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Abstract
Internet access has become a fundamental component of contemporary society, with major impacts in many areas that offer 
opportunities for new research insights. The search and deposition of information in digital media form large sets of data 
known as digital corpora, which can be used to generate structured data, representing repositories of knowledge and evidence 
of human culture. This information offers opportunities for scientific investigations that contribute to the understanding of 
human behavior on a large scale, reaching human populations/individuals that would normally be difficult to access. These 
tools can help access social and cultural varieties worldwide. In this article, we briefly review the potential of these corpora  
in the study of human behavior. Therefore, we propose Culturomics of Human Behavior as an approach to understand, 
explain, and predict human behavior using digital corpora.
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Introduction

Approximately 5.3 billion people, or 66% of the world’s pop‑
ulation, have access to the Internet (ITU, 2023) and live in 
an era in which information has crossed temporal and spatial 
boundaries, allowing the world to remain connected with the 
aid of an increasingly intense flow of information (Valcanis, 
2011). Therefore, we can infer that the Internet has become 
an important component of contemporary society, with great 

impacts in the most diverse areas that offer opportunities for 
new research insights (Jarić et al., 2020).

Widespread access to the Internet has allowed the search 
and storage of information in various digital media, forming 
large sets of data known as digital corpora (Correia et al., 
2021; Leetaru, 2011; Michel et al., 2011). In turn, corpora 
are collections of items, including Internet pages, digitized 
books, and posts on social networks, that can be used to 
generate structured data, representing repositories of knowl‑
edge and/or evidence of different products of human culture 
(Correia et al., 2021).

This information offers opportunities for scientific inves‑
tigations that contribute to the understanding of human 
behavior on a large scale, because it can reach individuals 
that research would normally have greater difficulty access‑
ing (Gosling et al., 2010; Hargittai, 2018). Research involv‑
ing digital data, which reach different societies, can help us 
reduce biases in human behavioral studies, since they are 
carried out mostly in Western, educated, industrialized, rich, 
and democratic (WEIRD) societies (Henrich et al., 2010).

WEIRD societies do not represent the cultural variety 
existing in the general population, which prevents large gen‑
eralizations of human behavior (Henrich et al., 2010). One 
way around, this has been the creation of methods and tools 
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to measure the intercultural psychological distance1 between 
different populations in WEIRD societies (Muthukrishna 
et al., 2020). This may allow samples from different cultures 
to make greater generalizations (Muthukrishna et al., 2020). 
However, until then, there has been no way to access all social 
and cultural varieties around the world truly. Culturomic tools 
can minimize this challenge (see, e.g., Bail, 2014) because 
this approach is dedicated to the collection and quantitative 
analysis of large corpora of digital data for the study of human 
culture (Michel et al., 2011).

From this perspective, we understand culture as any infor‑
mation that can be expressed through behavior and transmit‑
ted through teaching, language, and imitation, among other 
forms of cultural learning (Mesoudi, 2011; Richerson & Boyd, 
2005). Virtual environments can be viewed as an extension of 
a user’s social or offline life (Correia et al., 2017); therefore, 
it would be possible to explore trends and patterns that reflect 
human behavior. Some studies have been working within this 
approach, even without using the classic definition of cul‑
turomics (See Ding & Luo, 2022; Oliveira & Albuquerque, 
2021); by looking at these works, we can observe the great 
potential that digital corpora have in helping us understand 
several phenomena related to human behavior.

For example, location data from cell phones helped in 
understanding urban mobility patterns and their relationship 
with social and health dynamics (Hassan Zadeh et al., 2019), 
and social networks such as Facebook, Twitter, Instagram, 
and Sina Weibo can be used to identify psychological char‑
acteristics and traits known as the Big Five (Azucar et al., 
2018). Local press news from around the world can predict 
sociopolitical issues in different countries (Leetaru, 2011). 
Finally, dating sites can help identify human preferences con‑
cerning the search for romantic partners (Bergström, 2018). 
Thus, culturomic tools have great potential to increase the 
range of possibilities for the investigation of human behavior.

This opinion essay presents how culturomics have been 
growing as a study approach that can be used to understand 
human behavior and its main tools. Based on the presented 
scenarios and cited examples, we define culturomics of human 
behavior (CHB) as the approach that seeks to understand, 
explain, and predict human behavior from digital corpora.

Brief History of Culturomics

The term culturomics was first used by Michel et al. (2011) to 
describe cultural variation from sets of digitized texts written 
between 1800 and 2000, seeking to investigate lexicography, 
grammar evolution, and adoption of technologies, among other 

aspects. After this study, further efforts were made, and a new 
edition of this text corpus (Google Books Ngram Corpus) was 
conducted, with 6% of all books published (Lin et al., 2012). 
With the advancement of studies, the objectives have diversified, 
contemplating measures of cultural complexity based on linguis‑
tics in a corpus of texts published over the years, highlighting the 
cumulative aspect of human culture (Juola, 2013). On one hand, 
it was possible to identify cultural variation over time (see Gao 
et al., 2012; Petersen et al., 2012); conversely, it was possible to 
infer whether language suffers from political regimes (Caruana‑
Galizia, 2015) or social regimes (Bochkarev et al., 2014).

Back then, the corpora used were studied through a textual 
corpus gathered from the efforts of Michel et al. (2011) and 
Lin et al. (2012). However, before defining what we know 
today as culturomics, some studies have already been dedi‑
cated to analyzing large sets of data from the geolocation of 
cell phones to observe patterns of human mobility (González 
et al., 2008). Geolocation data from cell phones make it pos‑
sible to identify patterns of movement and trips made by peo‑
ple and predict how human behavior affects the dynamics of 
epidemics. This is because mobility is a crucial factor in the 
spread of diseases, favoring the confrontation of these public 
health crises (Balcan et al., 2009; Song et al., 2010).

In the midst of this horizon of possibilities, conserva‑
tion culturomics have emerged, which consist of analyzing 
digital data generated to provide new insights into human‑
nature interactions aimed at biodiversity conservation (Ladle 
et al., 2016). Conservation culturomics differ from iEcol‑
ogy because the latter studies ecological processes through 
online data (Jarić et al., 2020), while the former studies 
aspects of human culture and the human/nature relationship 
(Jarić et al., 2021). Conservation culturomics have been 
increasingly notable since their proposition, with the aim of 
investigating how the public interest can contribute to con‑
servation through different approaches. These approaches 
include research on perceptions of national parks (Bhatt &  
Pickering, 2021) and people’s thinking about specific 
animal species (Pickering & Norman, 2020). As more 
approaches have emerged beyond the books gathered on 
Google Ngram Viewer, other data corpora have become 
the focus of interest. This includes posts on social net‑
works such as Instagram (Kroetz et al., 2021), Facebook  
(Altay et al., 2022), Twitter (Bhatt & Pickering, 2021), news 
available on digital platforms (Cooper et al., 2019; Francis 
et al., 2019), and even the association of data from different 
platforms, such as social networks and searches on research  
sites such as Wikipedia (Fernández‑Bellon & Kane, 2020).

Digital Bodies and Big Data

At the origin of culturomics, themes such as big data, web 
scraping, machine learning, and artificial intelligence were 
not very evident, except for areas dedicated to information 

1 Intercultural psychological distance is understood as the size of the 
difference in psychology between different societies. For example, on 
how to perform such a measurement, see Muthukrishna et al. (2020).
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technology and computing. The vast majority of digital bod‑
ies are formed by voluminous datasets that grow rapidly and 
that cannot be processed in the traditional way (Chen et al., 
2014). Given the huge volume of data generated, for col‑
lection to be fast, accurate, and efficient, powerful tools are 
needed, such as web scraping. This comprises the procedure 
of extracting data from the web in an automated way without 
the need to manually copy or download them to a hard disk 
(Singrodia et al., 2019).

The culturomic approach can be further improved using 
machine learning (ML), which consists of sets of protocols  
that allow computers to automatically solve a class of tasks 
and continuously improve problem‑solving based on per‑
formance measures (Janiesch et al., 2021; LeCun et al., 
2015). Oliveira and Albuquerque (2021) used web scraping 
and machine learning to understand the dynamics behind 
the dissemination of messages with false information (fake 
news) on Twitter in the context of the COVID‑19 pandemic. 
Heras‑Pedrosa et al. (2020) utilized web scraping technique 
to analyze communication in the field of public health during 
the COVID‑19 pandemic and recorded emotions generated 
in the population through data from Twitter, YouTube, Ins‑
tagram, official press sites, and Internet forums in real time. 
This highlighted the potential of using multiple corpora for 
the same study.

In addition, advances in machine learning are important 
for the advancement of scientific practice in many areas. 
For example, in a study by Bae et al. (2021), ML was used 
to detect possible traces of schizophrenia in the posts on the 
Reddit forum aggregator. Chiong et al. (2021) used ML to 
track posts with depressive tendencies on social networks 
such as Facebook and Twitter.

One of the most recent and prominent techniques among 
culturomic methodologies is the natural language learning pro‑
cessing (NLP), which consists of machine learning that uses 
artificial intelligence to allow computers to read and interpret 
information from texts (Arbieu et al., 2021; Thessen et al., 
2012). This technique is increasingly being used to process, 
analyze, and monitor trends in large volumes of digital data, 
generating deep insights and reducing human work time. In 
a study by Arbieu et al. (2021), for example, this technique 
was applied to perform automatic analysis of emotions in the 
textual content of news publications about the reinsertion of 
wolves (Canis lupus) in the region of Saxony, eastern Ger‑
many. From the expansion of the corpora used (social net‑
works and online newspapers, among others), the use of these 
tools was optimized, as they allowed the exploration of these 
new sets of digital data, such as those arising from social net‑
works and search engines.

Thus, these studies can be divided into two dimensions. 
The first concerns the content present in the corpus, exam‑
ining changes in writing patterns, the frequency of specific 
terms, and the identification of motivations underlying their 
usage in a specific space–time context. This allowed for the 
detection of human cultural changes and trends through the 
quantitative analysis of words.

The second dimension seeks to understand people’s 
engagement with elements of digital corpora, such as 
searches for a particular term on the Internet, views in vid‑
eos and images, comments, likes, and shares. This dimen‑
sion has been widely used in conservation culturomics. For 
example, Ladle et al. (2016) found that data from social net‑
work posts and searches for certain terms, which are two‑
dimensional data, can help identify unexplored conservation 

Table 1  Books on tools, applications, and practices for using digital corpora 

Title Summary Author

Big data in practice: how 45 successful companies used big 
data analytics to deliver extraordinary results

The book addresses the importance of using Big Data in the 
contemporary world, bringing methods and information 
on how large corporations (Netflix, Airbnb, Facebook, 
Microsoft, among others) use this information in their 
practices

(Marr, 2016)

Mining the social web The book works as a practical guide on how to analyze 
social graphs, explore social network data, implement 
metadata, among other guidelines that can help the use of 
digital corpora

(Russell, 2014)

Data mining: practical machine learning tools and techniques In this book, the reader will have access to a thorough 
grounding in machine learning concepts and practical 
advice on applying machine learning tools and techniques 
in real‑world data mining situations

(Witten et al., 2011)

Analytics for big data This e‑book addresses in a practical way some of the main 
techniques and tools used in the analysis provided by the 
integrated use of analytics and big data

(Padilha et al., 2021)

Cultural evolution in the digital age This fantastic book explores the application of cultural 
evolution studies to digital media

(Acerbi, 2020)
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emblems and assess the cultural impact of conservation 
actions, such as the selection of an endemic animal as a 
mascot for a sporting event. The authors argue that through 
these data, it is possible to assess the quality of cultural eco‑
system services and monitor how these services reach people 
(CICES, 2023).

Table 1 shows some texts about tools that can help 
researchers use corpora. Corpora are rich reservoirs of 
human culture, which can help us understand various 
scientific questions.

Investigations on Human Behavior 
from Digital Corpora

Every day, people worldwide use the Internet to search, 
shop, and share part of their lives through social networks, 
making the Internet a significant component in various 

aspects of contemporary society (Mora‑Rivera & García‑
Mora, 2021). For example, if the content generated on the 
Internet is a reflection of everyday life (Correia et al., 2017), 
the data that comes from this content can help understand 
more complex phenomena. Although many studies that use 
culturomic methodologies do not have their themes focus 
on understanding human behavior, they provide clues about 
how using culturomics can be useful for several areas of 
knowledge that are dedicated to understanding it. In this 
section, we organize a synthesis of published works involv‑
ing large digital corpora, which can offer insights for this 
theme (Table 2).

Therefore, we argue that several fields of knowledge seek‑
ing to investigate human behavior can take advantage of the 
potential demonstrated by culturomics. For example, studies 
have shown that from a dataset built on the basis of world 
news, it would have been possible to predict various political 
events, such as revolutions, stabilities, and even decisions 

Table 2  Examples of research that used digital corpora to assess human behavior

Source of the corpora Goals References

Google Ngram Check the variation of cultural complexity over time;
identify trends in conscious and unconscious behavior

(Juola, 2013)
(Dönmez, 2020)

Google Trends Forecast oil consumption trends and values. Identify patterns in 
the search for words that reflect mental suffering (depression and 
suicide)

(Yu et al., 2019)
(Stańdo et al., 2023)

Facebook Identify personality variations and sociodemographic characterization 
from Facebook data

(Schwartz et al., 2013; Celli et al., 2014)

Analyze online news consumption and engagement on Facebook 
during the COVID‑19 pandemic

(Altay et al., 2022)

Instagram Understanding tourist preferences for nature‑based experiences in 
protected areas

(Hausmann et al., 2017)

Identify suspected, counterfeit, and unapproved health products 
related to COVID‑19

(Mackey et al., 2020)

Reports
(Newspapers and Digital News)

To analyze whether the size of marine fish perceived in popular 
media corresponds to the actual size

(Francis et al., 2019)

Predict revolutions and political conflicts (Leetaru, 2011)
Twitter Draw a disease occurrence map (Young et al., 2014)

Investigate the role toxicity plays in online discourse about face 
mask use

(Pascual‑ Ferrá et al., 2022)

Check whether digital media reflect users’ environmental awareness (Fernández‑Bellon & Kane, 2020)
YouTube Check if videos in digital media could be used as a learning tool (Rahman et al., 2021)

Observe the occurrence of sport hunting in Brazil, its impacts, which 
game species are being affected, and their occurrence biomes

(El Bizri et al., 2015)

Flickr Sort preferred travel destinations within a region (Önder, 2017)
Assess the vulnerability of places frequented by tourists (Hale, 2018)

Relationship websites Analyze preferences in partner choices on online search engines (Bergström, 2018)
(van Berlo & Ranzini, 2018)
(Ting & McLachlan, 2022)

Wikipedia Predict movie success based on digital media searches (Mestyán et al., 2013)
Observe the occurrence and intensity of diseases based on searching 

databases
(Sciascia & Radin, 2017)

Check if natural history films are more interesting than conservation 
messages

(Nolan et al., 2022)
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by state leaders (Leetaru, 2011). Moreover, evidence shows 
that such datasets can be an important foundation for under‑
standing human preferences, based on cultural salience (the 
frequency of a given population characteristic), as a metric 
of visibility or interest (Correia et al., 2016), for example, 
assessing whether the body size and charisma of groups of 
species (amphibians, birds, mammals, and reptiles) influ‑
ences their conservation (Berti et al., 2020).

Inferences regarding human mobility have also been made. 
Gonzalez et al. (2008), for example, analyzed data referring 
to the trajectory of 100,000 (anonymous) cell phone users, 
and observed that human trajectories have great temporal and 
spatial regularity. Studies such as this one help, for exam‑
ple, in urban planning and creation of strategies to address 
the spread of diseases. In this sense, the pattern of human 
mobility can be highly predictable, that is, people tend to 
frequently go to the same places and follow the same routes 
(Song et al., 2010). These results emphasize that the use of 
predictive models to understand urban mobility phenomena 
is not only possible, but also accurate (Song et al., 2010).

Efforts have also been made to understand how human 
behavior affects the dynamics of epidemics, mainly 
because human mobility is a crucial factor in the spread of 
diseases. Data from 29 countries worldwide were used for 
computational modeling of infectious diseases, opening the 
way for the development of necessary and accurate models 
for describing and, consequently, coping with epidemics 
(Balcan et al., 2009). Another aspect is that online behavior 
may present a tendency that is analogous to herd behavior 
becoming more collective, for example, in scenarios of risk 
to public health (Bentley et al., 2014). This makes online 
data an important tool for understanding human attitudes 
and actions during disease outbreaks.

Additionally, data from dating sites can be used as tools 
to investigate certain aspects of choosing romantic partners, 
as most relationships that start online do not differ much 
from those formed in other contexts (Bergström, 2018). For 
example, men have more initiative in initiating contact than 
women, and preferences regarding the age of partners can 
vary between genders in different age groups (Bergström, 
2018). Furthermore, dating sites can be valuable sources of 
data on how people behave in situations of infectious disease 
outbreaks, where social isolation is recommended.

Recent studies have shown a change in sexual behavior 
during outbreaks of infectious diseases such as COVID‑19, 
in which Chinese men and women aged between 18 and 
45 years showed a decrease in the number of romantic part‑
ners and sexual frequency during the pandemic (Li et al., 
2020). Conversely, virtual contact with potential sexual part‑
ners can be increased in frequency during this period (Seitz 
et al., 2020). Additionally, during the COVID‑19 pandemic, 
data from dating apps gained more than 1.5 million daily 
users (Ting & McLachlan, 2022). Data from these apps also 

helped to outline the main profile of users, showing that being 
young, being single, and having higher levels of stress were 
predictors of greater app use (Ting & McLachlan, 2022).

Several studies have focused on understanding the charac‑
teristics that define individuals or groups within a sociocultural 
context based on spheres of human behavior linked to gender 
(Seewann et al., 2022), age (Agbo‑Ajala et al., 2022), and per‑
sonality traits (Azucar et al., 2018). For example, Schwartz 
et al. (2013) used big data tools to recover messages posted 
on Facebook and verified whether the language used in the 
posts reflected the personality, gender, and age of interlocu‑
tors. Women tend to be more affectionate, and men were more 
objective and possessive; language changes with advancing 
age, such as changing from a more singular “I” communica‑
tion to plural “we” questions, and the propensity to use certain 
words is modified depending on the personality of the analyzed 
groups. For example, people with more outgoing personalities 
mentioned words related to greater sociability, such as “party,” 
“love you,” and “boys,” while more introverted people men‑
tioned words related to more solitary activities, such as “com‑
puter,” “reading,” and “Internet” (Schwartz et al., 2013).

Political positioning has also been investigated. For 
example, Twitter data were used to show that the flow of 
political information on this network is controlled by a lim‑
ited number of influencers (Casero‑Ripollés, 2021). Face‑
book data were also analyzed to see how different political 
candidates communicated with civil society (Caton et al., 
2015). These aspects are important to analyze as one of the 
ways of aggregating people and/or groups today is through 
their affinity with different political parties.

Since these parties are formed by individuals to represent 
their beliefs and values in a political scenario, we can infer 
that they reflect the personality characteristics, thoughts, and 
ideologies of their members (Jost et al., 2014; Cohen, 2003). 
For example, partisan inclination influences the adoption of 
sanitary measures during public health crises (Gollwitzer 
et al., 2020). Although sex differences should be considered 
in these studies, as in the fight against COVID‑19, evidence 
suggests that female leaders seek to minimize the impact of the 
virus, whereas male leaders implement risky short‑term deci‑
sions to avoid harm to the economy (Luoto & Varella, 2021).

Several studies have investigated the relationship between 
digital media and human personality traits (Schwartz et al., 
2013), as evidenced by Azucar et al. (2018). These authors 
showed that the way users interact on social media, such 
as profile privacy, language, age, gender, comments, and 
likes, can reflect many personality traits such as the posi‑
tive link between extroversion and engagement on social 
media (Blackwell et al., 2017). Other studies also sought to 
understand through tweets that feelings are more prominent 
in environmental contexts hitherto unknown to the user, such 
as the COVID‑19 pandemic, showing that fear was the most 
prominent feeling (Xue et al., 2020).
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Another target of investigation was human morality, which 
is based on the salience of words related to moral (e.g., vir‑
tue, decency, and conscience) and virtuous (e.g., honesty, 
patience, and compassion) behaviors in digital corpora. 
With data from Google Ngram Viewer, Kesebir and Kesebir 
(2012) noticed a significant decline of these words in Ameri‑
can books during the twentieth century, which for the authors 
would be linked to the disappearance of these concepts in 
public debate throughout the construction of modern history. 

The way in which human beings relate to aspects of conta‑
gion and immunization against diseases can also be accessed 
and investigated through culturomics. For example, Young 
et al. (2014) used georeferencing of tweets related to HIV and 
the incidence maps of AIDS cases (https:// aidsvu. org/), reveal‑
ing a spatial correlation between publications and reported 
cases. Interactions in this sense (occurrence of tweets and 
occurrence of disease by the United States Centers for Dis‑
ease Control and Prevention—CDC) have also been observed 
for other infectious diseases, such as influenza (Broniatowski 
et al., 2013) and flu (Hassan Zadeh et al., 2019).

Besides monitoring where the public interest is concen‑
trated, efforts have been made to assess whether it is possible 
to change social attitudes toward environmental crises. From 
an association of data from Twitter and Wikipedia, to ana‑
lyze engagement and searches on environmental crises, it was 
observed that people’s involvement was greater after watch‑
ing natural history films (Fernández‑Bellon & Kane, 2020). 
Thus, certain digital resources can play an important role 
in creating connections with the natural world (Fernández‑
Bellon & Kane, 2020). Data from Google Trends were used 
to compare awareness of climate change in certain countries 
and the actual risk of impacts, which is necessary to identify 
countries where improving or adapting policies to face cli‑
mate change are needed (Archibald & Butt, 2018).

The conservation culturomics approach, which is in increas‑
ing prominence and is discussed throughout this text, offers 
important perspectives for nature conservation, although it was 
not conceived as a specific discipline to study human behav‑
iors. This approach recognizes the role of the public interest 
as an ally for nature conservation actions, as mentioned in pre‑
vious studies (Ladle et al., 2016; Nghiem et al., 2016; Ladle 
et al., 2019). However, it is important to emphasize that the 
behavioral factors that drive the adoption of pro‑conservation 
behaviors have not yet been adequately investigated.

Limitations of the Culturomic Approach

Although the use of digital corpora is a possibility for human 
behavior research, data collection, analysis, and interpretation 
of results need to be done with caution due to several sources 
of bias (Griffin et al., 2020; Tufekci, 2014). For example, 
information may be salient in digital media, even without a 
greater demand from the community. This can occur for two 

reasons: (1) artificial, when using programs and/or transmis‑
sion lists, such as bots (Liu, 2019) and spam (Wang et al., 
2012), and (2) natural, when a human manually inflates cer‑
tain information, such as crowdturfing (Wang et al., 2012) 
and fake accounts (Shen et al., 2014). All of these options end 
up overvaluing information that is not of interest to a group or 
society, which can create social problems in the offline world 
(Bovet & Makse, 2019; Cantarella et al., 2023).

Furthermore, the motivation for choosing the corpus is 
often neglected during the investigation, as some research 
has shown that socioeconomic factors are highly discrepant 
between different social networks. For example, most users of 
networks such as Snapchat, Instagram, and TikTok are young 
people aged between 18 and 29 years (Pew Research Center, 
2022) and have higher levels of education (Hargittai, 2018). 
That is, when using these networks as digital corpora of stud‑
ies, caution is needed, especially when making large generali‑
zations. For example, Mislove et al. (2021), when comparing a 
sample of US and Twitter audiences based on socioeconomic 
factors (geographical, race, and gender), the study observed 
that Twitter audiences did not represent the region’s popula‑
tion. In addition to socioeconomic issues, it is important to 
consider the affinity of each platform with a certain type of 
content, because although many platforms allow the posting 
of text and photos, the public tends to prefer a specific type of 
media as a model (Di Minin et al., 2013, 2015).

Additionally, some researchers have noted that the use 
of big data must be associated with other methodologies, 
such as data incorporation or analysis. Corpus association 
can better predict some outcomes, data validation (e.g., 
interviews) (Azucar et al., 2018), and the presence of out‑
liers within the sample (Griffin et al., 2020). Another way 
pointed out is the observation of the structure of the col‑
lected data, which sometimes does not allow for conven‑
tional analyses (for more details, see Dodds et al., 2011; 
Xue et al., 2020). For example, Koplenig (2017) pointed 
out statistical errors in the results in several articles that 
disregard the temporal characteristics of the data when 
testing their hypotheses. That is, observations that are 
close in time tend to be more similar than distant obser‑
vations. Although it seems that these biases can make 
research with culturomics unfeasible, observing the biases 
already indicated can greatly minimize the risks of mis‑
interpretation (Ruths & Pfeffer, 2014).

Conclusion

In short, the Internet has become a fundamental ele‑
ment of contemporary society, allowing the creation of 
large datasets that can be used to study and understand 
human behavior on a large scale. This information enables 

https://aidsvu.org/
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scientific investigations that reach audiences who are nor‑
mally difficult to reach and provides research opportuni‑
ties in several areas. The culturomic approach to human 
behavior seeks to understand, explain, and predict human 
behavior using these digital corpora. With the constant 
increase in the volume of data, powerful tools, such as 
web scraping, are needed to collect and process this infor‑
mation. Therefore, the use of digital corpora is a rapidly 
developing area of research offering opportunities for new 
insights in several fields.

CHB is an innovative approach aimed at analyzing large 
cultural datasets, particularly social media data, to under‑
stand human behavior on a global scale. This approach is 
broader and more quantitative, emphasizing large‑scale data 
analysis. While cross‑cultural psychology explores the mind 
and behavior of individuals across different cultures, the data 
collected is primarily individual through interviews (Broesch 
et al., 2020).

It is important to note that CHB is more akin to historical psy‑
chology than to cross‑cultural psychology, as historical psychol‑
ogy also conducts large‑scale textual analyses (Muthukrishna 
et al., 2021). However, we argue that CHB should be considered 
a distinct field that dialogues with other areas mentioned earlier, 
given the specific nature of the analyses and theories involved in 
data collection and analysis.

Therefore, we can conclude that CHB is a promising 
approach for understanding human behavior on a global 
scale. While it may share some similarities with other disci‑
plines, it is a field with its own characteristics and method‑
ologies that deserve to be studied independently.
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