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Abstract Multivariate statistical methods, such as prin-

cipal components analysis (PCA), discriminant analysis

(DA) and general linear models (GLM) were applied to

incorporate physico-chemical surface water quality in low

and high flow hydrology in Northern Iran, based on anal-

ysis of the 7-day low flow index and existing water quality

data. In view of this, 7-day low flows were calculated for

15 water years (1991–2006) at 15 monitoring stations.

Eleven water quality parameters were extracted during the

low flows from the water quality data and compared to

water quality during high flows. Significant differences in

water quality were noted for some monitoring stations and

the pattern and magnitude of the statistically significant

responses (t test, p\ 0.05) varied among sites. PCA, was

applied to the data sets of the two low and high flow

periods, and resulted in three effective factors explaining

77.8 and 67.4 % of the total variance in surface water

quality data sets of the two periods, respectively. The main

factors obtained from PCA indicated that the parameters

influencing surface water quality are mainly related to

natural, point and non-point source pollution in the study

area. DA provided an important data reduction as it used

only three parameters, i.e. magnesium (Mg2?), calcium

(Ca2?) and bicarbonate (HCO3
-) affording 60 % correct

assignations, to discriminate between the two low and high

stream flow periods. General regression models revealed

that surface water quality parameters were explained by

low and high flow and specific discharge. The results of

this study can be useful for water managers for effective

surface water quality management under climate change.

Keywords Low flow index � Surface water quality �
General linear models � Iran

Introduction

Extreme events such as floods and droughts are complex

natural hazards that affect some areas of the world every

year and have significant impacts on water quantity (low

and high flows). As well as impacting the quantity of water

within rivers, low and high flows resulting from droughts

and floods can affect water quality and aquatic biology

through various physical, chemical and biological pro-

cesses (Caruso 2002; Hrdinka et al. 2012) and can also

aggravate water pollution and therefore, can impact human

health and aquatic ecosystems through water quality

deterioration.

The issue of the effects of extreme weather conditions,

a possible result of climate change, on stream flow

quantity (high and low flows) has been extensively

investigated in recent years (e.g. Arnell 1999; Hanson and

Weltzin 2000). Recently, investigations on the effects of

climate change on water quality have also been carried

out, mostly focusing on droughts (Elsdon et al. 2009; Van

Vliet and Zwolsman 2008; Zwolsman and Van Bokhoven

2007). Mimikou et al. (2000) showed that water quality

simulations under future climatic conditions entail sig-

nificant water quality impairments because of decreased

stream flows. Wilbers et al. (2009) demonstrated that the

drought period of 2003 in the Dommel River, a tributary

of the Meuse River in the Netherlands, did not signifi-

cantly affect water quality.
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In Iran the availability of water resources is critical

during certain periods. River flows are strongly seasonal

characterized by low and high natural flow during summer

and winter, respectively. The high frequency of droughts in

the area makes it necessary to improve management

strategies for water quality and quantity during dry periods.

Surface water is not only a major source of drinking water

in Iran, but also supplies public water utilities and accounts

for almost all of the water supply to rural households.

Therefore, knowledge of low and high flow quality and

quantity in streams is important for maintenance of the

quantity and quality of water resources. Although low flow

hydrology and climate change impacts on low flow are

recognized in regional scales of Iran (e.g. Eslamian et al.

2010; Modarres 2008; Nosrati et al. 2004, 2015; Nosrati

and Shahbazi 2008), little is known about the low flow

impacts on surface water quality (Nosrati 2011). Thus, it is

important to determine the climatic, and in particular

drought impacts on surface water quality.

Different multivariate statistical techniques are widely

applied to evaluate water quality through data reduction,

classification and relationship (e.g. Machender et al. 2014;

Nosrati and Van Den Eeckhaut 2012). Although multi-

variate statistical techniques such as principal components

analysis, factor analysis, cluster analysis and discriminant

analysis are widely applied to evaluate surface and

groundwater quality, to our knowledge, however, there

have been limited attempts to establish surface water

quality parameters to incorporate into general linear mixed

models to assessing low and high flow hydrology and

physico-chemical surface water quality. The aim of this

study is to evaluate the effects of low and high flows on

surface water quality using discriminant analysis and

general linear mixed models in Sari-Neka Basin, Northern

Iran.

Materials and methods

Study area

The present study investigates the effects of low and high

flows on water quality at 15 stations in Sari-Neka Basin in

Mazandaran Province in the north of Iran (Fig. 1; Table 1).

The study area is located in karstic region in the eastern

part of Mazandaran province. The study area (35� 56
0
–36�

52
0
N and 52� 56

0
–54� 45

0
E) is geographically divided into

two parts: the coastal plains, and the mountainous areas. In

plain, intensive large-scale agricultural activities is prac-

ticed using irrigation. The Alborz Mountains, south of the

Fig. 1 Location map of the study area and monitoring stations
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study area consists of year-round emerging springs and

forested hills. The region climate is a semitropical climate

with an average temperature of 25 �C in summer and 6 �C
in winter. The mean annual rainfall in the region ranges

from more than 1000 mm in the west to 300 mm in the east

of the province. Around 33 % of all precipitation falls as

snow in the mountainous area. Summer rainfall is also

important in the region. The snowmelt period usually

begins in mid-April and concludes in late April to early

May. The population of the study area has been steadily

growing during the last 50 years. 53.2 and 46.8 % of the

population are living in urban and rural areas, respectively

(SCI 2007).

Mazandaran Province is an important region for agri-

cultural production, which directly depends on river water

resources. Low flow frequency analysis will provide

essential information regarding the risks of industrial

development and water quality management during times

of low flow, i.e. summer season, such as water pollution by

pesticides and other industrial waste constituents. Such

pollutants can also be harmful to fisheries downstream in

Caspian Sea and agricultural activities, which are the main

source of rice production in the country. All rivers in the

region originate in the Alborz Mountains.

Data collection and treatment

Hydrological data series for 1991–2006 were obtained for

15 gauging stations in the region from the archives of

Water Resources Researches Organization, Iran. Two data

sets were considered in the analysis:

1. natural daily river discharges that had no data gaps for

the 1991–2006 period;

2. eleven water quality parameters including sodium

adsorption ratio (SAR), electrical conductivity (EC),

total dissolved solids (TDS), pH, bicarbonate

(HCO3
-), chlorine (Cl-), sulfate (SO4

2-), calcium

(Ca2?), magnesium (Mg2?), sodium (Na?), and potas-

sium (K?).

Low flow has been characterized by the reduction in

stream flow that may occur over 1 year or over several

consecutive years (Smakhtin 2001) and can be assessed

using low flow indices, i.e. lowest annual flow for a given

duration (e.g. 7 days), particularly low flows that occur in

the same season each year (Tallaksen et al. 1997). In order

to evaluate surface water quality during low flow period,

first, the annual 7-day minimum discharge series for each

gauge were computed. Then, the 7-day average of each

water quality parameters associated with the annual 7-day

minimum discharge was calculated. The 7-day low flow

periods were coincident with water quality data. Moreover

the highest annual stream flow and associated water quality

parameters for 15 water years (1991–2006) at each gauge

were selected to compare to low flow periods.

Basic stream flow characteristics, including the specific

discharge, q (mean daily discharge divided by basin area),

and the discharge were determined based on low and high

stream flow series (1991–2006). This allows determination

of significant relationship between the water quality

parameters and hydrological characteristics at the moni-

toring stations between low and high stream flow.

Statistical analysis

The normality and homogeneity of variance of the asso-

ciated water quality parameters values were tested by two-

Table 1 The details of selected

monitoring stations in

Mazandaran Province

Station River Longitude Latitude Elevation (m) Catchment

area (km2)

Sefidchah Neka 53�540 36�350 1000 1043

Gelvard Neka 53�360 36�350 600 1518

Abloo Neka 53�190 36�380 70 1962

Darabkola Neka 53�140 36�330 140 55

Rig Cheshmeh Tajan 53�100 36�210 200 2715

Nahre Abloo Neka 53�190 36�390 75 145

Nozar Abad Neka 53�150 36�490 -10 1992

Kord Khail Tajan 53�070 36�430 -10 4028

Garm Rood Zalem Rood 53�100 36�260 200 894

Varn Chahar Dangeh 53�120 36�210 230 1186

Vastan Lajim Dareh 53�100 36�200 280 126

Solaiman Tangeh Tajan 43�140 36�150 400 1277

Paeen Zarandin Neka 52�200 36�370 80 263

Pajim Neka 54�440 36�360 900 1328

Barkola Neka 54�040 36�380 1330 825
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tailed Kolmogorov–Smirnov and Levene tests, respec-

tively. These statistical analyses were followed by a t test

for the identification of significant differences between low

and high stream flow periods. Only those variables for

which the t-test statistics for low and high stream flow

categories were significant (p\ 0.05) were retained for

further analysis.

Principal components analysis (PCA) was used as the

method of factor extraction for this study because it

requires no prior estimates of the amount of variation in

each surface water quality variable explained by the fac-

tors. PCA was performed on standardized variables to

eliminate the effect of different measurement units on the

determination of factor loading. Factor loadings are the

simple correlations between the water quality variables and

each factor. In our study, principal components (main

factors) with eigenvalues[1 were selected and subse-

quently subjected to a varimax rotation to minimize the

number of variables that have high loadings on each factor.

In addition, communalities of every single variable for

factor model were calculated to estimate the portion of

variance in each variables explained by the rotated prin-

cipal components. A high communality for a surface water

quality variable indicates a high proportion of its variance

is explained by the factors. In contrast, a low communality

for a surface water quality variable indicates much of that

attribute’s variance remains unexplained. Less importance

should be ascribed to surface water quality variables with

low communalities when interpreting the factors (Nosrati

et al. 2015).

Standard, forward and backward stepwise discriminant

analysis (DA) was performed for retained surface water

quality parameters to select water quality indicators that

were most discriminating between the low and high stream

flow periods. In standard mode, all variables enter simul-

taneously into the model. In forward stepwise mode,

variables move into the model in successive steps; at each

step the variable with the largest significant value will be

chosen for inclusion in the model. The stepping will ter-

minate when no other variable has a significant value,

whereas, in backward stepwise mode, all variables are

included into the model, and then are removed variables

step by step; with the smallest significant value until no

other variable in the model has a significant value. Thus, as

the result of a successful discriminant analysis, one would

only keep the important variables in the model, that is,

those variables that contribute the most to the discrimina-

tion between groups. DA was performed on standardized

variables to eliminate the effect of different measurement

units on the determination of factor loading (Hill and

Lewicki 2007).

Pairwise comparisons as discussed above do not allow

to fully quantify and to understand the interaction between

the different independent variables. Therefore, the effects

of low and high stream flow periods and river basin

hydrological characteristics (including the specific dis-

charge and the discharge) on water quality parameters were

examined with mixed model analysis. Designs that contain

random effects for one or more categorical predictor vari-

ables are called mixed-model designs. Random effects are

classification effects where the levels of the effects are

assumed to be randomly selected from an infinite popula-

tion of possible levels. The solution for the normal equa-

tions in mixed-model designs is identical to the solution for

fixed-effect designs. The variables used to build the sta-

tistical model consisted of both a categorical variable (low

and high stream flow periods: dummy = 1 for low flow

and dummy = 0 for high flow) and covariates (including

specific discharge and the discharge) as fixed effects. The

mixed analysis is able to account for sampling at the same

observation point at different moments in time and also

allows to identify a monitoring station. This effect accounts

for drainage basin characteristics of monitoring stations

that were not directly measured and is therefore considered

as a random effect within the model. In order to identify the

optimal variable to explain variations in water quality

parameters, we used backward stepwise general regression

model using a minimum significance level of 5 % for

model entry. All variables (except categorical data) were

subjected to natural logarithmic transformation in order to

assure homoscedasticity and linearity between the depen-

dent and the explanatory variables. Statistical analyses

were carried out using STATISTICA V. 8.0 (StatSoft

2008).

Results and discussion

Low and high flow effect on water quality

According to the t test, water flow differs significantly

(p\ 0.05) between the hydrological low and high stream

flow periods during 1991–2006 at the 15 selected moni-

toring stations (Table 2). Statistically significant differ-

ences (p\ 0.05) were noted for physico-chemical

parameters, except for pH and K? concentration. However,

the comparison showed that the pattern and magnitude of

the response varied among stations (Table 2). Differences

for water quality parameters at Nahre Abloo and Pajim

stations were not detected when comparing the low and

high periods (Table 2). SAR, Na? and TDS were statisti-

cally significant in the most monitoring stations. Although

differences were not always statistically significant, the

general pattern was that physico-chemical concentrations

were lower during the high flow period at most of the

monitoring stations. The same results have also been
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Table 2 Mean and significant values of surface water quality variables in two low and high stream flow periods, 1991–2006 (italicized indicated

significant value)

Variables Sefidchah Gelvard Nozar Abad

High flow Low flow p value High flow Low flow p value High flow Low flow p value

Discharge (m3 s-1) 2.6 0.1 \0.001 9.3 0.8 \0.001 5.2 0.2 \0.001

SAR 0.9 0.7 0.13 0.5 0.5 0.81 0.6 1.0 0.04

K? (mg L-1) 2.2 2.1 0.79 1.8 1.4 0.13 1.8 2.3 0.06

Na? (mg L-1) 31.3 26.5 0.25 14.9 15.2 0.91 21.4 43.2 0.03

Mg2? (mg L-1) 57.0 64.0 0.15 42.1 43.3 0.78 49.2 67.1 0.01

Ca2? (mg L-1) 107.5 111.5 0.66 92.5 80.7 0.04 97.6 136.0 0.01

SO4
2- (mg L-1) 139.6 118.3 0.34 62.3 53.6 0.47 65.6 128.3 0.02

Cl- (mg L-1) 35.3 26.9 0.04 17.9 14.9 0.16 18.5 54.4 0.01

HCO3
- (mg L-1) 236.3 272.3 0.02 213.7 208.0 0.70 252.6 311.1 0.04

pH 7.8 7.7 0.45 7.8 7.7 0.65 7.8 7.8 0.93

EC (lS cm-1) 640.2 646.1 0.88 464.9 437.9 0.33 539.2 802.8 0.01

TDS (mg L-1) 418.5 423.3 0.86 303.7 288.1 0.39 352.8 523.5 0.01

Variables Abloo Darabkola Kord Khail

High flow Low flow p value High flow Low flow p value High flow Low flow p value

Discharge (m3 s-1) 21.1 0.5 \0.001 4.9 0.2 0.01 98.4 2.7 \0.001

SAR 0.4 0.7 0.04 0.4 0.8 0.08 0.7 1.9 \0.001

K? (mg L-1) 1.7 1.6 0.66 1.5 1.9 0.10 1.7 2.2 0.06

Na? (mg L-1) 14.4 22.3 0.04 12.1 30.6 0.08 24.9 80.0 \0.001

Mg2? (mg L-1) 39.5 47.6 0.08 39.9 53.9 0.01 22.7 33.7 \0.001

Ca2? (mg L-1) 86.1 79.4 0.32 83.1 109.5 0.02 51.0 67.1 \0.001

SO4
2- (mg L-1) 44.6 74.6 0.02 44.5 72.5 0.15 49.9 97.0 \0.001

Cl- (mg L-1) 17.3 20.2 0.30 12.8 36.6 0.16 27.2 97.3 \0.001

HCO3
- (mg L-1) 206.6 212.9 0.68 205.4 271.5 0.01 221.1 294.1 \0.001

pH 7.8 7.7 0.45 7.6 7.7 0.78 7.8 7.7 0.43

EC (lS cm-1) 436.5 483.7 0.20 801.0 639.1 0.70 544.1 968.8 \0.001

TDS (mg L-1) 286.5 316.8 0.21 268.7 417.3 0.01 354.4 628.6 \0.001

Variables Rig Cheshmeh Nahre Abloo Garm Rood

High flow Low flow p value High flow Low flow p value High flow Low flow p value

Discharge (m3 s-1) 24.3 3.4 \0.001 1.4 0.3 \0.001 9.5 1.2 \0.001

SAR 0.7 1.4 \0.001 0.4 0.5 0.06 0.5 0.6 0.34

K? (mg L-1) 1.6 2.0 0.06 1.6 2.1 0.30 1.3 1.4 0.77

Na? (mg L-1) 25.5 53.8 \0.001 12.8 17.7 0.06 18.1 20.1 0.38

Mg2? (mg L-1) 48.3 62.4 0.06 41.6 42.8 0.74 23.3 26.1 0.09

Ca2? (mg L-1) 123.0 129.7 0.64 82.6 90.1 0.20 55.8 48.9 0.04

SO4
2- (mg L-1) 139.9 158.6 0.50 62.8 63.4 0.97 44.3 47.4 0.65

Cl- (mg L-1) 27.6 60.6 \0.001 14.6 17.5 0.21 18.6 21.3 0.38

HCO3
- (mg L-1) 235.1 286.7 0.17 195.4 218.2 0.08 243.0 236.6 0.59

pH 7.8 7.9 0.31 7.8 7.7 0.42 7.8 7.8 0.78

EC (lS cm-1) 630.0 828.2 0.03 425.3 467.2 0.17 547.1 541.9 0.81

TDS (mg L-1) 410.1 537.9 0.03 277.9 307.0 0.15 356.0 352.6 0.81
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reported by previous studies. Zwolsman and Van Bokho-

ven (2007) and Van Vliet and Zwolsman (2008) demon-

strated that water quality was negatively influenced by

droughts, with respect to water temperature, eutrophica-

tion, major ions and heavy metals; they also indicated that

the impact of droughts on water quality will be greater

when the water quality is already poor. Prathumratana et al.

(2008) proposed TSS, alkalinity and conductivity as sen-

sitive water quality parameters for monitoring impacts of

changing climate in the lower Mekong River. In their

study, negative significant correlations were generally

found between discharge flow and dissolved oxygen (DO),

pH and conductivity (from 0.2 to 0.9). Worrall and Burt

(2008) observed decreasing dissolved organic carbon

(DOC) fluxes and concentrations in the areas that had

experienced severe droughts in British rivers. Österholm

and Åström (2008) showed that the severity of individual

summer droughts in the Pajuluoma acid sulphate area of

Finland had little or no impact on the water quality during

subsequent autumn and spring.

The EC indicates the amount of material dissolved in

water. According to the WHO guidelines (WHO 1983), the

maximum admissible EC concentration is 250 lS cm-1 for

drinking water. All monitoring stations in the study area

had conductivity values exceeding this maximum permis-

sible limit for potable water but for 66.6 % (n = 10) of the

stations, the EC is higher during low flow periods com-

pared to high flow periods. The average TDS is higher

during low flow periods than during high flow periods. The

recommended (most desirable) values of TDS for potable

water is 500 mg L-1 (WHO 1983). 33.5 % (n = 5) of the

monitoring stations have TDS above 500 mg L-1 during

Table 2 continued

Variables Varn Vastan Solaiman Tangeh

High flow Low flow p value High flow Low flow p value High flow Low flow p value

Discharge (m3 s-1) 6.0 1.2 \0.001 3.0 0.2 \0.001 12.8 3.8 \0.001

SAR 1.3 2.0 \0.001 0.4 0.6 0.04 0.5 0.6 \0.001

K? (mg L-1) 2.0 2.3 0.45 1.2 2.0 0.14 2.7 3.8 0.52

Na? (mg L-1) 48.0 73.7 \0.001 14.7 19.0 0.12 18.2 23.9 0.02

Mg2? (mg L-1) 25.5 30.6 0.01 20.9 22.6 0.48 26.4 29.2 0.13

Ca2? (mg L-1) 60.4 52.7 0.07 64.8 52.6 0.02 60.0 61.9 0.58

SO4
2- (mg L-1) 56.5 67.5 0.19 38.2 38.5 0.97 65.1 93.6 0.01

Cl- (mg L-1) 59.0 103.6 \0.001 18.8 18.1 0.87 24.9 29.1 0.09

HCO3
- (mg L-1) 264.6 246.5 0.13 257.5 242.6 0.35 234.9 224.6 0.36

pH 7.7 7.8 0.23 7.5 7.7 0.16 7.7 7.7 0.76

EC (lS cm-1) 720.5 841.0 \0.001 551.6 530.3 0.51 583.9 643.3 0.01

TDS (mg L-1) 471.6 547.8 \0.001 356.7 343.3 0.51 378.8 420.2 0.01

Variables Paeen Zarandin Pajim Barkola

High flow Low flow p-value High flow Low flow p-value High flow Low flow p-value

Discharge (m3 s-1) 4.7 0.2 \0.001 3.7 0.5 \0.001 1.1 0.3 \0.001

SAR 0.4 0.6 0.07 0.9 0.8 0.62 1.2 1.1 0.30

K? (mg L-1) 3.4 3.1 0.83 3.8 2.1 0.23 2.7 2.0 0.06

Na? (mg L-1) 15.0 20.0 0.09 33.3 31.2 0.62 49.0 46.2 0.54

Mg2? (mg L-1) 19.6 25.7 0.01 31.1 33.6 0.25 36.7 38.1 0.63

Ca2? (mg L-1) 52.4 45.4 0.08 63.1 57.1 0.31 59.6 62.9 0.40

SO4
2- (mg L-1) 28.2 37.9 0.18 76.4 72.3 0.67 125.8 115.8 0.49

Cl- (mg L-1) 17.9 17.1 0.83 46.5 33.3 0.29 52.7 45.5 0.18

HCO3
- (mg L-1) 233.7 241.9 0.54 254.2 276.7 0.07 249.2 284.1 0.02

pH 7.5 7.8 0.14 7.5 7.4 0.61 7.5 7.4 0.56

EC (lS cm-1) 461.9 485.4 0.41 668.4 634.0 0.45 773.3 762.0 0.79

TDS (mg L-1) 304.6 312.1 0.71 438.1 407.9 0.31 532.0 507.4 0.49
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low stream flow. Variation in TDS may be related to land

use and pollution (Gaillardet et al. 1999; Nosrati and Van

Den Eeckhaut 2012) and can be used to indicate the

influence of human activities on water chemistry (Han and

Liu 2004).

Determination of water quality factors

For the two low and high flow periods separately, PCA was

performed on the normalized data sets to identify the fac-

tors replacing the most important variables. Factors with

eigenvalues of 1.0 or greater are considered significant and

factors with the highest eigenvalues are the most signifi-

cant. The results of principal component analysis showed

that the first three principal components (PCs) with

eigenvalues[1, accounted for[77 % of variability in

water quality in low flow period (Table 3). Communalities

for water quality indicate these three factors

explained[90 % of variance in SAR, Na?, EC and

TDS;[80 % in Mg?2, Ca?2 and Cl-;[60 % in SO4
-2,

HCO3
- and pH;\35 % in K? (Table 3). A high commu-

nality estimate suggests that a high portion of variance was

explained by the factor; therefore, it would get higher

preference over a low communality estimate. Thus, K? was

the least important attribute due to the lowest communality

estimates in low flow period.

For the low flow period data set, PC1 explained the

largest proportion (51.96 %) of total variance. PC1 had a

strong positive loading ([0.75) on SAR, Na?, Cl-, EC and

TDS, and a moderate positive loading (0.5–0.750) on

HCO3
- (Table 3). Factor 1 represents the salinity of water

which can be explained by natural and anthropogenic

processes. The leaching of soil material, mixing of existing

salts in soil, and high evaporation and evapotranspiration

rates resulted in very high concentrations of ions that

contribute to an increase of TDS and to a further deterio-

ration of the water quality. Salinity is the total amount of

inorganic solid material dissolved in any natural water, and

water salinization refers to an increase in TDS and in the

overall chemical content of the water. There are many

natural sources such as atmospheric deposition, interac-

tions between soil or rock and water, and salt water

intrusion that can contribute to sodium and chloride con-

centrations. Chloride can be also enriched in natural waters

due to the weathering of granites and magmatic rocks.

HCO3
- exhibits moderate positive loadings on both factors

PC1 and PC2. This means that the variability of the HCO3
-

in the study area is affected by two distinct processes. In

order to explanation the spatial distribution of factor PC1,

factor score coefficients were calculated for variables.

These coefficients represent the weights that are used when

computing factor scores from the variables. HCO3
- had a

lower factor score coefficient (0.04) for PC1 compared to

PC2 (0.18). Thus, it can be concluded that HCO3
- is more

important parameter in PC2.

PC2 explained a significant proportion (15.96 %) of the

total variance, had strong positive loading on Mg2? and

Ca2?, and had moderate positive loading on SO4
2- and

HCO3
- (Table 3). Factor 2 represents the natural hydro-

geochemical evolution of water by groundwater-geological

interaction which can be explained by the dissolution of

rocks and minerals in sediments by chemical weathering.

This factor explains the erosion from upland area during

rainfall events. The dissolution of limestone and dolomite

is possible source of Ca2? and Mg2?. The SO4
2- sources in

surface waters include: (1) atmospheric deposition (Way-

land et al. 2003), (2) sulfate-bearing fertilizers and (3)

bacterial oxidation of sulfur compounds (Sidle et al. 2000).

Natural processes such as the dissolution of carbonate

minerals and dissolution of atmospheric and soil CO2 gas

could be a mechanism supplying HCO3
- to the ground-

water, which recharge the low flow.

PC3, explaining 9.85 % of total variance, had a strong

positive loading on pH and a moderate negative loading on

K? (Table 3). The negative loading of K? on PC3 indicates

that the source of this parameter can be related to anthro-

pogenic pollution sources, the result of different pollution

sources such as effluents of domestic origin, septic tanks,

fertilizers and pesticides application in agriculture.

The results of principal component analysis showed that

the first three principal components (PCs) with eigenval-

ues[1, accounted for[67 % of variability in water qual-

ity in high flow period. Communalities for water quality

indicate these three factors explained[70 % of variance

for 7 variables with the exception being for K?, HCO3
-,

Cl-, and EC (Table 3). Thus, those four variables were the

least important attribute due to the lowest communality

estimates. For high flow period, PC1 explained the largest

proportion (40.1 %) of the total variance had a strong

positive loading on SAR, Na?, Cl-, and TDS, and a

moderate positive loading on SO4
2- (Table 3). Dissolution

of gypsum and sodium sulphate minerals could increase

SO4
2- concentration in water. However there is no rela-

tionship between SO4
2- and Ca2? or Na? indicating that

the excess of SO4
2- in this period mostly result from the

leaching of fertilizers, pesticides and increasing air pollu-

tion. Chlorine may be derived from pollution sources such

as effluents of industrial and domestic origin, fertilizers and

septic tanks, indicating anthropogenic pollution sources

(Ritzi et al. 1993).

PC2 explained significant proportion (16.33 %) of the

total variance, had strong positive loading on Mg2? and

Ca2?, and had a moderate positive loading on SO4
2-

(Table 3). PC2 represents a hydrochemical processes that

lead to high Mg2? and Ca2? concentrations. Associations

between Mg2? and Ca2? suggest dissolution of calcite and
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dolomite affected by erosion and deposition from upland

area. SO4
2- exhibits moderate positive loadings on both

PC1 and PC2. The factor score coefficients of SO4
2- in

factors PC1 and PC2 are 0.11 and 0.24 respectively. Thus,

it can be concluded that SO4
2- in PC2 is more important

parameter.

PC3, explaining 10.96 % of the total variance, had a

strong negative loading on pH, had a moderate positive

loading on K? (Table 3); and represents a hydrochemical

processes that lead to high K? concentrations. The negative

correlation with pH indicates that introduction of H? into

the water is not due to natural dissolution from soil or rock

and the source of this parameter can be related to atmo-

spheric pollution.

Overall, the intensive agriculture practiced in the study

area affects all parameters included in the analysis in two

low and high flow periods. Irrigation with local surface and

groundwater induces a groundwater cycle that increases the

salinity in the upper aquifer through irrigation return flow,

thereby increasing the concentrations of all ions present in

solution. Application of PCA in our study area shows that

the dominant factors are explained by the following pro-

cesses: soil–groundwater interactions, and agricultural,

industrial and atmospheric pollution.

Identification of water quality indicators

Surface water measurements that were not significantly

affected by low and high stream flow types within the study

area (pH and K?) were excluded from further consideration

as possible candidates to identify surface water quality

indicators. DA was done with the two low and high stream

flow periods as grouping variable and the 9 retained water

quality parameters as independent variables to remove

Table 3 Proportion of variance

using varimax rotation and

communality estimates of water

quality parameters for low and

high flows

Variables PC1 PC2 PC3 Communality estimates

Low flow (three significant principal components)

SAR 0.95 -0.01 0.03 0.90

K? (mg L-1) 0.07 -0.04 -0.56 0.32

Na? (mg L-1) 0.97 0.13 -0.01 0.96

Mg2? (mg L-1) 0.13 0.91 -0.07 0.85

Ca2? (mg L-1) 0.14 0.91 0.10 0.85

SO4
2- (mg L-1) 0.43 0.64 0.07 0.61

Cl- (mg L-1) 0.93 0.06 0.01 0.86

HCO3
- (mg L-1) 0.53 0.55 -0.29 0.67

pH 0.05 0.01 0.82 0.68

EC (lS cm-1) 0.88 0.41 -0.02 0.94

TDS (mg L-1) 0.87 0.41 -0.03 0.93

Eigenvalue 5.72 1.76 1.08

% Total variance 51.96 15.96 9.85

Cumulative % variance 51.96 67.92 77.77

High flow (three significant principal components)

SAR 0.94 -0.02 0.01 0.88

K? (mg L-1) 0.15 -0.05 0.64 0.43

Na? (mg L-1) 0.97 0.02 0.06 0.94

Mg2? (mg L-1) 0.14 0.87 -0.01 0.78

Ca2? (mg L-1) -0.07 0.89 0.03 0.79

SO4
2- (mg L-1) 0.59 0.59 -0.08 0.71

Cl- (mg L-1) 0.76 0.02 0.22 0.62

HCO3
- (mg L-1) 0.46 0.26 0.35 0.40

pH -0.08 -0.01 -0.84 0.71

EC (lS cm-1) 0.47 0.21 -0.16 0.29

TDS (mg L-1) 0.89 0.22 0.12 0.85

Eigenvalue 4.41 1.80 1.21

% Total variance 40.10 16.33 10.96

Cumulative % variance 40.10 56.43 67.39

Bold and italic values indicate strong ([0.75) and moderate (0.5–0.750) loadings, respectively
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redundant variables. A significant result was obtained,

independent of the discriminant function removal method

used (Table 4). Thus, the set of water quality parameters

used clearly allow discriminating between the two low and

high stream flow periods.

The Mahalanobis distances between two categories are

significantly different. However, F values of the backward

mode (F = 12.0, p\ 0.0001) are significantly higher as

compared to standard (F = 4.4, p\ 0.0001) and forward

mode (F = 6.5, p\ 0.0001).

The standard and forward stepwise discriminant analysis

mode yielded classification matrices assigning ca. 63 % of

the cases correctly including 9 and 6 parameters respec-

tively, (Tables 5, 6). However, in the backward stepwise

mode, 60 % of the low and high stream flow periods were

correctly classified by a model using only three discrimi-

nant parameters, Mg2?, Ca2? and HCO3
- (Tables 5, 6).

Thus, the DA results suggest that Mg2?, Ca2? and HCO3
-

are the most significant parameters to discriminate between

the two low and high stream flow periods.

Water quality in relation to hydrological

characteristics

The resulting variance components and mixed model

contains a fixed part and a random part. In the models, the

random part contains a site-effect, i.e. I expect that part of

the variance that cannot be explained by the independent

variables and their interactions is due to the fact that dif-

ferences between drainage basin characteristics of moni-

toring stations are not entirely accounted for by the

properties that were included in the statistical analysis.

Therefore, it would be possible that changes in land and

resource use will have a comparable or greater effect on

water quality than changes in hydrological characteristics.

Table 4 Chi-square tests with

successive roots removed for

discriminant analysis applied to

the two low and high

streamflow periods of

monitoring stations

Roots removed Eigenvalue Canonical-R Wilks’

Lambda

Chi-square df p value

Standard mode 0.11 0.31 0.90 46.05 11 \0.0001

Forward mode 0.10 0.31 0.91 43.8 7 \0.0001

Backward mode 0.08 0.27 0.93 34.7 3 \0.0001

Table 5 Classification functions resulting from discriminant analysis applied to the two low and high stream flow periods of monitoring stations

Variables Standard mode

F = 4.3 p\ 0.0001

Forward mode

F = 6.5 p\ 0.0001

Backward mode

F = 12.5 p\ 0.0001

Low flow High flow P value Low flow High flow p value Low flow High flow p value

SAR -0.37 0.38 0.327

Na? (mg L-1) 0.27 -0.28 0.564 -0.20 0.21 0.007

Mg2? (mg L-1) -0.32 0.33 \0.001 -0.35 0.35 \0.001 -0.30 0.30 \0.001

Ca2? (mg L-1) 0.24 -0.25 0.006 0.21 -0.22 0.007 0.25 -0.25 \0.001

SO4
2- (mg L-1) 0.01 -0.01 0.966 0.12 -0.13 0.123

Cl- (mg L-1) -0.16 0.16 0.254

HCO3
- (mg L-1) -0.30 0.31 0.038 -0.12 0.13 0.081 -0.19 0.20 \0.001

EC (lS cm-1) 0.07 -0.07 0.242 0.07 -0.07 0.225

TDS (mg L-1) 0.18 -0.19 0.381

Constant -0.73 -0.76 -0.73 -0.76 -0.72 -0.75

Table 6 Classification matrix resulting from discriminant analysis

applied to the two low and high stream flow periods of monitoring

stations

Classification % Correct Samples assigned by DA

High flow Low flow

Standard mode

High flow 66.7 160 80

Low flow 60.4 95 145

Total 63.6 255 225

Forward mode

High flow 68.0 164 76

Low flow 58.1 100 140

Total 63.1 264 216

Backward mode

High flow 64.5 155 85

Low flow 54.5 109 131

Total 59.6 264 216
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The intraclass correlation coefficient for stations effects as

random effect on water quality parameters was computed

as the ratio of the estimated variance component for the

station to the total error variance, indicating that 21, 18 and

24 % of the non-explained variation in Ca2?, HCO3
- and

Mg2? is accounted for by the station effect, respectively.

Root mean squared error (RMSE) of the model for Ca2?,

HCO3
- and Mg2? were 18.9, 52 and 10.2 mg L-1,

respectively. The observed and predicted values for the

natural logarithm of Ca2?, HCO3
- and Mg2? were plotted

in Fig. 2.

Table 7 gives information about the significance of

effects and models performance for the prediction of the

natural logarithm of water quality when no random effect

(station effect) is considered. Backward stepwise general

regression analyses for all water quality data showed

that 7-day low flow (Dstreamflow = 1 for low flow and

Dstreamflow = 0 for high flow) and specific discharge

(q) entered as significant parameters (Table 7).

The predicted values for ln[Ca2?], ln[HCO3
-] and

ln[Mg2?] are plotted against the observed values for

ln[Ca2?], ln[HCO3
-] and ln[Mg2?] in Fig. 3. RMSE of

Fig. 2 Scatterplot of observed versus predicted data points (fixed ? random effects) for Ca2?, HCO3
- and Mg2?. MAE mean absolute error;

r Pearson correlation coefficient (p\ 0.05)
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the model for Ca2?, HCO3
- and Mg2? were 31.1, 57.1

and 15.7 mg L-1, respectively. These regression models

identified drought and specific discharge as the main

factors. The t statistics shows that the specific discharge is

the most important variable in the models (Table 7).

Therefore, water quality parameters are perhaps influ-

enced by factors controlling the seasonal supply of phy-

sico-chemical water quality. Dakova et al. (2000) found

the best statistically significant correlation between

hydrobiological indexes and discharge during the low

flow period. Elsdon et al. (2009) detected minimal dif-

ferences in water quality between land uses during a

period of extensive drought.

Global climate change projections indicate changes in

rainfall, causing increased frequency and severity of low

flow in some regions (Sheffield and Wood 2008). Low

flow conditions are determined by a suite of natural and

anthropogenic factors and are an integral part of every

river regime (Smakhtin 2001). The basis for estimating

low flows is, therefore, of crucial importance for pro-

tection of water quality. Decreases in water levels due to

drought can affect catchment functioning (including par-

titioning, storage, and release of water), throughout the

following year or even for several years if the drought

occurs in a larger area. A 1-year drought not only causes

water level decreases, but also results in many other

changes. When water levels decrease, solutes become

more concentrated as the amounts of water decrease in

rivers. This pattern is consistent with the results of the

present study, as shown by the increase of Mg2?, Ca2?,

HCO3
-, SO4

2-, Cl-, EC, TDS and Na? concentrations

during low flow (Table 2). The concentration increase is

hypothesized to be associated with evaporation from

rivers and the ground surface, as well as the increase of

residence and contact of waters with soils during recharge

and during discharge of groundwater into rivers (Caruso

2002; Murdoch et al. 2000). These results demonstrate

that water quality degrades under low flow conditions,

and in the context of a climate change increase in

drought conditions, leads to an increase of at risk situa-

tions related to potential health impacts (Delpla et al.

2009).

Conclusions

Differences in water quality were detected between low

and high stream flow periods but the differences are not

the same for each constituent. Climate change resulting in

more intense and frequent droughts could cause consid-

erably lower stream flows and consequently have effects

on surface water quality, mainly increasing constituent

concentrations. Also the chemical characteristics of

groundwater could have a principal role in influencing

low flow chemistry. The results of the mixed models

containing a site-effect showed that part of the variance

that cannot be explained by the independent variables and

their interactions is due to the fact that differences

between drainage basin characteristics of monitoring sta-

tions are not entirely accounted for by the properties that

were included in the statistical analysis. It means that the

significant differences in water quality can be explained

by anthropogenic influences such as land-use changes.

The intensive agriculture practiced in the study area

affects all parameters included in the analysis. Irrigation

with local surface and groundwater increases the con-

centrations of all ions present in solution. Urban,

municipal and industrial land use types also can affect the

quality of surface water. Consequently, the quality of

surface water is affected by many factors including pre-

cipitation and characteristics of the catchment area. This

study confirms that multivariate statistical techniques can

be adopted for analysis and interpretation of complex data

sets of water parameters in surface water quality assess-

ment and in the identification of important factors. Further

research should investigate the response of water quality

Table 7 Backward stepwise

general regression analysis for

water quality parameters with

hydrological characteristics

(n = 480)

Regression parameters Regression statistics

Dependent variable Predictor B t value p value R2 Adjusted R2 F p value

ln[Ca2?] Intercept 4.17 143.2 \0.001 0.033 0.028 7.5 0.001

ln[q] -0.05 -3.8 \0.001

Dstreamflow 0.06 2.3 0.022

ln[HCO3
-] Intercept 5.41 385.7 \0.0001 0.095 0.093 46.8 \0.0001

ln[q] -0.04 -6.8 \0.0001

ln[Mg2?] Intercept 3.40 131.6 \0.0001 0.114 0.112 57.8 \0.0001

ln[q] -0.08 -7.6 \0.0001

Dstreamflow, dummy = 1 for low flow and dummy = 0 for high flow; q specific discharge, B raw regression

coefficient
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parameters to drought conditions under land use changes

and future climate change scenarios.
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