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Abstract
This study assessed the accuracy of a low-cost marker-based motion capture system with smartphone devices to estimate the 
spatiotemporal behavior of human gait in comparison with the performance of the commercial OptiTrack system. Initially, 
three test subjects were selected for the study, and after equipping them with passive retroreflective markers, they were 
recorded for gait velocities of 1.50, 1.90, and 2.30 m ∙ s

−1 while collecting kinematic data and videos. The results showed that 
the smartphone motion capture system exhibited significant spatiotemporal tracking and accuracy in the x-y trajectories and 
estimation of joint relative angles of the hip, knee, and ankle joints (θ1, θ2, and θ3, respectively) compared to the commercial 
OptiTrack system. In this comparison, an average goodness-of-FIT and normalized root mean square error of over 88.93% and 
2.71% were obtained, respectively, for the joint relative angles of the hip and knee (θ1 and θ2) in all tests performed. How-
ever, the accuracy of the joint relative angle of the ankle (θ3, average FIT: 71.04% and nRMSE: 4.26%) was lower because 
of the low capture rate of the retroreflective markers in the smartphone system and the higher relative velocity in the lower 
extremities of the test subjects, which generated noise in the calculation of x-y trajectories. This decrease in accuracy has 
been reported in other studies. However, both motion capture systems experienced marker data loss at the hip, highlighting 
the need for improvement in the spatial distribution of the optical devices. The OptiTrack system demonstrated better opti-
cal redundancy but still required improvements. In contrast, the smartphone system, with its inherent limitations in terms of 
optical redundancy and spatial distribution, can be enhanced by incorporating multiple cameras for a three-dimensional view. 
Despite these limitations, the low-cost smartphone system showed optimal performance with minimal errors compared with 
the commercial system, making it a cost-effective option with potential for further development. The rapid advancement of 
smartphone technology and its accessibility make it an attractive choice for motion capture applications.
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Introduction

In recent years, the use of optical motion capture systems 
(MOCAPs) has focused on digital animation of human activ-
ity of characters for the film and video game industry. There-
fore, this technology has made rapid inroads in the field of 

human motion analysis and measurement because it provides 
accurate and reliable spatiotemporal measurements, versatile 
testing schemes, high spatial measurement resolution, and 
relative ease of implementation [1–4]. MOCAPs employ a 
single camera (measurement 2-D) or more cameras (meas-
urement 3-D) and sophisticated computer algorithms, which 
allow for a detailed assessment of anthropic activities [5–9]. 
In the case of human gait, compared to traditional methods 
such as wearable sensors or force plates, optical systems 
offer non-invasive tracking, allowing for a more natural and 
unconstrained physical motion analysis [10–12]. This non-
intrusive approach is particularly beneficial in the analysis of 
the dynamic interaction of human gait with civil structures 
[13–18], where it is important to capture and analyze motion 
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patterns in a manner that does not disrupt the natural gait of 
the test subject (TSs) while transiting structures.

The accuracy of MOCAP systems is outstanding because 
of advanced algorithms and calibration techniques, which 
achieve millimeter accuracy in tracking the position and ori-
entation of body segments, enabling a detailed understand-
ing of the kinematics and kinetics of human gait. This level 
of accuracy is important for acquiring subtle movements 
and biomechanical parameters during gait analysis. Accu-
rate measurements are essential for detecting abnormalities, 
assessing rehabilitation progress, and designing customized 
interventions. By providing highly reliable data, MOCAP 
systems offer researchers and clinicians valuable tools for 
studying and evaluating human gait dynamics. Numerous 
MOCAPs technologies have been developed and are widely 
used today [19–22]. Marker-based systems, often consid-
ered the gold-standard method to quantify human activities, 
involve the attachment of retroreflective markers to specific 
body landmarks, allowing the precise tracking of their posi-
tions. These markers reflect the light emitted by the envi-
ronment, thereby enabling accurate position and orientation 
calculations [23–25]. On the other hand, Markerless systems 
use computer algorithms to identify and track anatomical 
features without the need for markers. These markerless 
approaches leverage pattern recognition and machine-learn-
ing techniques to analyze captured video data and estimate 
joint positions and movements [9, 19, 21, 26]. Examples 
of popular marker-based systems used for the assessment 
of human gait include Vicon [15, 27–29], CODA [15, 18, 
30, 31], and OptiTrack [32–39], whereas markerless systems 
such as Kinect [24, 40–43] and OpenPose [19, 44–49] have 
gained prominence in recent years.

The market prices of MOCAP systems are often very 
expensive [27]. These systems are frequently tailored for 
specific applications and offer advanced features and capa-
bilities. However, the high costs associated with these sys-
tems make them inaccessible in many research and clini-
cal settings, thereby limiting their widespread adoption 
and implementation. To address this problem, there is an 
increasing need to develop low-cost optical technologies 
that can provide accurate motion capture capabilities, while 
remaining affordable. By developing cost-effective and reli-
able solutions, researchers and clinicians can access motion 
analysis tools and promote their integration into various 
human gait analysis fields [11, 12, 19, 41, 42]. Smartphones 
are potential devices for integrating the MOCAP systems. 
Smartphones are equipped with high-resolution cameras, 
substantial computational power, and portability, making 
them attractive platforms for implementing motion capture 
technologies [50–53]. In addition, the general accessibility 
of smartphones to society allows researchers to develop low-
cost solutions that utilize built-in cameras and combine them 
with computer vision algorithms to capture and analyze the 

human gait. The versatility of smartphones allows for real-
time data processing [54–56], immediate feedback [51, 57, 
58], and seamless integration with other applications for data 
visualization and analysis [52, 53, 57, 59].

Although continuous advancements in smartphone tech-
nology have enhanced their potential as MOCAPs devices, 
the evaluation of the accuracy, performance, and cost-
effectiveness of motion capture using this type of low-cost 
device in comparison with gold-standard methods, such 
as marker-based systems, for assessing human gait is still 
in its early stages. This study compared the x-y trajectory 
in sagittal plane gait measured using two marker-based 
MOCAP systems: a custom low-cost MOCAP system using 
a smartphone device and a commercial MOCAP system 
known as OptiTrack. In order to evaluate human gait using 
a low-cost MOCAP system, cameras of Huawei Ascend G7 
smartphones as devices within a Marker-based system were 
integrated to evaluated three TSs (65.00 ± 8.00 kg, and 1.65 
± 0.10 m) in the sagittal plane, subjected to three walking 
speeds (1.50, 1.90, and 2.30 m ∙ s−1 ) on a treadmill. The 
obtained results were compared with those of tests using 
the OptiTrack system. The remainder of this paper is organ-
ized as follows. Section "ExperimentaL Methods" provides 
details of the experimental methods. In Section "Results", 
the results obtained for both the MOCAP systems are pre-
sented and evaluated. Finally, section "Discussion" presents 
a discussion of the results.

Experimental Methods

Investigation General Design

This investigation assessed the spatiotemporal behavior 
of human gait through two MOCAP systems: a Marker-
based OptiTrack system and Low-cost Smartphone sys-
tems. Three TSs were selected for these gait tests and their 
general anthropometric information was recorded. Initially, 
TSs were equipped with passive-retro-reflective mark-
ers. The TSs then walked on the treadmill for at least 2.0 
minutes to allow them to adapt to the testing environment. 
Subsequently, the TSs performed gait tests for 3.0 minutes, 
whereas body kinematics and smartphone videos were col-
lected for both MOCAP systems. The data collected during 
the human gait tests were used in this investigation to com-
pare the tracking performance of the OptiTrack system and 
marker-based motion capture with a smartphone camera for 
assessing gait kinematics.

Test Subjects (TSs)

Three TSs (2 female, 1 male, 24.6 ± 5.5 years, 172.3 ± 11.2 
cm, and 71.6 ± 9.6 kg) were volunteers in this investigation. 
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Basic anthropometric information on the TSs was obtained 
by physical measurements using a tape measure to provide 
relevant reference data for similar investigations. The anthro-
pometric measurements of the TSs are shown in Table 1 
according to the scheme shown in Fig. 1. All TSs were free 
of injuries for at least one month, had a body mass index 
(BMI) of less than 25.5 (Normal weight level), and were in 
the 20–30-year age range.

Assembly, Acquisition, and Calibration Setup

Assembly setup

The experimental setup, as shown in Fig. 2, was developed 
in the Laboratory of Seismic engineering and Structural 
at Universidad del Valle, Cali, Colombia, and consists of 
a SOLE F65 treadmill (belt length and width 1.40 × 0.55 
m, 60 Hz belt speed update frequency, and 0.5–10 m ∙ s−1 
speed range) on which the human gait of the three TSs in 
this study was performed. A rigid fame, set up at a horizon-
tal distance of 2.25 m parallel to the sagittal plane of the 
treadmill, was used as a support for the six interconnected 
3-D motion capture system with their acquisition integrated 
circuit (OptiTrack system) and a Huawei Ascend G7 smart-
phone system with a 13-megapixel main camera. Both video 
and motion capture data were recorded using both MOCAP 

systems. Each optical system transferred the information to 
laptops, which processed the data captured during human 
gait tests. A flash of light and an audible beep were used at 
the beginning and end of each human gait test, respectively, 
to synchronize the data from both systems.

Pinhole camera model calibration

The pinhole camera model is based on the model pro-
posed by J. Bouguet [60], as presented in equation (1), 
where Depthu corresponds to approximated depth value to 
the sagittal plane, (xu, yu) are undistorted depth pixel coor-
dinates, and (f x, f y,cx, cy) are intrinsic parameters of the 
camera. This model requires camera calibration to calcu-
late the intrinsic and extrinsic parameters of a smartphone 
camera. The extrinsic parameters represent the location 
of the camera in the 3-D scene and the intrinsic param-
eters represent the optical center and focal length of the 
camera. The world points are transformed into camera 
coordinates using extrinsic parameters, and the camera 

Table 1  Anthropometric information

Test subject

No. 1 No. 2 No. 3

Length (cm) L1 27.2 30.0 27.0
L2 47.5 47.5 43.0
L3 22.3 20.0 23.0
L4 18.7 11.5 10.5
L5 31.4 29.3 31.0
L6 26.7 25.2 27.0
L7 17.7 22.5 17.0
L8 47.5 49.0 51.0
L9 46.7 37.2 44.0
L10 9.8 7.9 10.0
L11 17.5 14.2 17.0
L12 19.4 19.0 20.0

Diameter (cm) Head 57.0 54.0 55.0
Shoulder 37.0 40.0 45.0
Elbow 25.0 27.0 25.0
Wrist 17.0 18.0 17.0
Hip 90.0 97.0 87.0
Knee 38.9 38.0 35.0
Ankle 25.0 25.0 23.0
Heel 32.0 30.0 32.0
Metatarsus 24.0 22.0 22.0

Fig. 1  Schematic anthropomet-
ric information
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coordinates are mapped onto the image plane using intrin-
sics parameters. A special calibration pattern-type check-
erboard of 9 squares on the x-axis and 13 squares on the 
y-axis, with a square size of 7.0 cm each, was used as the 
reference object for calibration. In this study, 66 images 
of the checkerboard at different positions with random-
ness and the highest resolution were selected, close to 
the sagittal plane of the gait zone, to estimate the pinhole 
camera model parameters of the camera smartphone with 
a mean reprojection error per image of less than 0.25 
pixels.

The intrinsic and extrinsic pinhole camera model 
parameters of the camera smartphone were calculated 
using the MATLAB function estimateCameraParameters, 
which uses images of the checkerboard at different posi-
tions. The intrinsic parameters are presented in Table 2.

(1)X =

(
xu − cx

)
∙

Depth(xu, yu)u

fx

Y =

(
yu − cy

)
∙

Depth
(
xu, yu

)
u

fy

Data Collection Procedures

Initially, the MOCAP systems were calibrated using the pro-
cedure outlined in Section "ExperimentaL Methods"c for 
low-cost smartphone and the procedure recommended by 
the manufacturer for OptiTrack. Nine passive retroreflec-
tive adhesive markers, with a diameter of 12.0 mm were 
attached to specific joints of the human body, as shown in 
Fig. 3. Prior to each gait test, the TSs were adapted to the 
gait velocity by walking on the treadmill for two-minutes. 
Tests were conducted at three velocities: 1.50, 1.90, and 2.30 
m ∙ s−1 , which were chosen as they are representative of the 
slow, normal, and fast velocities of human gait [61]. Marker-
based MOCAP system data were simultaneously collected 
during all human gait tests and used for assessment in this 
investigation. In addition, the mean sample rate of the smart-
phone camera was determined in 29.85 ± 0.89 fps. Similarly, 
an average capture rate of 100.0 fps was reported for the 
OptiTrack system.

Marker‑based OptiTrack and Low‑Cost Smartphone 
System Data Processing

Gait kinematics were acquired using a middle-body sagit-
tal model (human middle body, compound of seven rigid 
body segments generated by nine passive retroreflective 
markers), and the output was processed using custom algo-
rithms in MATLAB to extract the joint coordinates. The 
anatomical joints were then labelled as the head, shoulder, 
elbow, wrist, hip, knee, ankle, heel, and metatarsus, as 
shown in Fig. 3. Although the OptiTrack system tracks 

Fig. 2  Scheme setup: experimental assembly (left), and Schematic assembly (right)

Table 2  Smartphone Imaging Sensor Calibration Parameters

cx(pxl) cy(pxl) fx(mm) fy(mm)

Smartphone RGB sensor 968.21 563.95 1580.96 1583.26
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and computes gait kinematics using its own hardware and 
software, the low-cost MOCAP system tracks each of the 
nine passive retroreflective markers in each video frame. 
The spatial position of each marker in the gait-plane was 
determined using the calibration parameters and the cus-
tom algorithms developed in MATLAB. The x-y positions 
of the nine reflective markers of the TSs were acquired 
and processed for all the test times. On the other hand, 
when a measurement contained incorrect data or empty 
data owing to non-redundancy capture or occluded marker 
(Figure , right), the gaps were filled with a combination of 
splines and estimated from previous data. The biomechani-
cal results of marker-based motion capture were compared 
based on their potential relevance for acquiring kinematic 
data for human gait [6, 7, 13, 24, 25, 48]. Only the right 
side of the body was used for assessment as it was closest 
to the sagittal view in the MOCAP system. In addition, 
the length of the gait period acquired from the tests will 
be able to support the statistical analysis of performance 
between both MOCAP systems in subsequent studies, 
positioning these records as reference data.

Motion Capture Systems Performance Evaluation

The tracking accuracy of the low-cost smartphone system 
in comparison with the tracking realized by the gold stand-
ard system (OptiTrack) was performed using the coeffi-
cients of Normalized Root Mean Square Error (nRMSE) 
and goodness-of-FIT (FIT), as described in equations (2) 
and (3), for the assessed joint angles, which were gener-
ated by a passive retroreflective marker across all temporal 
assessments and all TSs. Both acquired data systems were 
resampled at a rate of 100.0 Hz for their comparison.

 Where yOptiTrack and ŷSmartphone are the measurement signals 
(x-y trajectory) with the OptiTrack and low-cost smartphone 
systems, x is the normalization factor, which is equal to the 
difference between the maximum and minimum values in 
the required range of the reference signal and n is the data 
number.

Results

The x-y positions of the head, shoulder, elbow, wrist, hip, 
knee, ankle, heel, and metatarsus were acquired, according 
to the arrangement of the retroreflective markers in Fig. 4. 
The low-cost smartphone system performed an acceptable 
spatiotemporal tracking compared to that of the commercial 
OptiTrack system, as shown in Figure. In this figure, three 
representative gait cycles at a velocity of 1.90 m ∙ s−1 are 
shown for illustrative purposes and all other gait cycle data 
is included in the shaded bands. Likewise, hip, knee, and 
ankle relative angle in the sagittal plane were calculated with 
low-cost smartphone system data show joint extensions with 
minimal differences from those calculated with the Opti-
Track system data for the gait velocities of 1.50, 1.90 and 
2.30 m ∙ s−1 , are shown in Fig. 5. The relative angles were 
selected in this comparative study because of their major 
contribution to the mechanical energy expenditure during 

(2)nRMSE =

100

x

√√√√1

n

n∑

j=1

(
yOptiTrack − ŷSmartphone

)2

(3)
FIT =

�
1 − ‖yOptiTrack − ŷSmartphone‖∕‖yOptiTrack − promedio(yOptiTrack)‖

�
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Fig. 3  Example images from one test subject in the test set showing the identified landmarks with OptiTrack and low-cost smartphone systems
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gait tests, relevant to human gait models [62]. In these fig-
ures, the blue area is the size of the retroreflective marker 
calculated by the low-cost smartphone system, which for the 
x-y positions cover the trajectory determined by the Opti-
Track system, evidencing the high accuracy in the tracking 
of this low-cost marker-based system.

The nRMSE and FIT for the assessed joint relative angles, 
across all temporal assessments and all TSs for the low-cost 
smartphone system and OptiTrack system are reported in 
Table 3 at 1.50, 1.90 and 2.30 m ∙ s−1.

Discussion

The relative hip ( �1 ) and knee ( �2 ) angles, calculated 
from OptiTrack and low-cost smartphone system data, 
demonstrate a high level of accuracy in estimating 
human gait kinematics across all tested velocities. The 
goodness-of-fit averages above 88.93%, with an nRMSE 
average below 2.71%. This accuracy surpasses rates 
reported in previous studies for gait velocities between 
2.5-3.4 m ∙ s−1 [63–66], as illustrated in Fig. 6. According 
to the resources to post-process data collected using the 
MOCAP systems described in Section "ExperimentaL 
Methods"e and the results in Section "Results", the 

low-cost smartphone system was more cost-effective than 
OptiTrack because of the simple calibration requirement 
and open-access algorithms. However, in the case of angle 
ankle (θ3), a lower performance was obtained, with an 
average goodness-of-FIT of 72.07% and nRMSE of 2.86%. 
This decrease in accuracy was due to the speed of angular 
movement of the ankle and the low capture rate of the 
low-cost smartphone system (≈30.0 fps) compared to the 
OptiTrack system (≈100 fps). These factors produced 
a deformation of the marker in the acquired frame-
propagating error in the calculation of the marker centroid, 
as shown in Figure (right). This causes a decrease in the 
estimation of the ankle angle (θ3) and an increase in 
the noise of the calculated data; this situation has been 
previously reported in other studies [67]. In addition, 
the maximum peaks of the relative angles evaluated by 
both MOCAP systems were determined for all the TSs 
and velocities in this study, as shown in Table 4. These 
analyses demonstrated differences between the maximum 
relative angles calculated by both systems of less than 
3.40% for speeds of 1.50-1.90 m ∙ s−1 and differences 
of less than 12.20% for speeds of 2.50 m ∙ s−1 , which 
demonstrating the robustness and accuracy of the low-cost 
smartphone system for calculating kinematics for typical 
gait speeds.

Fig. 4  Measured x-y trajectory of Subject No.1 at a gait velocity of 1.90 m ∙ s
−1 with OptiTrack and low-cost smartphone systems. The blue area 

is the size of the retroreflective marker calculated by the low-cost smartphone system
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Despite the optical redundancy demonstrated by the 
OptiTrack system (3D view) in the experimental setup 
(Fig. 2), there is a clear need for improvement in the spa-
tial distribution of the optical devices around the TS to 
prevent the loss of kinematic data, even when only data 
in the sagittal plane of the gait are desired. In contrast, 
low-cost smartphone system uses a single optical device 
(2D view) and exhibits the inherent limitations of optical 
redundancy and spatial distribution, which can be over-
come by combining the vision from multiple cameras 
to approach a three-dimensional view, as demonstrated 
in other studies [45, 53, 67–69]. However, based on the 
obtained results, the MOCAP system with smartphones 
achieves optimal performance with minimal errors com-
pared with the commercial OptiTrack system, positioning 
it as a low-cost motion capture system with the potential 
for further development because of the rapid advancement 

of technical specifications in smartphones and their 
accessibility to the general population.

Limitations and Future Work

Overall, the results and discussion show that the low-cost 
smartphone system used as MOCAP systems exhibit a 
difference less than 3.40% in the maximum peak relative 
angles of the joints in the sagittal plane during treadmill gait 
compared to the commercial OptiTrack system for velocities 
less or equal than 1.90 m ∙ s−1 . However, the low capture rate 
of the smartphone device, combined with the lack of inherent 
redundancy, resulted in markers that moved at a higher 
relative speed during the gait cycles, experienced deformation 
during optical capture, generated noise in the estimation of the 
x-y trajectories, as shown in Figure (right), and consequently 
in the calculation of the relative angle of the ankle (θ3). 

Fig. 5  Relative angle calculated hip (θ1, left column), knee (θ2, middle column), and ankle (θ3, right column) with OptiTrack (red) and low-cost 
smartphone (blue) systems at gait velocities of 1.50 (top), 1.90 (middle), and 2.30 m ∙ s

−1 (bottom). The blue area is the size of the retroreflective 
marker calculated by the low-cost smartphone system
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To overcome these limitations, smartphones with higher 
capture rates and a greater number of strategically placed 
devices can be used to provide optical redundancy, thereby 
enabling more precise and reliable estimations. Additionally, 
this low-cost smartphone-based motion capture system is 
expected to be accurate and cost-effective, which can easily 
be achieved owing to the increasing technical specifications 
of this technology and its easy accessibility. The findings 

of this study establish a smartphone-based motion capture 
system as a precise, reliable, and cost-effective technology 
for the study and assessment of human gait. In addition, 
although these marker-based systems utilize paid software 
(e.g., MATLAB) for some of the data processing, further 
steps are necessary to implement these processing steps in 
free software (e.g., Python) without the need for coding to 
facilitate usage by practitioners. In this regard, the integration 

Table 3  Goodness of FIT and 
nRMSE for relative angles of 
the test subjects at 1.50, 1.90, 
and 2.30 m ∙ s

−1

Relative angles

Hip [θ1] Knee [θ2] Ankle [θ3]

Gait velocities 1.50m ∙ s−1 Test Subject No.1 FIT (%) 87.20 89.61 65.00
nRMSE (%) 4.28 2.74 7.21

Test Subject No.2 FIT (%) 93.94 91.62 69.39
nRMSE (%) 0.48 1.34 1.53

Test Subject No.3 FIT (%) 93.12 93.44 90.30
nRMSE (%) 0.02 0.02 0.03

1.90m ∙ s−1 Test Subject No.1 FIT (%) 89.58 91.37 72.61
nRMSE (%) 2.97 2.63 5.66

Test Subject No.2 FIT (%) 92.62 88.05 74.02
nRMSE (%) 0.55 2.12 1.50

Test Subject No.3 FIT (%) 88.46 87.84 81.65
nRMSE (%) 0.03 0.04 0.04

2.30m ∙ s−1 Test Subject No.1 FIT (%) 82.64 88.65 71.90
nRMSE (%) 4.74 3.49 5.87

Test Subject No.2 FIT (%) 85.44 86.43 73.30
nRMSE (%) 1.63 5.58 3.77

Test Subject No.3 FIT (%) 91.63 85.85 50.49
nRMSE (%) 0.03 0.05 0.11

Fig. 6  Goodness of FIT calculated for Relative angle acquired with OptiTrack and low-cost smartphone systems at gait velocities of 1.50, 1.90, 
and 2.30 m ∙ s

−1 for  TS1 (left),  TS2 (middle), and  TS3 (right)
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of real-time analysis is expected to provide an important tool 
for professionals and researchers, which can be achieved using 
recent tools focused on real-time pose estimation [58].
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