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Abstract Carbon dioxide (CO2) is the prime greenhouse

gas responsible for the threat of global warming. Forest

biomass plays an important role in sequestration of carbon

dioxide from the atmosphere but the global forest biomass

is declining with an alarming rate due to human activities.

In this scenario, reforestation is crucial to reduce the

atmospheric burden of CO2. In this paper, we propose a

nonlinear mathematical model to study the effect of

reforestation as well as the delay involved in between the

measurement of forest data and implementation of refor-

estation efforts on the control of atmospheric concentration

of CO2. Model analysis shows that the atmospheric con-

centration of CO2 decreases due to reforestation but a

longer delay in between measurement of forest biomass

and implementation of reforestation efforts has destabiliz-

ing effect on the dynamics of the system. The critical value

of this time delay is found analytically. The Hopf-bifur-

cation analysis is performed by taking time delay as

bifurcation parameter. The stability and direction of

bifurcating periodic solutions arising through Hopf-bifur-

cations are also discussed.

Keywords Mathematical model � CO2 gas � Forest

biomass � Reforestation efforts � Time delay �
Hopf-bifurcation

Introduction

The enhanced concentration of carbon dioxide (CO2) in the

Earth’s atmosphere is significantly responsible for the

menace of global warming and the associated climate

changes (IPCC 2007a). The increment in the concentration

of atmospheric CO2 is attributed to human activities such

as fossil fuel burning and land use changes (IPCC 2007b).

Deforestation accounts for nearly 90 % of CO2 emissions

from land use changes (IPCC 2001). Forests are one of the

major sinks of CO2 on the Earth. Trees during the photo-

synthesis process absorb CO2 from the atmosphere and

stock it in the form of biomass. Every year forests absorb

gigatons of carbon in this process. Clearing of forests

causes increase in concentration of CO2 in two ways;

firstly, it reduces the global uptake of CO2 through pho-

tosynthesis process and secondly, the carbon stored in the

trees is released back to the atmosphere in the form of CO2

when the wood is burned or left to decompose after

deforestation. In the last few decades, global forest biomass

has declined at an alarming rate. Between 1990 and 2005,

the total forest area has declined at annual rate of 0.21 %

and the carbon stock per hectare in forest biomass has

declined at the rate 0.02 % (FAO 2010). This severe

destruction of forest has contributed significantly to the

inexorable rise of atmospheric concentration of CO2.

In this scenario, reforestation is a rational approach to

control the atmospheric concentration of CO2 (Woodwell

et al. 1983; Goreau 1992). In view of this, reforestation

efforts have been made in many countries to increase the
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forest biomass. For this purpose, government estimates the

forest biomass and makes efforts for reforestation to

maintain the desired level of forest biomass. Since the

forests having same area may contain different amount of

forest biomass, the estimation of forest biomass is a diffi-

cult and time consuming process (Houghton 2005). Con-

sequently, the data of forest biomass used for policy

making is usually dated. This time lag involved between

measurement of forest biomass and implementation of

reforestation efforts may affect the impact of reforestation

programs on the control of atmospheric CO2. For designing

an effective reforestation policy, it is important to assess

the impact of this time lag. In literature, some mathemat-

ical models are available which explore the interplay

between forest biomass and atmospheric carbon dioxide

(Tennakone 1990; Caetano et al. 2011; Misra and Verma

2013; Shukla et al. 2015). In particular, Tennakone (1990)

has proposed a mathematical model by considering bio-

mass and CO2 as dynamic variables, finding that excessive

deforestation may destabilize the system due to rapid

increase in atmospheric CO2. Misra and Verma (2013)

have studied the effect of human population and forest

biomass on the dynamics of atmospheric CO2, showing

that if the deforestation rate exceeds a critical limit,

atmospheric concentration of CO2 will not get stabilized.

Caetano et al. (2011) have proposed a mathematical model

by considering reforestation and clean technology as con-

trol variables for the atmospheric CO2 and optimized the

total investment on reforestation and clean technology to

obtain the desired level of carbon dioxide.

In the present study, we propose and analyze a mathe-

matical model to study the effect of reforestation on the

control of atmospheric carbon dioxide by taking measure

of reforestation efforts as a dynamical variable. As the

reforestation efforts are implemented on the basis of not

updated measurements of forest biomass, time delay in

implementation of reforestation efforts must be included in

the modeling process. The effect of this delay over the

dynamics of the system is studied in detail.

Mathematical model

We assume that the concentration of CO2 in the atmo-

sphere increases due to natural processes as well as human

related activities. The emission rate of CO2 from natural

sources (e.g., volcanic eruption, respiration process of

living organism, changes in oceanic circulation, etc.) is

assumed to be a constant. Since the anthropogenic CO2

emissions increase with the expansion in human population

(Newel and Marcus 1987; Onozaki 2009); therefore, the

anthropogenic emission rate of CO2 is assumed to be

proportional to the human population. As forest seques-

trates CO2 from the atmosphere during photosynthesis

process, we assume that the concentration of CO2 decrea-

ses due to increase in forest biomass. The depletion of CO2

due to natural sinks other than forests (like oceans etc.) is

assumed to be proportional to atmospheric concentration of

CO2 (Nikol’skii 2010). The human population and forest

biomass is assumed to follow the logistic growth. Since the

climate changes driven by the enhanced concentration of

atmospheric CO2 have lethal effects on human life (Casper

2010; McMichael et al. 2006; WHO 2009), therefore we

assume that the human population declines due to increase

in the concentration of CO2. Man clears forests for food,

fuel and other materials as well as land for agriculture and

industries, with feedback into the population growth

(Brown 1993; Shukla and Dubey 1997; Hartwick 2005;

Dubey et al. 2009); thus we assume that the forest biomass

decreases due to increase in human population whereas the

growth rate of human population is favored by an increase

in forest biomass. The reforestation programs are devel-

oped on the basis of available data on forest biomass which

usually date back in time. Thus we have assumed that the

reforestation efforts, which are applied to increase the

forest biomass, depend on the difference between the car-

rying capacity of the forest biomass and its value measured

s time earlier. Also, we have assumed that some of the

reforestation efforts diminish due to their inefficacy or

some economical barriers.

Let at any time t, N(t) and F(t) be the human population

and forest biomass in any region under consideration. Let

X(t) and R(t) be the concentration of CO2 and measure of

reforestation efforts, respectively at time t. The reforesta-

tion efforts can be measured in terms of cost involved in

their implementation. In view of the above considerations,

the dynamics of the model is governed by the following

system of nonlinear delay differential equations:

dX

dt
¼ Q0 þ kN � aX � k1XF;

dN

dt
¼ sN 1 � N

L

� �
� hXN þ p/NF;

dF

dt
¼ uF 1 � F

M

� �
� /NF þ fRF;

dR

dt
¼ cðM � Fðt � sÞÞ � d0R;

ð1Þ

where Xð0Þ ¼ X0 [ 0, Nð0Þ ¼ N0 � 0, FðmÞ ¼ F0 � 0 for

m 2 ½�s; 0�, Rð0Þ ¼ R0 � 0. The parameters of model sys-

tem (1) are defined in Table 1.

Here ppm means parts per millions by volume. All the

above parameters are assumed to be positive constants. The

region of attraction for model system (1) is given by the

set:
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X ¼ ðX;N;F;RÞ 2 R4
þ : 0\X�Xm; 0�N�Nm;

�

0�F�M; 0�R� cM
d0

�
;

where Xm ¼ ðQ0 þ kNmÞ=a, Nm ¼ Lþ p/LM=s, and it

attracts all the solutions initiating in the interior of the

positive orthant.

Equilibrium analysis

The model system (1) is highly nonlinear, so it is not

possible to find its exact solution. Instead, we examine the

qualitative behavior of the system using the stability theory

of differential equations. We find the equilibrium points of

the model and perform the stability analysis of the obtained

equilibria. An equilibrium point of a dynamical system is a

solution which does not change in time. These points are

obtained by putting the growth rate of different variables of

model system equal to zero. The model (1) has the fol-

lowing four non-negative equilibria:

1. E1ðQ0=a; 0; 0; cM=d0Þ which is always feasible.

2. E2ðsðQ0 þ kLÞ=ðsaþ hkLÞ; Lðsa �hQ0Þ=ðsaþ hkLÞ;
0; cM=d0Þ is feasible, provided s� hQ0

a [ 0. This

condition implies that in absence of forest biomass, the

human population thrives only if its intrinsic growth

rate is greater than its mortality rate due to CO2.

3. E3ðQ0=ðaþ k1MÞ; 0;M; 0Þ is always feasible.

4. E4ðX�;N�;F�;R�Þ is feasible provided the following

conditions are satisfied:

uþ fcM
d0

� /L
sa� hQ0

saþ hkL

� �
[ 0 ð2Þ

s� hQ0

aþ k1M
þ p/M[ 0: ð3Þ

The term ‘uþ ðfcM=d0Þ � /Lððsa� hQ0Þ=ðsaþ hkLÞÞ’
represents the intrinsic growth rate of the forestry biomass

when forest biomass is negligibly small and so it should be

positive (otherwise the forest biomass may become

extinct). The term ‘s� ðhQ0=ðaþ k1MÞÞ þ p/M’ repre-

sents the intrinsic growth rate of the human population

when it is negligibly small and hence it should also be

positive.

The feasibility of equilibria E1, E2 and E3 is obvious.

The equilibrium E4ðX�;N�;F�;R�Þ may be obtained by

solving the equilibrium equations of (1).

From the fourth equilibrium equation we have

R ¼ cðM � FÞ
d0

: ð4Þ

Using Eq. (4) in the third equilibrium equation we have

N ¼ 1

/
uþ fcM

d0

� �
1 � F

M

� �
: ð5Þ

From the first equilibrium equation we find

X ¼ Q0 þ kN
aþ k1F

: ð6Þ

Using Eqs. (5) and (6) in the second equilibrium equation

we obtain the following equation in F:

gðFÞ ¼ s 1 � 1

/L
uþ fcM

d0

� �
1 � F

M

� �� �

� h
aþ k1F

Q0 þ
k
/

uþ fcM
d0

� �
1 � F

M

� �� �
þ p/F:

ð7Þ

From Eq. (7), we may easily note that:

ð1Þ gð0Þ ¼ s 1 � 1

/L
uþ fcM

d0

� �� �
� h
a

Q0 þ
k
/

uþ fcM
d0

� �� �
;

which is negative, if condition (2) holds.

ð2Þ gðMÞ ¼ sþ p/M � hQ0

aþ k1M
;

which is positive, if condition (3) holds.

ð3Þ g0ðFÞ ¼ s

/LM
uþ fcM

d0

� �
þ h

ðaþ k1FÞ2

� k1Q0 þ
k

/M
uþ fcM

d0

� �
ðaþ k1MÞ

� �
þ p/;

which is always positive.

Thus a unique positive root F ¼ F� of Eq. (7) exists in

the interval (0, M) provided the conditions (2) and (3) are

satisfied. Using this value of F� in Eqs. (4), (5) and (6), we

get the positive values of R ¼ R�, N ¼ N� and X ¼ X�,
respectively.

Remark 1 From the equilibrium equations, we can write

f ðX;F; cÞ ¼ Q0 þ
ku
/

1� F

M

� �
þ kfc
/d0

ðM�FÞ � ðaþ k1FÞX ¼ 0;

gðX;F; cÞ ¼ s� su

L/
1� F

M

� �
� sfc
L/d0

ðM� FÞ � hXþ p/F ¼ 0:

From the above equations, we can easily find that

dX�

dc
¼

� f
d0/

ðM � F�Þðk1s
L
X� � kp/Þ

ðaþ k1F�Þ su
L/M þ sfc

Ld0/
þ p/

� 	
þ h ku

/M þ kfc
d0/

þ k1X�
� 	 :

Thus, for small value of p, dX�=dc\0. This implies that if

the growth rate of human population due to forest biomass

is small, an increase in the implementation rate of refor-

estation efforts leads to decrease in the atmospheric con-

centration of CO2.
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Stability analysis

In this section, we study the stability behavior of the

equilibria with and without delay. We also investigate the

possibility of Hopf-bifurcation at the interior equilibrium

by taking time delay s as a bifurcation parameter. An

equilibrium point is stable if either nearby solutions remain

nearby for all future time or tend to it. In order to determine

the local stability of an equilibrium point, the nature of

solutions arbitrarily close to that point is investigated.

Stability analysis without delay (i.e., s = 0)

The local stability of an equilibrium point can be deter-

mined by finding the sign of the eigenvalues of Jacobian

matrix evaluated at that point. The Jacobian matrix for the

model system (1) is given by

J¼

�ðaþk1FÞ k �k1X 0

�hN s 1�2N

L

� �
�hXþp/F p/N 0

0 �/F u 1�2F

M

� �
�/NþfR fF

0 0 �c �d0

0
BBBBBBB@

1
CCCCCCCA
:

Let Ji denote the Jacobian matrix J evaluated at equilib-

rium Ei (i ¼ 1, 2, 3, 4). By investigating the signs of the

eigenvalues of the Jacobian matrices J1 , J2 and J3, we

have:

1. The equilibrium E1 has a locally stable manifold in

X � R plane and an unstable manifold locally in the F-

direction. Further, E1 has a locally unstable manifold

in the N-direction provided s� hQ0=a[ 0. Thus, E1

has an unstable manifold locally in the N-direction

whenever E2 is feasible.

2. The equilibrium E2 has a stable manifold locally in the

X � N � R space. Also, it has an unstable manifold

locally in the F-direction whenever E4 is feasible.

3. The equilibrium E3 has a stable manifold locally in the

X � F � R space while it has an unstable manifold

locally in the N-direction whenever E4 is feasible.

To investigate the local stability behavior of equilibrium

E4, we use the Routh–Hurwitz criterion. The characteristic

equation for the matrix J4 is

v4 þ A1v
3 þ A2v

2 þ A3vþ A4 ¼ 0 ð8Þ

where,

Table 1 Model parameters

Parameter Description Unit

Q0 Emission rate of CO2 from natural sources ppm year�1

k Emission rate coefficient of CO2 from anthropogenic sources ppm (person year)�1

a Natural depletion rate coefficient of atmospheric CO2 (year)�1

k1 Uptake rate coefficient of CO2 by forest biomass (ton year)�1

s Intrinsic growth rate coefficient of human population year�1

L Carrying capacity of human population person

u Intrinsic growth rate coefficient of forest biomass year�1

M Carrying capacity of forest biomass ton

h Declination rate coefficient of human population due to CO2 (ppm year)�1

/ Deforestation rate coefficient (person year)�1

p A proportionality constant which represents growth of human population due to forest biomass person (ton)�1

f Growth rate coefficient of forest biomass due to reforestation efforts (dollar year)�1

c Implementation rate coefficient of reforestation efforts dollar (ton year)�1

s Time lag involved in between measurement of the data of forest biomass and implementation of reforestation

efforts

year

d0 Declination rate coefficient of reforestation efforts (year)�1
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A1 ¼ aþ k1F
� þ sN�

L
þ uF�

M
þ d0;

A2 ¼ d0 aþ k1F
� þ sN�

L
þ uF�

M

� �
þ ðaþ k1F

�Þ

� sN�

L
þ uF�

M

� �
þ suN�F�

LM
þ p/2N�F� þ khN� þ cfF�;

A3 ¼ d0ðaþ k1F
�Þ sN�

L
þ uF�

M

� �
þ d0suN

�F�

LM
þ pd0/

2N�F�

þ khd0N
� þ ðaþ k1F

�Þ suN�F�

LM
þ p/2N�F�

� �

þ ukhN�F�

M
þ k1h/X

�N�F� þ cfF� aþ k1F þ sN�

L

� �

A4 ¼ d0ðaþ k1F
�Þ suN�F�

LM
þ p/2N�F�

� �
þ ukhd0N

�F�

M

þ d0k1h/X
�N�F� þ cfF� ðaþ k1F

�Þ sN
�

L
þ khN�

� �

Here, it can be easily noted that A1, A2, A3 and A4 are

positive. The Routh–Hurwitz criterion thus reduces to

A3ðA1A2 � A3Þ � A2
1A4 [ 0; ð9Þ

Now, we have the following result regarding the local

stability of equilibrium E4:

Theorem 1 If feasible, the equilibrium E4 is locally

asymptotically stable provided the condition (9) holds.

The above theorem tells that if the condition (9) holds,

then all the solution trajectories starting nearby the equi-

librium E4 approaches to E4 as t tends to infinity.

Next, we determine the global stability of the equilibrium

E4 in X. The equilibrium point E4 is globally asymptotically

stable in X if it is asymptotic stable for all initial states in X.

We use the Lyapunov’s direct method to determine global

asymptotic stability of E4. The basic concept of this method

is that if the total energy of a system is diminishing contin-

uously, the system will eventually reach to an equilibrium

point and remain at that point. In this method a suitable scalar

valued function, called Lyapunov function, is constructed

and its first order time derivative along the solution trajectory

of the system, is evaluated. If the derivative of Lyapunov

function decreases along the solution trajectory as time

increases, then the energy of system dissipates and the sys-

tem settles down to the equilibrium point. We have obtained

the following result regarding the global stability of E4:

Theorem 2 If feasible, the equilibrium E4 is globally

asymptotically stable in X provided the following

inequality is satisfied:

k2
1X

2
m \ 4ðaþ k1F

�Þ kpu
hM

: ð10Þ

Proof Consider the following positive definite function:

V ¼ 1

2
ðX � X�Þ2 þ m1 N � N� � N� ln

N

N�

� �

þ m2 F � F� � F� ln
F

F�

� �
þ m3

2
ðR� R�Þ2; ð11Þ

where m1, m2 and m3 are positive constants to be chosen

appropriately. Now differentiating ‘V’ with respect to ‘t’

along the solution of system (1), we get

dV

dt
¼� ðaþ k1F

�ÞðX � X�Þ2 � m1s

L
ðN � N�Þ2

� m2u

M
ðF � F�Þ2 � m3d0ðR� R�Þ2 þ ðk� m1hÞ

� ðX � X�ÞðN � N�Þ þ ðm1p/� m2/ÞðN � N�Þ
� ðF � F�Þ � k1XðX � X�ÞðF � F�Þ
þ ðm2f� m3cÞðF � F�ÞðR� R�Þ: ð12Þ

Choosing m1 ¼ k
h, m2 ¼ pm1 ¼ pk

h and m3 ¼ f
cm2 ¼ fpk

ch , we

get

dV

dt
¼�ðaþk1F

�ÞðX�X�Þ2� ks
hL

ðN�N�Þ2�kpu
hM

ðF�F�Þ2

�fpkd0

ch
ðR�R�Þ2�k1XðX�X�ÞðF�F�Þ: ð13Þ

Now we note that dV/dt can be made negative definite

inside the region of attraction ‘X’ provided condition (10)

is satisfied. h

Local stability analysis with delay (i.e., s = 0)

In the following, we analyze the stability of interior equi-

librium E4 of (1) with delay (i.e., s 6¼ 0). We also explore

the possibility of Hopf-bifurcation at interior equilibrium

E4 as the delay parameter s varies. Hopf-bifurcation is the

phenomenon of the local birth or death of periodic orbits

(self-oscillations) from an equilibrium point, as a parameter

crosses a critical value. First, we linearize model system (1)

about E4ðX�;N�;F�;R�Þ by using the following

transformations:

X ¼ X� þ x, N ¼ N� þ n, F ¼ F� þ f and R ¼ R� þ r,

where x, n, f and r are small perturbations around the

equilibrium E4. The linearized system of (1) about the

equilibrium E4 is given as follows:

dv

dt
¼ M1vðtÞ þM2vðt � sÞ ð14Þ
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where, vðtÞ ¼ ½xðtÞ; nðtÞ; f ðtÞ; rðtÞ�T , M1 ¼
�ðaþ k1F

�Þ k � k1X
� 0

�hN� � sN�

L
p/N� 0

0 � /F� � uF�

M
fF�

0 0 0 � d0

0
BBBBB@

1
CCCCCA

and

M2 ¼

0 0 0 0

0 0 0 0

0 0 0 0

0 0 � c 0

0
BB@

1
CCA:

The characteristic equation for linearized system (14) is

obtained as:

W4 þ p1W
3 þ p2W

2 þ p3Wþ p4 þ ðq1W
2 þ q2Wþ q3Þe�Ws ¼ 0;

ð15Þ

where

p1 ¼ aþ k1F
� þ sN�

L
þ uF�

M
þ d0;

p2 ¼ d0 aþ k1F
� þ sN�

L
þ uF�

M

� �
þ ðaþ k1F

�Þ

� sN�

L
þ uF�

M

� �
þ suN�F�

LM
þ p/2N�F� þ khN�;

p3 ¼ d0ðaþ k1F
�Þ sN�

L
þ uF�

M

� �
þ d0suN

�F�

LM

þ pd0/
2N�F� þ khd0N

�

þ ðaþ k1F
�Þ suN�F�

LM
þ p/2N�F�

� �

þ ukhN�F�

M
þ k1h/X

�N�F�;

p4 ¼ d0ðaþ k1F
�Þ suN�F�

LM
þ p/2N�F�

� �

þ ukhd0F
�N�

M
þ d0k1h/X

�N�F�;

q1 ¼ cfF�;

q2 ¼ cfF� aþ k1F
� þ sN�

L

� �
;

q3 ¼ cfF� sN�

L
ðaþ k1F

�Þ þ khN�
� �

:

Now, in order to show the Hopf-bifurcation, we have to

show that Eq. (15) has a pair of purely imaginary roots. For

this purpose, we substitute W = ix (x[ 0) in Eq. (15) and

separate the real and imaginary parts. We get the following

transcendental equations:

x4 � p2x
2 þ p4 ¼ �q2x sinðxsÞ � ðq3 � q1x

2Þ cosðxsÞ;
ð16Þ

p1x
3 � p3x ¼ q2x cosðxsÞ � ðq3 � q1x

2Þ sinðxsÞ:
ð17Þ

On squaring and adding the above equations and substi-

tuting x2 ¼ q, we get

hðqÞ ¼ q4 þ C1q
3 þ C2q

2 þ C3qþ C4 ¼ 0; ð18Þ

where C1 ¼ �2p2 þ p2
1, C2 ¼ p2

2 � 2p1p3 þ 2p4 � q2
1, C3 ¼

�2p2p4 þ p2
3 þ 2q1q3 � q2

2 and C4 ¼ p2
4 � q2

3. If all the

coefficients C0
is; ði ¼ 1; 2; 3; 4Þ in hðqÞ are positive by Des-

cartes’ rule of signs the Eq. (18) will not have any positive

real root and thus the characteristic equation (15) will not

have a pair of purely imaginary roots. Thus all the roots of

Eq. (15) will stay in the negative half plane for s[ 0 if they

were in the negative half plane for s ¼ 0. In summary:

Theorem 3 If all the coefficients in hðqÞ ði:e:;C0
isÞ are

positive, whenever the interior equilibrium E4 is feasible, it

is asymptotically stable for all delay s[ 0, provided it is

stable in the absence of delay.

If we assume the contrary, i.e., the values of all C0
is; ði ¼

1; 2; 3; 4Þ in Eq. (18) are not all positive. Then, by Des-

cartes’ rule of signs, we have the following conditions in

which the Eq. (18) has exactly one positive root:

(A1) C1 [ 0, C2 [ 0, C3 [ 0, C4\0

(A2) C1\0, C2 \ 0, C3 \ 0, C4\0

(A3) C1 [ 0, C2 [ 0, C3\0, C4\0

(A4) C1 [ 0, C2 \ 0, C3 \ 0, C4 \ 0

If any of the above conditions holds then Eq. (15) has only

one pair of purely imaginary roots 	ix0.

Now, from the transcendental equations (16) and (17),

we have

tanðxsÞ ¼ q2xðx4 � p2x2 þ p4Þ þ ðq3 � q1x2Þðp1x3 � p3xÞ
ðq3 � q1x2Þðx4 � p2x2 þ p4Þ � q2xðp1x3 � p3xÞ

:

ð19Þ

Thus, the value of sk corresponding to the positive value x0

may be obtained as follows:

sk ¼
kp
x0

þ 1

x0

tan�1

� q2x0ðx4
0 � p2x2

0 þ p4Þ þ ðq3 � q1x2
0Þðp1x3

0 � p3x0Þ
ðq3 � q1x2

0Þðx4
0 � p2x2

0 þ p4Þ � q2x0ðp1x3
0 � p3x0Þ

� �
;

ð20Þ

for k ¼ 0; 1; 2; 3; . . .
By using Butler’s lemma, we can say that the stable

interior equilibrium E4 remains stable for s\s0 (Freedman

and Rao 1983). We have found the critical value of time

delay s0 which corresponds to the purely imaginary root
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ix0 of characteristic equation (15). Now we investigate

whether or not the phenomenon of Hopf-bifurcation occurs

as s increases through s0. For this we need the following

lemma.

Lemma 1 The following transversality condition is

satisfied:

sgn
dðReðWÞÞ

ds

� �
s¼s0

[ 0: ð21Þ

Proof Differentiating (15) with respect to s, we get

This gives

dW
ds

� ��1

¼ 4W3 þ 3p1W
2 þ 2p2Wþ p3 þ ð2q1Wþ q2Þe�Ws

Wðq1W
2 þ q2Wþ q3Þe�Ws

� s
W

ð23Þ

Now,

sgn
dðReðWÞÞ

ds

� �
s¼s0

¼ sgn
dðReðWÞÞ

ds

� ��1

s¼s0

¼ sgn Re
dW
ds

� ��1
" #

W¼ix0

¼ sgn
4x6

0 þ 3C1x4
0 þ 2C2x2

0 þ C3

q2
2x

2
0 þ ðq3 � q1x2

0Þ
2

" #

¼ sgn
h0ðx2

0Þ
q2

2x
2
0 þ ðq3 � q1x2

0Þ
2

" #
:

ð24Þ

Here, it may be noted that h0ðx2
0Þ[ 0 if any one of the

conditions ðAiÞði ¼ 1; 2; 3; 4Þ is satisfied. This proves the

Lemma 1.

Thus the transversality condition holds and this confirms

that Hopf-bifurcation occurs at s ¼ s0. Now we have the

following result: h

Theorem 4 If the condition (9) is satisfied and any one of

the condition ðAiÞði ¼ 1; 2; 3; 4Þ holds, then the interior

equilibrium E4 of model (1) is locally asymptotically stable

for s 2 ½0; s0Þ and becomes unstable for s[ s0. Further,

the system (1) undergoes a supercritical Hopf-bifurcation

at s ¼ s0, yielding a family of periodic solutions bifurcat-

ing from E4 as s passes through the critical value s0

(Gopalsamy 1992).

Remark 2 If none of the conditions ðAiÞði ¼ 1; 2; 3; 4Þ
holds, then Eq. (18) may have more than one positive root.

Consequently, there may be more than one pair of purely

imaginary roots of Eq. (15) and the system may posses a

finite number of stability switches as the delay parameter s
increases.

Stability and direction of Hopf-bifurcation

In the previous section, we have obtained the conditions

under which the system (1) undergoes a Hopf-bifurcation

from the interior equilibrium E4 at the critical value of s. In

this section, we investigate the properties of the bifurcating

periodic solutions arising through Hopf-bifurcation. Fol-

lowing the idea of Hassard et al., we derive explicit formulae

for determining the direction, stability and period of the

bifurcating periodic solutions by using the normal form and

center manifold theory (Hassard et al. 1981). Without loss of

generality, we denote any of the critical values of s by sk at

which Eq. (15) has a pair of purely imaginary roots 	ix0

and system (1) undergoes Hopf-bifurcation. Let

s ¼ sk þ l; l 2 R, so that l ¼ 0 is a Hopf bifurcation value

for the system. Define the space of continuous real valued

functions C ¼ Cð½�1; 0�;R4Þ. Using the transformation

u1ðtÞ ¼ XðtÞ � X�, u2ðtÞ ¼ NðtÞ � N�, u3ðtÞ ¼ FðtÞ � F�,
and u4ðtÞ ¼ RðtÞ � R� and xiðtÞ ¼ uiðstÞ for i ¼ 1; 2; 3; 4;

the delay system (1) transforms into the following functional

differential equation in C

dx

dt
¼ Llxt þ f ðl; xtÞ; ð25Þ

where xðtÞ ¼ ðx1ðtÞ; x2ðtÞ; x3ðtÞ; x4ðtÞÞT 2 R4, xtðHÞ ¼
xðt þHÞ;H 2 ½�1; 0� and Ll : C ! R4, f : C � R ! R4

are defined respectively as

Llu ¼ ðsk þ lÞ½M1uð0Þ þM2uð�1Þ�; ð26Þ

dW
ds

¼ Wðq1W2 þ q2Wþ q3Þe�Ws

4W3 þ 3p1W
2 þ 2p2Wþ p3 þ ð2q1Wþ q2Þe�Ws � sðq1W

2 þ q2Wþ q3Þe�Ws
ð22Þ
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f ðl;uÞ¼ ðskþlÞ

�k1u1ð0Þu3ð0Þ
� s

L
u2

2ð0Þ�hu1ð0Þu2ð0Þþp/u2ð0Þu3ð0Þ

� u

M
u2

3ð0Þ�/u2ð0Þu3ð0Þþ fu3ð0Þu4ð0Þ
0

0
BBBBB@

1
CCCCCA
;

ð27Þ

with u ¼ ðu1;u2;u3;u4ÞT 2 C, and the matrices M1 and

M2 are same as given in previous section.

By the Riesz representation theorem, there exists a

function gðH; lÞ whose components are of bounded vari-

ation for H 2 ½�1; 0� such that

Llu ¼
Z 0

�1

dgðH; lÞuðHÞ: ð28Þ

In view of Eq. (26) we can choose

gðH; lÞ ¼ ðsk þ lÞ½M1dðHÞ �M2dðHþ 1Þ�; ð29Þ

where dðHÞ is the Dirac delta function. For

u 2 C1ð½�1; 0�;R4Þ, define

AðlÞu ¼
duðHÞ
dH

; H 2 ½�1; 0Þ;
R 0

�1
dgðp; lÞuðpÞ 
 Llu; H ¼ 0;

8<
:

ð30Þ

RðlÞu ¼
0; H 2 ½�1; 0Þ;
f ðu; lÞ; H ¼ 0:



ð31Þ

Then, the system (25) is equivalent to

_xt ¼ AðlÞxt þ RðlÞxt; ð32Þ

where xtðHÞ ¼ xðt þHÞ for H 2 ½�1; 0�. For

w 2 C1ð½0; 1�; ðR4Þ�Þ, define

A�wðpÞ ¼
� dwðpÞ

dp
; p 2 ð0; 1�;

R 0

�1
dgTðt; 0Þwð�tÞ; p ¼ 0:

8><
>: ð33Þ

and a bilinear product

hw;ui ¼ wð0Þ:uð0Þ �
Z 0

H¼�1

Z H

n¼0

w
Tðn�HÞdgðHÞuðnÞdn;

ð34Þ

where gðHÞ ¼ gðH; 0Þ and gT denotes the transpose of g.

For convenience, we shall write A and A� in place of A(0)

and A�ð0Þ respectively. Then A and A� are adjoint opera-

tors. Since 	ix0sk are the eigenvalues of A, they are also

the eigenvalues of A�. Now, we need to compute eigen-

vectors of A and A� corresponding to þix0sk and �ix0sk,

respectively. Suppose qðHÞ ¼ ð1; a1; b1; c1ÞTeix0skH be the

eigenvector of A corresponding to eigenvalue ix0sk then

AqðHÞ ¼ ix0skqðHÞ; ð35Þ

for H ¼ 0, this gives

aþ k1F
� þ ix0 � k k1X

� 0

hN� sN�

L
þ ix0 � p/N� 0

0 /F� uF�

M
þ ix0 � fF�

0 0 ce�ix0sk d0 þ ix0

0
BBBBBB@

1
CCCCCCA

1

a1

b1

c1

0
BBB@

1
CCCA ¼

0

0

0

0

0
BBB@

1
CCCA:

ð36Þ

Solving the system of Eq. (36), we get

a1 ¼ p/N�ðaþ k1F
� þ ix0Þ þ k1hX�N�

p/kN� � k1X�ðsN�

L
þ ix0Þ

;

b1 ¼
k1X

�ðsN�

L
þ ix0Þðaþ k1F

� þ ix0Þ þ kk1hX�N�

k1X�ðp/kN� � k1X�ðsN�

L
þ ix0ÞÞ

and c1 ¼ �ce�ix0skb1

d0 þ ix0

.

Similarly, we calculate q�ðpÞ ¼ Dð1; a�1; b�1; c�1Þ
T
eix0skp

such that

A�q�ðpÞ ¼ �ix0skq
�ðpÞ ð37Þ

where a�1 ¼ �ðaþ k1F
�Þ þ ix0

hN� , b�1 ¼
kþ ð� sN�

L
þ ix0Þa�1

/F�

and c�1 ¼ fF�b�1
d0 � ix0

.

Now, we need to determine the value of D such that

hq�ðpÞ; qðHÞi ¼ 1:

Using (34), we have

q�ð0Þ:qð0Þ �
Z 0

H¼�1

Z H

n¼0

q�
Tð0Þe�ix0skðn�HÞdgðHÞqð0Þeix0skndn

D½1 þ a1a�1 þ b1b
�
1 þ c1c

�
1 � skcb1c

�
1e

�ix0sk �

Thus, D is chosen such that

D ¼ 1

1 þ a1a�1 þ b1b
�
1 þ c1c

�
1 � skcb1c

�
1e

�ix0sk
: ð38Þ

Moreover, we can verify that hq�ðpÞ; qðHÞi ¼ 0:
In the following, we proceed as Hassard et al. (1981) to

compute the coordinates describing the center manifold C0

at l ¼ 0. Let xt be the solution of Eq. (32) when l ¼ 0.

Define
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zðtÞ ¼ hq�; xti;Wðt;HÞ ¼ xtðHÞ � 2RefzðtÞqðHÞg: ð39Þ

On the center manifold C0, we have

Wðt;HÞ ¼ Wðz; z;HÞ; ð40Þ

where

Wðz; z;HÞ ¼ W20ðHÞ z
2

2
þW11ðHÞzzþW02ðHÞ z

2

2
þ � � � ;

ð41Þ

z and z are local coordinates for the center manifold C0 in

the direction of q� and q�, respectively. Note that W is real

if xt is real. We will consider real solutions only. From

(39), we have

hq�;Wi ¼ hq�; xt � zq� zqi ¼ 0:

For a real solution xt 2 C0 of equation (32), we have

_z ¼ ix0skzþ q�ð0Þ:f ð0;Wðz; z; 0Þ þ 2Refzqð0ÞgÞ
¼ ix0skzþ q�ð0Þ:f0ðz; zÞ:

ð42Þ

This equation can be rewritten as

_z ¼ ix0skzþ gðz; zÞ; ð43Þ

where

gðz; zÞ ¼ q�ð0Þ:f0ðz; zÞ ¼ g20

z2

2
þ g11zz

þ g02

z2

2
þ g21

z2z

2
þ � � � ð44Þ

It follows from (39) and (41) that

xtðHÞ ¼ Wðz; z;HÞ þ 2RefzqðHÞg ð45Þ

¼ W20ðHÞ z
2

2
þW11ðHÞzzþW02ðHÞ z

2

2

þ zð1; a1; b1; c1ÞTeix0skH

þ zð1; a1; b1; c1ÞTe�ix0skH þ � � � ð46Þ

so that

x1tðHÞ ¼ W
ð1Þ
20 ðHÞ z

2

2
þW

ð1Þ
11 ðHÞzzþW

ð1Þ
02 ðHÞ z

2

2

þ zeix0skH þ ze�ix0skH þ � � �

x2tðHÞ ¼ W
ð2Þ
20 ðHÞ z

2

2
þW

ð2Þ
11 ðHÞzzþW

ð2Þ
02 ðHÞ z

2

2

þ a1e
ix0skHzþ a1e

�ix0skHzþ � � �

x3tðHÞ ¼ W
ð3Þ
20 ðHÞ z

2

2
þW

ð3Þ
11 ðHÞzzþW

ð3Þ
02 ðHÞ z

2

2

þ b1e
ix0skHzþ b1e

�ix0skHzþ � � �

x4tðHÞ ¼ W
ð4Þ
20 ðHÞ z

2

2
þW

ð4Þ
11 ðHÞzzþW

ð4Þ
02 ðHÞ z

2

2

þ c1e
ix0skHzþ c1e

�ix0skHzþ � � �

Thus, we have

x1tð0Þ ¼ zþ zþW
ð1Þ
20 ð0Þ

z2

2
þW

ð1Þ
11 ð0ÞzzþW

ð1Þ
02 ð0Þ z

2

2
þ � � �

x2tð0Þ ¼ a1zþ a1�zþW
ð2Þ
20 ð0Þ z

2

2
þW

ð2Þ
11 ð0ÞzzþW

ð2Þ
02 ð0Þ z

2

2
þ � � �

x3tð0Þ ¼ b1zþ b1zþW
ð3Þ
20 ð0Þ z

2

2
þW

ð3Þ
11 ð0ÞzzþW

ð3Þ
02 ð0Þ z

2

2
þ � � �

x4tð0Þ ¼ c1zþ c1�zþW
ð4Þ
20 ð0Þ z

2

2
þW

ð4Þ
11 ð0ÞzzþW

ð4Þ
02 ð0Þ z

2

2
þ � � �

ð47Þ

From the definition of f ðl;uÞ, we have

gðz; zÞ ¼ q�ð0Þ:f ð0; xtÞ ¼ skDð1; a�1; b�1; c�1Þ
T :

�k1x1tð0Þx3tð0Þ
� s

L
x2

2tð0Þ � hx1tð0Þx2tð0Þ þ p/x2tð0Þx3tð0Þ

� u

M
x2

3tð0Þ � /x2tð0Þx3tð0Þ þ fx3tð0Þx4tð0Þ
0

0
BBBBB@

1
CCCCCA
:

ð48Þ

Using the expressions for x1tð0Þ, x2tð0Þ, x3tð0Þ and x4tð0Þ
from (47) in (48) and comparing the coefficients of z2, z�z,

�z2 and z2�z of the resulting expression with those in (44), we

get

g20 ¼ 2skD½�k1b1 �
s

L
a2

1a
�
1 � ha1a�1 þp/a1b1a

�
1

� u

M
b2

1b
�
1 �/a1b1b

�
1 þ fb1c1b

�
1�

g11 ¼ 2skD½�k1Refb1g�
s

L
j a1 j2 a�1 � hRefa1ga�1

þp/Refa1b1ga�1 �
u

M
j b1 j2 b�1 �/Refa1b1gb�1

þ fRefb1c1gb�1�

g02 ¼ 2skD½�k1b1 �
s

L
a1

2a�1 � ha1a�1 þp/a1b1a
�
1

� u

M
b1

2
b�1 �/a1b1b

�
1 þ fb1c1b

�
1�

g21 ¼ skD½�k1ð2W ð3Þ
11 ð0ÞþW

ð3Þ
20 ð0Þþb1W

ð1Þ
20 ð0Þ

þ 2b1W
ð1Þ
11 ð0ÞÞ� 2a�1

s

L
ð2a1W

ð2Þ
11 ð0Þþ a1W

ð2Þ
20 ð0ÞÞ

� ha�1ð2W
ð2Þ
11 ð0ÞþW

ð2Þ
20 ð0Þþ a1W

ð1Þ
20 ð0Þ

þ 2a1W
ð1Þ
11 ð0ÞÞþ ðp/a�1 �/b�1Þð2a1W

ð3Þ
11 ð0Þ

þ a1W
ð3Þ
20 ð0Þþb1W

ð2Þ
20 ð0Þþ 2b1W

ð2Þ
11 ð0ÞÞ

� 2b�1
u

M
ðb1W

ð3Þ
20 ð0Þþ 2b1W

ð3Þ
11 ð0ÞÞþ fb�1ð2b1W

ð4Þ
11 ð0Þ

þb1W
ð4Þ
20 ð0Þþ 2c1W

ð3Þ
11 ð0Þþ c1W

ð3Þ
20 ð0ÞÞ�

In order to compute g21, we still need to compute W20ðHÞ
and W11ðHÞ. From Eqs. (39) and (42), we have
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_W ¼ _xt � _zq� _�z�q

¼
AW � 2Refq�ð0Þ:f0qðHÞg; H 2 ½�1; 0Þ;
AW � 2Refq�ð0Þ:f0qð0Þg þ f0; H ¼ 0;




ð49Þ


 AW þ Hðz; �z;HÞ ð50Þ

where

Hðz; �z;HÞ ¼ H20ðHÞ z
2

2
þ H11ðHÞz�zþ H02ðHÞ �z

2

2
þ � � �:

ð51Þ

Also, on the center manifold C0 near the origin,

_W ¼ Wz _zþWz
_z: ð52Þ

Using Eqs. (41), (43), (50) and (51) in (52) and comparing

the coefficients of z2 and z�z on both sides, we obtain

ðA� 2ix0skÞW20 ¼ �H20;

AW11 ¼ �H11:
ð53Þ

Further, for H 2 ½�1; 0Þ, we have

Hðz; z;HÞ ¼ �q�ð0Þ:f0qðHÞ � q�ð0Þ:f 0qðHÞ
¼ �gðz; zÞqðHÞ � gðz; zÞqðHÞ

¼ �ðg20qðHÞ þ g02qðHÞÞ z
2

2
� ðg11qðHÞ

þ g11qðHÞÞzzþ � � � ;

ð54Þ

which on comparing the coefficients with (51) gives

H20ðHÞ ¼ �g20qðHÞ � g02qðHÞ ð55Þ

and

H11ðHÞ ¼ �g11qðHÞ � g11qðHÞ: ð56Þ

From (53), (55) and the definition of A, we have

W 0
20ðHÞ ¼ 2ix0skW20ðHÞ þ g20qðHÞ þ g02qðHÞ: ð57Þ

Note that qðHÞ ¼ qð0Þeix0skH, hence

W20ðHÞ ¼ ig20

x0sk
qðHÞ þ ig02

3x0sk
qðHÞ þ F1e

2ix0skH: ð58Þ

Similarly from (53), (56) and the definition of A, we have

W 0
11ðHÞ ¼ g11qðHÞ þ g11qðHÞ; ð59Þ

which gives

W11ðHÞ ¼ � ig11

x0sk
qðHÞ þ ig11

x0sk
qðHÞ þ F2: ð60Þ

where F1 ¼ ðFð1Þ
1 ;F

ð2Þ
1 ;F

ð3Þ
1 ;F

ð4Þ
1 Þ and F2 ¼

ðFð1Þ
2 ;F

ð2Þ
2 ;F

ð3Þ
2 ;F

ð3Þ
2 Þ 2 R4 are constant vectors, to be

determined. It follows from the definition of A and (53) that

Z 0

�1

dgðHÞW20ðHÞ ¼ 2ix0skW20ð0Þ � H20ð0Þ; ð61Þ

Z 0

�1

dgðHÞW11ðHÞ ¼ �H11ð0Þ: ð62Þ

From Eqs. (49) and (51), we get

H20ð0Þ ¼ �g20qð0Þ � g02qð0Þ þ 2sk

�k1b1

� s

L
a2

1 � ha1 þ p/a1b1

� u

M
b2

1 �/a1b1 þ fb1c1

0

0
BBBBB@

1
CCCCCA

ð63Þ

and

H11ð0Þ ¼ �g11qð0Þ � g11qð0Þ

þ 2sk

�k1Refb1g
� s

L
j a1 j2 �hRefa1g þ p/Refa1b1g

� u

M
j b1 j2 �/Refa1b1g þ fRefb1c1g

0

0
BBBBB@

1
CCCCCA
:

ð64Þ

Using (58) and (63) in (61) and noting that qðHÞ is

eigenvector of A, we have

2ix0skI �
Z 0

�1

e2ix0skHdgðHÞ
� �

F1

¼ 2sk

�k1b1

� s

L
a2

1 � ha1 þ p/a1b1

� u

M
b2

1 � /a1b1 þ fb1c1

0

0
BBBBB@

1
CCCCCA

ð65Þ

i.e.

2ix0þaþk1F
� �k k1X

� 0

hN� 2ix0þ
sN�

L
�p/N� 0

0 /F� 2ix0þ
uF�

M
�fF�

0 0 ce�2ix0sk 2ix0þd0

0
BBBBBB@

1
CCCCCCA

�

F
ð1Þ
1

F
ð2Þ
1

F
ð3Þ
1

F
ð4Þ
1

0
BBBBB@

1
CCCCCA

¼

�2k1b1

�2
s

L
a2

1�2ha1þ2p/a1b1

�2
u

M
b2

1�2/a1b1þ2fb1c1

0

0
BBBBBBBB@

1
CCCCCCCCA
: ð66Þ

Similarly using Eqs. (60) and (64) in (62), we get
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aþ k1F
� � k k1X

� 0

hN� sN�

L
� p/N� 0

0 /F� uF�

M
� fF�

0 0 c d0

0
BBBBBB@

1
CCCCCCA

F
ð1Þ
2

F
ð2Þ
2

F
ð3Þ
2

F
ð4Þ
2

0
BBBBB@

1
CCCCCA

¼

�2k1Refb1g
�2

s

L
j a1 j2 �2hRefa1g þ 2p/Refa1b1g

�2
u

M
j b1 j2 �2/Refa1b1g þ 2fRefb1c1g

0

0
BBBBB@

1
CCCCCA
:

ð67Þ

We solve the systems (66) and (67) for F1 and F2,

respectively and using these values, we determine W20 and

W11 and hence g21. Now to determine the direction, sta-

bility and period of bifurcating periodic solutions of system

(1) at the critical value s ¼ sk, we compute the following

quantities:

c1ð0Þ ¼
i

2x0sk
g11g20 � 2 j g11 j2 � j g02 j2

3

� �
þ g21

2
;

ð68Þ

l2 ¼ � Refc1ð0Þg
RefW0ðskÞg

; ð69Þ

b2 ¼ 2Refc1ð0Þg; ð70Þ

T2 ¼ � Imfc1ð0Þg þ l2ImfW0ðskÞg
x0sk

: ð71Þ

Now using the results of Hassard et al. (1981), we have the

following theorem:

Theorem 5 If l2 [ 0 (l2\0), then the Hopf-bifurcation

is supercritical (subcritical) and the bifurcating periodic

solutions exist for s[ sk (s\sk). The bifurcating periodic

solution is stable (unstable) if b2\0 (b2 [ 0) and the

period increases (decreases) if T2 [ 0 (T2\0).

Numerical simulations

Parameter estimation

The model parameters are estimated by using the time

series data of atmospheric concentration of CO2, human

population and forest biomass. The annual time series data

for average atmospheric concentration of CO2 for the

period 1961–2011 is taken from NOAA-ESRL data set

(NOAA 2014). The data for world population for the per-

iod 1961–2011 is obtained from the United Nations

Population Division (UNPD 2012). The global forest bio-

mass data for the years 1990, 2000, 2005 and 2010 is taken

from FAO (2010). The average per capita CO2 emission for

the period 1990–2011 is 4.5 metric tons per year (EDGAR

2014), which is equivalent to 0:576 � 10�9 ppm per per-

son per year. Thus, the value of k is taken to be 0:576 �
10�3 ppm per million persons per year. Since the overall

atmospheric life-time of CO2 is from 30 to 95 years (Ja-

cobson 2005), a ¼ 1=62:5 ¼ 0:016 per year. Since in the

period 1961–2011, reforestation efforts were not made at a

significant level, while fitting the data, it is assumed that

there is no reforestation effort in this period, i.e., f ¼ 0,

c ¼ 0, d0 ¼ 0. In absence of appropriate data regarding

other parameters, the model system (1) is calibrated for

different values of parameters Q0, k1, s, L, u, M, h, p, / and

find the best fit for Q0 ¼ 5, k1 ¼ 4:8 � 10�9, s ¼ 0:032,

L ¼ 10;000, u ¼ 0:013, M ¼ 750;000, h ¼ 0:000001, p ¼
0:00004 and / ¼ 0:71 � 10�6.

Thus, we have the following set of estimated parameter

values,

Q0 ¼ 5; k ¼ 0:576 � 10�3; a ¼ 0:016; k1 ¼ 4:8 � 10�9;

s ¼ 0:032; L ¼ 10;000; u ¼ 0:013;M ¼ 750;000;

h ¼ 0:000001; p ¼ 0:00004;/ ¼ 0:71 � 10�6: ð72Þ

Since in 1961 the average atmospheric concentration of

CO2 was 317.64 ppm (NOAA 2014) and world population

was 3082.83 million (UNPD 2012), we take Xð0Þ ¼ 317:64

ppm and Nð0Þ ¼ 3082:83 million. In absence of data of

forest biomass for the year 1961, it is taken that Fð0Þ ¼
640;000 million metric tons.

The value of R-squared for the actual and fitted data of

atmospheric CO2, human population and forest biomass is

calculated to be 0.9992, 0.9996 and 0.9962, respectively.

This shows the strong correlation between the actual data

and the model projections. The actual data and the model

projections of the variables X, N and F are plotted in Fig. 1.

It is evident from this figure that the concentration of CO2,

human population and forest biomass as projected by our

model are very near to the actual value. This ensures the

validity of our model.

Sensitivity analysis

To assess the impact of changes in the parameters /, f and

c on the behavior of (1), the basic sensitivity analysis of the

model (1) for these parameters is performed following

Bortz and Nelson (2004) and Misra and Verma (2014,

2015). The sensitivity systems with respect to parameters

/, f and c are given by
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_X/ðt;/Þ ¼ kN/ðt;/Þ � aX/ðt;/Þ � k1X/ðt;/ÞFðt;/Þ
� k1Xðt;/ÞF/ðt;/Þ;

_N/ðt;/Þ ¼ s 1 � 2Nðt;/Þ
L

� �
N/ðt;/Þ � hX/ðt;/ÞNðt;/Þ

� hXðt;/ÞN/ðt;/Þ þ p/N/ðt;/ÞFðt;/Þ
þ p/Nðt;/ÞF/ðt;/Þ þ pNðt;/ÞFðt;/Þ;

_F/ðt;/Þ ¼ u 1 � 2Fðt;/Þ
M

� �
F/ðt;/Þ � Nðt;/ÞFðt;/Þ

� /N/ðt;/ÞFðt;/Þ � /Nðt;/ÞF/ðt;/Þ
þ fF/ðt;/ÞRðt;/Þ þ fFðt;/ÞR/ðt;/Þ;

_R/ðt;/Þ ¼ �cF/ðt � s;/Þ � d0R/ðt;/Þ;

_Xfðt; fÞ ¼ kNfðt; fÞ � aXfðt; fÞ � k1Xfðt; fÞFðt; fÞ
� k1Xðt; fÞFfðt; fÞ;

_Nfðt; fÞ ¼ s 1 � 2Nðt; fÞ
L

� �
Nfðt; fÞ � hXfðt; fÞNðt; fÞ

� hXðt; fÞNfðt; fÞ þ p/Nfðt; fÞFðt; fÞ
þ p/Nðt; fÞFfðt; fÞ;

_Ffðt; fÞ ¼ u 1 � 2Fðt; fÞ
M

� �
Ffðt; fÞ � /Nfðt; fÞFðt; fÞ

� /Nðt; fÞFfðt; fÞ þ fFfðt; fÞRðt; fÞ
þ fFðt; fÞRfðt; fÞ þ Fðt; fÞRðt; fÞ;

_Rfðt; fÞ ¼ �cFfðt � s; fÞ � d0Rfðt; fÞ;

and

_Xcðt; cÞ ¼ kNcðt; cÞ � aXcðt; cÞ � k1Xcðt; cÞFðt; cÞ
� k1Xðt; cÞFcðt; cÞ;

_Ncðt; cÞ ¼ s 1 � 2Nðt; cÞ
L

� �
Ncðt; cÞ � hXcðt; cÞNðt; cÞ

� hXðt; cÞNcðt; cÞ þ p/Ncðt; cÞFðt; cÞ
þ p/Nðt; cÞFcðt; cÞ;

_Fcðt; cÞ ¼ u 1 � 2Fðt; cÞ
M

� �
Fcðt; cÞ � /Ncðt; cÞFðt; cÞ

� /Nðt; cÞFcðt; cÞ þ fFcðt; cÞRðt; cÞ
þ fFðt; cÞRcðt; cÞ;

_Rcðt; cÞ ¼ �cFcðt � s; cÞ þ ðM � Fðt � s; cÞÞ � d0Rcðt; cÞ;

respectively. Here, X/ðt;/Þ denotes the sensitivity function

of X with respect to parameter /, i.e., X/ðt;/Þ ¼ o
o/Xðt;/Þ.

To show the impact of doubling of parameters /, f and c
on the state variables, semi-relative sensitivity solutions

have been calculated for the best fitted data (72) along with

f ¼ 0:0000026, c ¼ 0:0008, d0 ¼ 0:0002 and

s ¼ 5 ð\s0Þ. The semi-relative sensitivity solutions are

depicted in Fig. 2. From this figure, it is clear that doubling

of the parameter / causes an increase of 7.5 ppm in the

concentration of atmospheric CO2 over a period of 80

years. Doubling of parameters f and c cause drop of 15 and

14.4 ppm, respectively in the concentration of atmospheric

CO2 over the period of 80 years. From the second and third

plot of the Fig. 2, it can be noted that doubling of param-

eters f and c leads to increase in the human population and

forest biomass. Doubling of parameter / leads to increase

in the human population and decrease in forest biomass.

From this sensitivity analysis, it is clear that the parameters

/, f and c have significant impact over the dynamics of the

system.

Validation of analytical results

The numerical simulation performed by using MATLAB

7.5.0 for the fitted data (72) along with f ¼ 0:0000026,

c ¼ 0:0008, d0 ¼ 0:0002 reveals that the conditions for

feasibility of the coexistence equilibrium E4 [i.e., (2) and

(3)] are satisfied. The components of the interior equilib-

rium E4 are obtained as: X� ¼ 544:2660 ppm, N� ¼
9836:5671 million, F� ¼ 7:493296 � 105 million metric

tons, R� ¼ 2681:6700 million dollars. In the absence of

delay (i.e., s ¼ 0), the eigenvalues of the variational matrix

1961 1971 1981 1991 2001 2011
300

320

340

360

380

400

C
a
rb

o
n
 d

io
xi

d
e

 (
in

 p
p
m

)

Year

1961 1971 1981 1991 2001 2011
3000

4000

5000

6000

7000

H
u
m

a
n
 p

o
p
u
la

tio
n

 (
in

 m
ill

io
n
)

Year

Model fit Actual data

1961 1971 1981 1991 2001 2011
5.8

6

6.2

6.4
x 10

5

F
o
re

st
 b

io
m

a
ss

 (
in

 m
ill

io
n
 m

e
tr

ic
 t
o
n
)

Year

Fig. 1 Comparison between model fit and actual data of atmospheric

concentration of carbon dioxide, human population and forest

biomass

24 Page 12 of 17 Model. Earth Syst. Environ. (2015) 1:24

123



corresponding to equilibrium E4 for the system (1) are

�0:0201, �0:0310, �0:0066 þ 0:0390i and

�0:0066 � 0:0390i, all negative or with negative real part.

Thus in the absence of delay the interior equilibrium E4 is

locally asymptotically stable. For the above set of param-

eter values, the condition (A4) for existence of a pair of

purely imaginary roots of characteristic equation (15) is

also satisfied. The numerical value of s0 using Eq. (20) is

found to be 8.6178 years. The values of l2, b2 and T2 are

calculated as l2 ¼ 0:000631, b2 ¼ �8:82299 � 10�7 and

T2 ¼ 0:8505 � 10�4. Since l2 [ 0, b2\0 and T2 [ 0, it

follows from Theorem 5 that the Hopf-bifurcation is

supercritical, the bifurcating periodic solutions are stable

and their period increases. The variation in variables X, N,

F and R for s ¼ 4 years (s\s0) and s ¼ 11 years (s[ s0)

have been drawn in Fig. 3. From this figure, it can be noted

that for s ¼ 4 years, all the variables approach their equi-

librium values, but for s ¼ 11 years, all the variables show

oscillatory behavior. This shows that interior equilibrium

E4 is stable for s\s0, but when the time delay exceeds the

critical value s0, the stable solution becomes periodic.

The bifurcation diagrams of atmospheric concentration

of CO2 and forest biomass with respect to s are shown in

Fig. 4. This figure shows the change in dynamics of

atmospheric concentration of CO2 and forest biomass as

the parameter s varies. From this figure, we can see that for

small values of time delay s, atmospheric concentration of

CO2 and forest biomass stabilize to their equilibrium val-

ues, but as the value of time delay s crosses the critical

value s0 (=8.6 years), the system loses its stability and

undergoes Hopf-bifurcation. This implies that if the

reforestation efforts are applied on the basis of the mea-

surements of forest biomass which are taken more than s0

years ago, then levels of atmospheric CO2 and forest bio-

mass do not settle down to the equilibrium values.

Discussion and recommendations

Deforestation is one of the root cause behind the enhanced

concentration of atmospheric carbon dioxide and the

associated climate changes. Reforestation is an avenue to
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reduce the atmospheric concentration of carbon dioxide.

But the reforestation programs are usually developed on

the basis of the measurements of forest biomass that have

been taken some time earlier. In this paper, a nonlinear

mathematical model is proposed and analyzed to study the

effects of reforestation and the delay involved in between

the measurement of forest data and implementation of

reforestation efforts on the control of atmospheric level of

CO2. We have assumed that the reforestation efforts are

implemented with a rate proportional to the difference of

carrying capacity of forest biomass and its value measured

s times earlier. The model analysis shows that the con-

centration of atmospheric CO2 decreases as reforestation

efforts increase. The conditions for local as well as global

stability of interior equilibrium E4 have been obtained in

absence of time delay. To investigate the impact of

increase in time delay over the stability of equilibrium E4,

the local stability of interior equilibrium E4 is analyzed in

presence of delay. It is found that the stability of the

equilibrium E4 is preserved for all time delay provided the

conditions stated in Theorem 3 are satisfied. Moreover, if

these conditions are not satisfied, then model analysis

provides the conditions under which the equilibrium E4

loses its stability as time delay s crosses some critical value

s0 and a family of periodic solutions arises through Hopf-

bifurcation. This critical value has been obtained analyti-

cally and is given by Eq. (20). The direction of Hopf-

bifurcation and stability of bifurcating periodic solutions

are also investigated by using the center manifold theorem

and normal form theory.

Sensitivity analysis shows that deforestation rate coef-

ficient /, implementation rate coefficient of reforestation

efforts c and efficiency of reforestation efforts to increase

forest biomass f have significant impact on the dynamics of

the system. Through increasing c and f, the atmospheric

level of CO2 can be significantly reduced. Thus, refor-

estation efforts have the potential to control the atmo-

spheric concentration of CO2 but longer delays between the

measurement of forest data and implementation of refor-

estation efforts may have destabilizing effect over the

dynamics of the system. The numerical simulations clearly

show the effect of increase in time delay over the dynamics

of the system. It is shown that when time delay exceeds a

critical value, the interior equilibrium loses its stability and

periodic solution arises via Hopf-bifurcation. The analyti-

cal expression for this critical value of time delay is

derived and is given by Eq. (20). The critical value of time

delay is crucial to be determined for development of
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potential reforestation policies. For if the available data of

forest biomass is older than this critical limit, the levels of

atmospheric CO2 and forest biomass will fluctuate largely.

Consequently, reduction and stabilization of atmospheric

concentration of CO2 via reforestation efforts will become

a difficult task. Sensitivity analysis shows that increase in

deforestation rate significantly increase the atmospheric

concentration of CO2. Also, from the condition of global

stability of the equilibrium E4 [i.e., condition (10)], it can

be seen that the deforestation rate coefficient ‘/’ has

destabilizing effect over the dynamics of the system. Thus,

apart from reforestation, policies should also focus to

control the accelerating deforestation rates in various parts

of the world. However, due to rapid growth in population

and industrialization, use of forest biomass can be reduced

only upto a certain level. In this scenario, reforestation is

the key to control the CO2 emissions due to deforestation.

But a potential reforestation policy can be developed only
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if it is based on the recent data of forest biomass. Thus

government should also focus on more frequent and

accurate estimation of forest biomass, so that better refor-

estation programmes can be developed.

To depict the effect of implementation of reforestation

efforts and the delay involved in their implementation over

the future levels of atmospheric CO2 and forest biomass,

the variations in these two variables with respect to time in

presence and absence of reforestation efforts are shown in

Fig. 5. The initial time is taken as the year 2010 and the

initial conditions are Xð0Þ ¼ 389:84 ppm, Nð0Þ ¼
6834:722 million, Fð0Þ ¼ 600;066 million metric tons and

Rð0Þ ¼ 200 million dollars [since in 2010, the average

atmospheric concentration of CO2 was 389.84 ppm

(NOAA 2014), the world population was 6916.183 million

(UNPD 2012) and the forest biomass was 600066 million

metric tons (FAO 2010)]. From this figure, it may be noted

that when reforestation efforts are not applied (i.e., f ¼ 0,

c ¼ 0, d0 ¼ 0), the forest biomass decreases with time and

the atmospheric concentration of CO2 settles down to a

level of 600 ppm. But, when reforestation efforts (with

f ¼ 0:0000026, c ¼ 0:0008, d0 ¼ 0:0002 and s ¼ 2 years)

are applied, forest biomass increases and atmospheric

concentration of CO2 settles down to a comparatively low

level (544.5 ppm). This shows that the reforestation efforts

may be used to control the atmospheric concentration of

CO2. But, if reforestation efforts are applied with longer

time delay (s ¼ 12 years), then levels of atmospheric car-

bon dioxide and forest biomass fluctuate largely and do not

get stabilized. Thus, as already stated, for the development

of potential reforestation polices, the data of the forest

biomass used should not be too much old.

Acknowledgements Authors are thankful to the handling editor

and reviewer for their useful suggestions those improved the quality

of the paper. The first author thankfully acknowledges the University

Grants Commission, New Delhi, India for providing financial support

under major research project (MRP-MAJOR-MATH-2013-26774).

The second author is thankful to National Board of Higher Mathe-

matics, Department of Atomic Energy, Government of India for

providing financial support in form of postdoctoral fellowship (No:2/

40(7)/2015/R&D-II/4951).

References

Bortz DM, Nelson PW (2004) Sensitivity analysis of a nonlinear

lumped parameter model of HIV infection dynamics. Bull Math

Biol 66:1009–1026

Brown S (1993) Tropical forests and the global carbon cycle: the need

for sustainable land-use patterns. Agric Ecosyst Environ

46:31–44

Caetano MAL, Gherardi DFM, Yoneyama T (2011) An optimized

policy for the reduction of CO 2 emission in the Brazilian Legal

Amazon. Ecol Model 222:2835–2840

Casper JK (2010) Greenhouse gases: worldwide impacts. Facts On

File Inc., New York

Dubey B, Sharma S, Sinha P, Shukla J (2009) Modelling the depletion

of forestry resources by population and population pressure

augmented industrialization. Appl Math Model 33:3002–3014

EDGAR (2014) CO 2 time series 1990–2011 per capita for world

countries. http://edgar.jrc.ec.europa.eu/overview.php?v=CO2ts_

pc1990-2011. Accessed 20 Apr 2015

FAO (2010) Global forest resources assessment 2010: main report,

FAO forestry paper no. 163. ISBN:978-92-5-106654-6

Freedman HI, Rao VSH (1983) The trade-off between mutual

interference and time lags in predator–prey systems. Bull Math

Biol 45:991–1004

Gopalsamy K (1992) Stability and oscillations in delay differential

equations of population dynamics. Kluwer Academic Publishers,

Dordrecht, Norwell

Goreau TJ (1992) Control of atmospheric carbon dioxide. Glob

Environ Chang 2:5–11

Hartwick JM (2005) Deforestation and population increase. In: Kant

S, Berry RA (eds) Institutions, sustainability, and natural

resources: institutions for sustainable forest management.

Springer, Netherlands, pp 155–191

Hassard BD, Kazarinoff ND, Wan YH (1981) Theory and applica-

tions of Hopf-bifurcation. Cambridge University Press,

Cambridge

Houghton RA (2005) Aboveground forest biomass and the global

carbon balance. Glob Change Biol 11:945–958

IPCC (2001) The carbon cycle and atmospheric carbon dioxide. In:

Houghton JT, Ding Y, Griggs DJ, Noguer M, Van der Linden PJ,

Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the

scientifc basis. Contribution of working group I to the third

assessment report of the intergovernmental panel on climate

change. Cambridge University Press, Cambridge. New York

IPCC (2007a) Summary for policymakers. In: Solomon S, Qin D,

Manning M, Chen Z, Marquis M, Averyt KB, Tignor M. Miller

HL (eds) Climate change 2007: the physical science basis.

Contribution of working group I to the fourth assessment report

of the intergovernmental panel on climate change. Cambridge

University Press, Cambridge, New York

IPCC (2007b) Technical summary. In: Solomon S, Qin D, Manning

M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds)

Climate change 2007: the physical science basis. Contribution of

working group I to the fourth assessment report of the

intergovernmental panel on climate change. Cambridge Univer-

sity Press, Cambridge, New York

Jacobson MZ (2005) Correction to Control of fossil-fuel particulate

black carbon and organic matter, possibly the most effective

method of slowing global warming. J Geophys Res

110:D14105(1–5)

McMichael AJ, Woodruff RE, Hales S (2006) Climate change and

human health: present and future risks. Lancet 367:859–869

Misra AK, Verma M (2013) A mathematical model to study the

dynamics of carbon dioxide gas in the atmosphere. Appl Math

Comput 219:8595–8609

Misra AK, Verma M (2014) Modeling the impact of mitigation

options on methane abatement from rice fields. Mitig Adapt

Strateg Glob Change 19:927–945

Misra AK, Verma M (2015) Impact of environmental education on

mitigation of carbon dioxide emissions: a modelling study. Int J

Glob Warm 7:466–486

Newell ND, Marcus L (1987) Carbon dioxide and people. Palaios

2:101–103

Nikol’skii MS (2010) A controlled model of carbon circulation

between the atmosphere and the ocean. Comput Math Model

21:414–424

NOAA (2014) Atmospheric CO 2 concentrations (ppm) since March

1958. http://co2now.org/Current-CO2/CO2-Now/noaa-mauna-

loa-co2-data.html. Accessed 20 Apr 2015

24 Page 16 of 17 Model. Earth Syst. Environ. (2015) 1:24

123

http://edgar.jrc.ec.europa.eu/overview.php?v=CO2ts_pc1990-2011
http://edgar.jrc.ec.europa.eu/overview.php?v=CO2ts_pc1990-2011
http://co2now.org/Current-CO2/CO2-Now/noaa-mauna-loa-co2-data.html
http://co2now.org/Current-CO2/CO2-Now/noaa-mauna-loa-co2-data.html


Onozaki K (2009) Population is a critical factor for global carbon

dioxide increase. J Health Sci 55:125–127

Shukla JB, Dubey B (1997) Modelling the depletion and conservation

of forestry resources: effects of population and pollution. J Math

Biol 36:71–94

Shukla JB, Chauhan MS, Sundar S, Naresh R (2015) Removal of

carbon dioxide from the atmosphere to reduce global warming: a

modeling study. Int J Glob Warm Gases 7:270–292

Tennakone K (1990) Stability of the biomass-carbon dioxide

equilibrium in the atmosphere: mathematical model. Appl Math

Comput 35:125–130

UNPD (2012) United nations population division, department of

economic and social affairs, World population prospects: the

2012 revision, total population both sexes. http://esa.un.org/wpp/

Excel-Data/population.htm. Accessed 20 Apr 2015

WHO (2009) Global health risks: mortality and burden of disease

attributable to selected major risks. http://www.who.int/

healthinfo/lobal_burden_disease/GlobalHealthRisks_report_full.

pdf. Accessed 15 Apr 2015. ISBN: 978-92-4-156387-1

Woodwell GM, Hobbie JE, Houghton RA, Melillo JM, Moore B,

Peterson BJ, Shaver GR (1983) Global deforestation: contribu-

tion to atmospheric carbon dioxide. Science 222:1081–1086

Model. Earth Syst. Environ. (2015) 1:24 Page 17 of 17 24

123

http://esa.un.org/wpp/Excel-Data/population.htm
http://esa.un.org/wpp/Excel-Data/population.htm
http://www.who.int/healthinfo/lobal_burden_disease/GlobalHealthRisks_report_full.pdf
http://www.who.int/healthinfo/lobal_burden_disease/GlobalHealthRisks_report_full.pdf
http://www.who.int/healthinfo/lobal_burden_disease/GlobalHealthRisks_report_full.pdf

	Modeling the control of atmospheric carbon dioxide through reforestation: effect of time delay
	Abstract
	Introduction
	Mathematical model
	Equilibrium analysis
	Stability analysis
	Stability analysis without delay (i.e., tau = 0)
	Local stability analysis with delay (i.e., tau ne 0)

	Stability and direction of Hopf-bifurcation
	Numerical simulations
	Parameter estimation
	Sensitivity analysis
	Validation of analytical results

	Discussion and recommendations
	Acknowledgements
	References




