natural and anthropogenic processes. The origins of

groundwater salinization are diverse such as (1) seawater

intrusion (Park et al. 2005; Bouchaou et al. 2008; Custodio

2010; Cruz et al. 2011); (2) evapo-concentration (concen-

tration by evapotranspiration) of airborne salts (Alcalá and

Custodio 2008; Guan et al. 2010); (3) hydrogeological

characteristics of the aquifer (Ben Moussa et al. 2011;

Farber et al. 2007); (4) water–rock interaction, such as

dissolution, leaching and hydrolysis of minerals (Van der

Weijden and Pacheco 2003; Abid et al. 2011; Jalali 2007)

and (5) human influence, such as return flows from irri-

gated agricultural activities (Oren et al. 2004; Almasri

2007; Garcı́a-Garizabal and Causape 2011).
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Recently, mathematical, statistical and computational

methods to simulate and assess many aquifer water quality

parameters have been investigated (Seyyed et al. 2013). It is

very important to monitor or predict the salinity by means of

cost-effective technologies. In this context, black-box

models like artificial neural network (ANN) are very

attractive to predict the salinity. The advantages of applying

ANNs to water quality simulation are: (1) no physics-based

algorithm is required to build the model; therefore, the

modeling approach is faster and more flexible than physics-

based modeling approaches in most cases; (2) ANNs can

handle non-linear relationship easily and properly; and (3)

the expertise and user experiences may be incorporated

easily into the model structure (Chang et al. 2010).

ANN models have been broadly applied in water quality

in recent years. ANNs have been used to simulate the effect

of climate change on discharge and the export of dissolved

organic carbon and nitrogen from river basins (Clair and

Ehrman 1996), predict salinity of groundwater and rivers

(Maier and Dandy 1996; Huang and Foo 2002; Nasr and

Zahran 2014; Ravansalar and Rajaee 2015), simulate and

forecast residual chlorine concentrations within urban

water systems (Rodriguez and Serodes 1998), prediction of

arsenic, sulfate and nitrate concentrations in groundwater

(Yesilnacar et al. 2008; Yesilnacar et al. 2012; Chang et al.

2010), spatial distribution of groundwater quality (Kha-

shei-Siuki and Sarbazi 2013) and determine the leachate

amount from municipal solid waste landfill (Karaca and

Ozkaya 2006).

A recent development has targeted to predict ground-

water salinity from different parameters using neural net-

work techniques (Maier and Dandy 1996; Nasr and Zahran

2014). However, most previous studies were focused on

salinity prediction from a unique type of neural network

models. The aims of this study are (1) To predict and

compare groundwater salinity of Tabriz plain confined

aquifer using MLP, GRNN and RBF neural networks; (2)

To combine the three ANN models to improve the accu-

racy of target prediction using the concept of committee

machine.

Materials and methods

Multi-layer perceptron (MLP)

MLP is one of the commonly used ANN approach for

prediction studies. MLP neural networks structure is made

up of one input layer, one output layer, and at least one

hidden layer consisting of hidden neurons (Fig. 1). The

hidden and output layers consist of some processing ele-

ments called neurons. The number of neurons in the hidden

layers is usually optimized using the available data through

the use of a trial and error procedure. The calculation in the

network is done in hidden and output layers by the con-

nections between all the elements through synaptic

weights.

Figure 1 shows the structure of a MLP neural network

model. In this Figure i, j and k denote input layer, hidden

layer and output layer neurons, respectively, and w is the

applied weight by the neuron. The explicit expression for

an output value of a three layered MLP is given by Nourani

et al. (2013):

yk ¼ f�
XMN

i¼1

Wkj � fh
XNN

i¼1

WjiXi þWj0

 !
þWk0

" #
ð1Þ

where Wji is a weight in the hidden layer connecting the ith

neuron in the input layer and the jth neuron in the hidden

layer, Wj0 is the bias for the jth hidden neuron, fh is the

activation function of the hidden neuron, Wkj is a weight in

the output layer connecting the jth neuron in the hidden

layer and the kth neuron in the output layer, Wk0 is the bias

for the kth output neuron, f� is the activation function for

the output neuron, Xi is ith input variable for input layer

and yj is computed output variable. NN and MN are the

number of the neurons in the input and hidden layers,

respectively. The weights are different in the hidden and

output layers, and their values can be changed during the

network training process. Every neuron in each layer is

connected to a neuron of an adjacent layer having different

weights. Each neuron receives signals from the neurons of

the previous layer weighted by the weighted connections

between neurons except in the input layer. Neurons then

produce an output signal by passing the summed signal

through an activation function (Maqsood et al. 2005;

Ghavidel and Montaseri 2014). The gradient descent,

conjugate gradient, Levenberg–Marquardt, and etc. learn-

ing algorithms can be used for training the MLP model

(Kisi et al. 2015).

Fig. 1 Schematic diagram of a feed-forward MLP neural network
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Radial basis function neural network (RBFNN)

Broomhead and Lowe (1988)introduced radial basis func-

tion neural networks in late 1980s. RBF networks have the

advantage of non-suffering from local minima in the same

way as multi-layer perceptrons (Haykin 1994). RBF net-

works are also good at modeling nonlinear data and can be

trained in one stage rather than using an iterative process as

in MLP and also learn the given application quickly

(Venkatesan and Anitha 2006). Also, an important property

of RBF neural networks is that a high-dimensional space

nonlinear problem can be easily broken down through a set

of combination of radial basis functions, besides they are

the beneficiary of the ability to be quickly trained (Chang

and Chen 2003).

A radial basis function is represented by a center U

where the function value is the maximum (usually 1) and a

radius (spread) r. The most common choice for the

RBFNN is the Gaussian function, in which the center of a

hidden node can be specified by the mean (center, U) and

the deviation (spread, r).
In RBFNN, the hidden layer is self-organizing in which

its parameters rely on the distribution of the input vector.

The hidden layer nodes compute the distance between their

centers and the point on the input set that corresponds to

the input vector. For the pth input pattern XP, the response

of the jth hidden layer node qj is of the following form

(Fernando and Jayawardena 1998; Kisi 2009; Kisi et al.

2015):

qj ¼ f
Xp � Uf

�� ��
2r2j

( )
ð2Þ

where :k k usually denotes as the Euclidean norm. The

output vector of the hidden layer (qk) is processed by each

neuron of the output layer which is usually a summing

function.

yk ¼
XL

j¼1

qjWkj ð3Þ

Wkj is the output layer weights. The output layer uses

supervised learning (similar to MLP) to set its parameters

testing against each of the target vector (actual outputs).

Figure 2 shows a schematic diagram of a general RBFNN

network.

Generalized regression neural network (GRNN)

The generalized regression neural network, as proposed

by Donald Specht (Specht 1991), falls into the category of

probabilistic neural networks. GRNN is a neural network

architecture that can solve any function approximation

problem in the sense of estimating a probability distri-

bution function. GRNN is a universal approximator (Park

and Sandberg 1991) for smooth functions, allowing it to

solve any function approximation and estimate any con-

tinuous variable problem when given enough data. This

architecture is a one-pass learning algorithm with a highly

parallel structure. Even with sparse data in a multidi-

mensional measurement space, the algorithm provides

smooth transitions from one observed value to another

(Specht 1991).

A schematic of GRNN is illustrated in Fig. 3. As shown

in Fig. 3, the GRNN consists of four layers (Patterson

1996): including the input layer, pattern layer, summation

layer and output layer. The first layer is fully connected to

the second pattern layer through the weights of the pattern

layer, where each unit represents a training input pattern

and its output is a measure of the distance of the input from

the stored patterns. Each pattern layer unit is connected

Fig. 2 Schematic diagram of a radial basis function neural network

Fig. 3 Schematic diagram of a generalized regression neural network
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with the weights of the summation layer to the two neurons

in the summation layer: the S-summation neuron and

D-summation neuron. The S-summation neuron computes

the sum of the weighted outputs of the pattern layer while

the D-summation neuron calculates the unweighted outputs

of the pattern neurons. The output layer merely divides the

output of each S-summation neuron by that of each

D-summation neuron, yielding the predicted value to an

unknown input vector x as:

y ¼
Pn

i¼1 Wi exp �Dðx; xiÞ½ �Pn
i¼1 exp �Dðx; xiÞ½ � ð4Þ

x is the input vector, xi is the ith case vector, xj is the jth

input variable.Wi is the weight connecting the ith neuron in

the pattern layer to the summation layer. n and p denote the

number of training pattern and elements of an input vector,

respectively. D is the Gaussian function of the following

form:

D x; xið Þ ¼
Xp

j¼1

xj � xij

rj

� �2

ð5Þ

xij stands for the jth data value in the ith case vector. rj is
the smoothing factor for the ith case vector. During the

training process, the error is measured by the means of

square error (MSE). The training process would be repe-

ated for several/numerous times with different smoothing

factors until the network is optimized according to the

minimum amount of MSE or a pre-defined threshold value

(Kisi et al. 2015).

Committee neural network (CNN)

A committee neural network (CNN) has a parallel frame-

work that produces a final output by combining the results

of individual experts (Haykin 1991; Sharkey 1996). The

CNN combines the results of neural networks and so reaps

the benefit of all work. Therefore the performance of the

CNN model could be better than any individual neural

networks (Bagheripour 2014).

Fundamental of committee machine networks were

described by Bhatt and Helle (2002), Lim (2005) and Chen

and Lin (2006), Kadkhodaie-Ilkhchi et al. (2009) and

Ghiasi-Freez et al. (2012). The assumption is that, there are

N trained ANNs with output vector Oi, which are used to

predict target vector T : The prediction error could be

written as:

ei ¼ Oi � T ; i ¼ 1; . . .;N: ð6Þ

The expectation of the squared error for the ith ANN

(Oi) is:

Ei ¼ n Oi � Tð Þ2
h i

¼ n e2i
� �

; i ¼ 1; . . .;N ð7Þ

In which n :½ � is the expectation. The average error for each
of the ANNs acting alone is:

Eavg: ¼
1

N

XN

i¼1

Ei ¼
1

N

XN

i¼1

n e2i
� �

ð8Þ

Applying the averaging method, output vector Oi of the

CNN is:

OCMAI ¼
1

N

XN

i¼1

Oi ð9Þ

Therefore, the CNN has the prediction squared-error:

ECMAI ¼ n OCMAI � Tð Þ2
h i

¼ n
1

N

XN

i¼1

Oi � T

 !2
2
4

3
5

¼ n
1

N

XN

i¼1

ei

 !2
2
4

3
5

ð10Þ

Considering Cauchy’s inequality:

a1b1 þ a2b2 þ . . .þ anbnð Þ2 � a21 þ a22 þ . . .þ a2n
� �

� b21 þ b22 þ . . .þ b2n
� �

ð11Þ

Equations (8) and (10) can be extended as below:

ECMAI ¼ n
1

N

XN

i¼1

ei

 !2
2
4

3
5

¼ n
N2

e1 � 1þ e2 � 1þ . . .þ eN � 1ð Þ2
ð12Þ

Eavg: ¼
1

N

XN

i¼1

n e2i
� �

¼ n
N2

e21 þ e22 þ . . .þ e2N
� �

� 1þ 1þ . . .þ 1ð Þ

¼ n
N

e21 þ e22 þ . . .þ e2N
� �

� Nð Þ

ð13Þ

Now, Cauchy’s inequality can be applied to Eqs. (12) and

(13):

n
N2

e1 � 1þ e2 � 1þ . . .þ eN � 1ð Þ2

� n
N

e21 þ e22 þ . . .þ e2N
� �

� Nð Þ
ð14Þ

By a simple substitution of two sides of Eq. (14), it will be

concluded that:

ECMAI �Eavg:: ð15Þ

This indicates that the error of CNN is less than or equal

to the average of all the ANNs (Chen and Lin 2006). A

schematic diagram of the developed CNN is illustrated in

Fig. 4.
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Study area

Tabriz plain is located in the northwest of Iran and covers an

area of 700 km2. The plain is part of theUrmia Lake drainage

basin and lies between the latitudes of 45�300 and 46�150 N
and altitudes 37�560 and 38�170 E (Fig. 5). The study area is

surrounded by southern slopes ofMishowandMoro andwest

Garadug Mountains (north), northern slopes of Sahand

Mountain (south), Tabriz city (east) and Urmia Lake salt

marsh lands (west). The plain is located on the eastern shore

of Urmia Lake. The mean annual temperature and rainfall in

the study area are 12.8 �C and 230.7 mm, respectively.

Fig. 4 Schematic diagram of

CNN model

Fig. 5 Location map of the study area
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The land surface elevation represents a more or less

uniform geomorphic feature in the plain and regionally the

area dipping towards southwest as a result the movement of

water from northeast-southwest direction. Variations in

elevation are indicative of different land-use patterns and

climatological changes.

The geology of the study area is relatively complex.

This area includes representative of Devonian to Quater-

nary age with various movements affecting it, most

strongly those of Alpine origin (Asghri Moghaddam 1991).

The upper red formation (Miocene series) is widely

exposed in the north-eastern part of the Tabriz area, made

up of red marls with gypsum, conglomerate, salt and marly

limestone’s with thickness of up to 1000 m. The Plio-

Pleistocene volcanic tuffs have an extended exposure and

overlie the Pliocene beds to the south of the Tabriz plain

around the core of the Sahand volcano. The Quaternary

Alluvial deposits have their major outcrop in the Tabriz

plain. The alluvium, fans and recent Aji Chay terraces

consist of several beds of gravel and sand, separated by and

grading into silt and clay with thickness of 200 m

(Barzegar et al. 2015).

Tabriz plain has a semi-triangular shape which Mehran

Rood River enters to it from east vertices of the triangle

and passes inside the Tabriz city and then joins the Aji

Chay River at the western end of the city. The Aji Chay

River is the most important river in the area that enters to

the plain from its northwest boundary, and flows along the

central part of the plain towards the west, and at the end of

the plain because of very low slope of the ground surface

divides into several branches and eventually discharges to

the Urmia Lake. These rivers have been deposited alluvial

sediments in their paths in the plain. Gomanab Chay and

Sinekh Chay Rivers join to the Aji Chay River from right

bank side and Sard Rood and Onsor Rood Rivers from left

bank side (Fig. 5). These rivers have formed alluvial fans

at the entrance of the plain.

The Aji Chay River and its three right bank tributaries,

entering the plain from north, crosses the Upper Red for-

mations, as a result, they are transporting fine suspended

solids materials during the higher discharges and saline

water during the lower discharges periods. Other three left

bank side tributaries originated from northern slopes of the

Sahand Mountains contain good quality water and

depositing coarse sediments in the plain. The Aji Chay

River has been deposited alluvial terraces in the central

parts of the plain and hydrogeologically divided the plain

into southern and northern parts. There is an unconfined

aquifer which is extended overall the plain whereas the Aji

Chay River course terraces are formed multilayered sedi-

ments that the deeper layers contained confined aquifers

(Barzegar 2014). Therefore, the central part of the Tabriz

plain contains unconfined and confined aquifers while,

close to highlands there are only unconfined aquifers

(Fig. 6). Maximum thickness of the unconfined aquifer is

100 m and it decreases to 50 m toward the central part of

the plain (Barzegar et al. 2015). The unconfined aquifer in

southern and south eastern part of the area is formed in

alluvial fans with good groundwater quality. Aji Chay

River terraces are forming multilayer aquifers, but sepa-

ration of unconfined aquifer from confined aquifers with

respect to water quality is occurring at 50–60 m below the

ground surface. Groundwater quality above 60 m depth is

saline whereas from 60 to 120 m it is fresh water (Asghri

Moghaddam 1991).

Water resources of the aquifers originate from precipi-

tation, recharges from the rivers, groundwater flow from

surrounding mountains, irrigation return flows water,

municipal and industrial waste waters. Groundwater flow

from the Sahand alluvial tuff aquifer is the main source of

water in southern and central parts of the Plain aquifers

(Asghri Moghaddam and Allaf Najib 2006; Barzegar et al.

2015). General direction of groundwater flow follows the

topography of the area, mainly from northeast to southwest

and east to west.

Data collection and preparation

The data of 93 wells from confined aquifer of Tabriz plain

have been used in this study. Data sets such as physico-

chemical parameters of groundwater samples include

electrical conductivity (EC), pH, temperature, Ca2?, Mg2?,

Na?, K?, HCO3
-, CO3

2-, SO4
2- and Cl- concentrations

were collected by the East Azarbaijan Regional Water

Company. These data were measured from 18 September

to 16 October 2013. The groundwater of the study area is

mainly Na?-Cl- type. The pH values of groundwater

ranged from 7.0 to 9.2. The average temperature of the

wells was around 17 �C. The EC value in the wells varied

between 269 and 12,990 lS/cm, with the average of 3515

lS/cm. The maximum allowable EC value is 1500 lS/cm
(WHO 2011). Hence, the groundwater conductivity in most

of the observation wells exceeds the maximum allowable

value. Descriptive statistics for the collected data is shown

in Table 1.

One of the most important steps in developing a pre-

diction model is the selection of the input variables.

Because, these variables determine the structure of the

ANN model and influence the weighted coefficient and the

results of the model. For selection of neural networks

inputs, it was tried to choose some variables that are related

to salinity [EC (lS/cm)]. For this purpose, Pearson corre-

lation was used (Table 2). Variables with very small cor-

relation coefficients indicate that they have very weak

correlations with EC, and thus these variables could be

ignored during modeling. Ca2?, Mg2?, Na?, SO4
2- and
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Cl- concentrations were selected as inputs and salinity [EC

(lS/cm)] as an output to develop the models.

Normalization of data ensures fast processing and con-

vergence during training and minimizes prediction error

(Rojas 1996). The input and output data (raw data) were

normalized before subjecting to training and testing by

transforming the data to the range of 0 to 1 using the

Eq. (16);

X̂ ¼ X � Xmin

Xmax � Xmin

: ð16Þ

When the neural networks training completed, the value

of the networks output is normalized and it needs denor-

malization transforming into the actual value. The equation

is defined as follows (Eq. 17):

X ¼ X̂ � Xmax � Xminð Þ þ Xmin ð17Þ

Fig. 6 Schematic positions of

aquifer types and location of the

sampling wells in the study area

Table 1 Descriptive statistics for the collected groundwater samples

Minimum Maximum Mean SD Variance Skewness Kurtosis

EC (lS/cm) 269.00 1.299 9 104 3.515 9 103 2.41 9 103 5.81 9 106 1.30 2.37

pH 7.00 9.20 8.2570 0.45 0.203 -0.42 0.00

Temp. (�C) 14.00 19.00 16.78 1.41 2.01 0.02 -0.963

Ca2? (meq.L-1) 1.28 58.00 9.86 9.64 92.97 2.22 6.57

Mg2? (meq.L-1) 0.68 28.00 7.09 4.50 20.27 1.40 3.83

Na? (meq.L-1) 0.62 69.00 17.95 15.25 232.74 1.27 1.14

K? (meq.L-1) 0.05 0.68 0.27 0.13 0.01 0.46 -0.12

HCO3
- (meq.L-1) 1.35 9.95 4.62 1.81 3.30 0.62 0.24

CO3
2- (meq.L-1) 0.00 0.50 0.20 0.18 0.03 0.09 -1.54

Cl- (meq.L-1) 0.45 112.50 24.46 22.14 490.26 1.35 2.29

SO4
2- (meq.L-1) 0.10 13.80 5.81 3.14 9.88 0.51 0.22
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where X is original value, Xmin and Xmax are minimum

and maximum values in the series, respectively, and X̂ is

the normalized data.

The training/testing data split can have a significant

impact on the results of the models. The cross-validation

technique (Chang et al. 2013; Fijani et al. 2013) was used

in this study to divide the data sets. Based on this approach,

93 data points were divided in two sets; training and test-

ing. The 75 % (70 samples) and 25 % (23 samples) of data

were used for training and testing, respectively.

Performance criteria

The performance of the simulation of training and testing

sets was evaluated by following measures of goodness-of-

fit: the coefficient of determination (R2), root mean squared

error (RMSE) and mean absolute relative error (MARE)

shown in Eqs. (18, 19, 20), respectively. The R2 express

the degree of the relation when two variables are linearly

related. If R2 is close to 1, there is good correlation

between the dependent and independent variables.

R2 ¼
XN

i¼1

Pi � �Pð Þ Oi � �Oð Þ
" #2 XN

i¼1

Pi � �Pð Þ2 Oi � �Oð Þ2
" #�1

ð18Þ

RMSE ¼ N�1
XN

i¼1

Pi � Oið Þ2
" #0:5

ð19Þ

MARE ¼ 1

N

XN

i¼1

Oi � Pi

Oi

				

				� 100 ð20Þ

where N is the number of observations, Pi is the predicted

values, Oi is the observed data, and �P and �O are the mean

values for Pi and Oi, respectively.

Model development

This study employed three ANNs include MLP, GRNN and

RBFNN to predict the salinity [EC (lS/cm)] of the Tabriz

plain confined aquifer. At the first model, a three layer net-

work as a multilayer perceptron network (MLP) with

Levenberg–Marquardt algorithm was used for prediction of

groundwater salinity values. Researchers employed the

Levenberg–Marquardt algorithm which is an approximation

to Newton’s method for adjusting the weights of the ANN

model because it is more powerful than the conventional

gradient descent techniques (Kisi 2007; Kolay and Baser

2014; Nadiri et al. 2014; Tayfur et al. 2014). Five input

variables used in the first layer. The number of neurons in the

hidden layer which was determined via trial and error

method was three and in the output layer one neuron was

included groundwater salinity [EC (lS/cm)] as the target.

The transfer function from layer one to twowasTANSIGand

from layer two to layer three was PURELIN. The perfor-

mance plot shows the value of the function, in terms of

training, validation behaviors, versus the iteration number

(Fig. 7). The best validation performance, based on themean

square error, was 0.00032031 at epoch 5. When the training

of themodelwas completed, the testing datawere input to the

model and the predicted salinity values were calculated.

The radial basis function neural network (RBFNN) was

employed to construct the second model. RBFs are

Table 2 Pearson correlation to select the input parameters of the ANN models

EC pH Temp. Na? K? Ca2? Mg2? HCO3
- CO3

2- Cl- SO4
2-

EC 1

pH -0.377 1

Temp. 0.335 -0.153 1

Na? 0.862 -0.204 0.553 1

K? 0.381 -0.272 0.393 0.316 1

Ca2? 0.739 -0.471 0.079 0.308 0.254 1

Mg2? 0.860 -0.331 0.295 0.580 0.404 0.771 1

HCO3
- 0.127 -0.174 0.177 0.145 0.483 -0.007 0.202 1

CO3
2- -0.217 0.766 -0.167 -0.234 -0.204 -0.507 -0.365 -0.137 1

Cl- 0.990 -0.327 0.420 0.865 0.312 0.721 0.832 0.034 -0.391 1

SO4
2- 0.647 -0.541 0.304 0.445 0.450 0.614 0.651 0.174 -0.427 0.552 1
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embedded in a two-layer neural network, where each hid-

den unit implements a radial-activated function. The output

units implement a weighted sum of hidden unit outputs.

The input into an RBF network is nonlinear while the

output is linear. Radial neurons were added successively to

the hidden layer until the desired performance was

achieved. Figure 8 shows by inserting 70 neurons that the

MSE of the RBF model falls beneath the desired MSE and

the training process stops. After training the RBFNN, the

testing data were input to the model and the salinity

predicted.

A generalized regression neural network (GRNN) is a

variation of the radial basis neural networks, which is based

on kernel regression networks (Cigizoglu and Alp 2006;

Celikoglu and Cigizoglu 2007). In GRNN model, the key

parameter, including the spread factor, plays a crucial role

in establishing a good ANN regression model with high

prediction accuracy and stability. Different spread factor

values between 0.1 and 1.5 were tried for the GRNN model

and the optimal one that gave the minimum RMSE in the

validation period were selected. The MSE-spread constant

graph for the GRNN model is shown in Fig. 9. By speci-

fication of 0.15 for the spread factor, the performance of

the model reaches its minimum value, 0.0737.

The proposed CNN integrates the results of the MPL,

RBFNN, and GRNN models using a genetic algorithm

(GA) to obtain the optimal contribution of the combiner

weights. The CNN gains the advantages of each individual

ANN and improves the accuracy of prediction procedure.

The fitness function that should be optimized with GA is

defined as below:

MSECNN ¼ 1

N

Xm

i¼1

W1 � P1i þW2 � P2i þW3 � P3i � Tið Þ2

ð21Þ

where Ti is the measured salinity [EC (lS/cm)] and N is the

number of training data. W1, W2 and W3 are the weight

factors corresponding to the outputs of P1i, P2i and P3i,

respectively. The sum of the CNN weights must be equal to

one.

To determine the optimal contribution of the weights,

the GA parameters were set as follows: The initial popu-

lation size and initial range were 20 and [0, 1], respec-

tively. The crossover and mutation functions were selected

as scattered and Gaussian, respectively. The maximum

number of the generations that specifies the maximum

number of GA iterations was set to 100. After 100 gener-

ations, the variation of the fitness function was insignificant

Fig. 7 Training state and performance of the generated MLP neural

network model

Fig. 8 The MSE of training data during the RBFNN learning period

Fig. 9 The RMSE-spread constant graph for the GRNN model

Model. Earth Syst. Environ. (2016) 2:26 Page 9 of 13 26

123



and the GA derived values for W1, W2 and W3 were 0.372,

0.508 and 0.12, respectively. The weights obviously rep-

resent the individual contribution of each model in con-

struction of the CNN. After running the GA, the optimized

weight coefficients were applied to the testing data and the

final output was calculated as below:

SalinityCNN ¼ 0:372� SalinityMLP þ 0:508
� SalinityRBFNN þ 0:12� SalinityGRNN :

ð22Þ

By applying the capabilities of the GA, the outputs of

the individual ANNs were combined.

Results

The accuracy comparison of MLP, RBFNN, GRNN and

CNN models is employed in this part of the study. The

results of the developed models are given in Table 3. The

RMSE, R2 and MARE values of the MLP model in training

step were 171.02 lS/cm, 0.995 and 11.38 %, respectively.

The RMSE, R2 and MARE of the MLP model in the testing

step were 447.22 lS/cm, 0.971and 9.5 %, respectively.

The RMSE, R2 and MARE values of the RBFNN model

in training step were 168.66 lS/cm, 0.995 and 6.06 %,

respectively. The RMSE, R2 and MARE values of the

RBFNN model in the testing step were 342.5 lS/cm, 0.985

and 8.71 %, respectively. The RMSE, R2 and MARE of the

GRNN model in the training step were 270.65 lS/cm,

0.9877 and 15.22 %, respectively. The RMSE, R2 and

MARE of the GRNN model in the testing step were 938.01

lS/cm, 0.929 and 12.45 %, respectively. Figure 10a–c

show the plots between measured and predicted values of

the salinity in testing sets for the MLP, RBFNN and GRNN

models. It can be seen from these figures, for the testing

phase, that the RBFNN model is closer to the exact fit line

than the MLP and GRNN models.

It is obvious from the Table 3 that the MLP, GRNN and

RBFNN model performances are in general, accurate and

reliable. The high accuracy of the developed models can be

due to the high correlation of the inputs and output of the

models. It is noted that the reliability of MLP, GRNN and

RBFNN models depend on data structure used in training

and testing processes and model structure. In ANN pre-

dicting models, model performance is influenced by input

structure and many training parameters selected by trial

and error method (Firat and Gungor 2009). Therefore, these

parameters should be carefully selected.

The RMSE, R2 and MARE of the CNN model in the

training step were 129.94 lS/cm, 0.9972 and 5.51 %,

respectively. The RMSE, R2 and MARE values of the CNN

model in the testing step were 317.86 lS/cm, 0.9908 and

4.38 %, respectively (Fig. 10d). The performance of the

CNN shows improvement in comparison with the indi-

vidual ANNs acting alone for predicting salinity. Actually,

the GA decreased the contribution of the poorly performing

experts and increased the weight of the high performance

experts for final prediction of the output by CNN.

Conclusion

In the present study, the groundwater salinity of the

Tabriz plain confined aquifer (i.e. in terms of EC) based

on Ca2?, Mg2?, Na?, SO4
2- and Cl- concentrations was

predicted by using MLP, RBFNN and GRNN neural

networks and the concept of committee machine was

employed to combine the advantages of individual neural

networks. For these purposes, 93 data records collected

from wells and after normalization of data set, the cross-

validation technique was used to divide the data sets as

training and testing. After training and testing the ANN

models, the performances of MLP, FFNN and GRNN

models were compared and evaluated using RMSE, R2

and MARE. The RMSE, R2 and MARE values of the

RBFNN model in the testing step were 342.5 lS/cm,

0.985 and 8.71 %, respectively. The results indicated that

the RBFNN model, among the individual used ANNs,

showed the more accurate results. Finally, a committee

neural network (CNN) was developed by means of

genetic algorithm (GA). The committee neural network

combines the results of salinity predicted from used

ANNs; each of them has a weight factor showing its

contribution in overall prediction. The GA derived

Table 3 Accuracy of the

developed models for prediction

of groundwater salinity in the

training and testing step

Model Training data set Testing data set

R2 RMSE (lS/cm) MARE R2 RMSE (lS/cm) MARE

MLP 0.995 171.02 11.38 % 0.971 447.22 9.5 %

RBFNN 0.995 168.66 6.06 % 0.985 342.5 8.71 %

GRNN 0.9877 270.65 15.22 % 0.929 938.01 12.45 %

CNN 0.9972 129.94 5.51 % 0.9908 317.86 4.38 %
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weights for MLP, RBFNN, and GRNN experts were 0.372,

0.508, and 0.12, respectively. The RMSE, R2 and MARE

values of the CNNmodel in the testing step were 317.86 lS/
cm, 0.9908 and 4.38 %, respectively. A comparison between

committee neural network and artificial neural networks

indicates that committee neural network is capable of

improving the accuracy of final salinity prediction.
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