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Abstract
In this paper we present a dynamic discrete-time model that allows to investigate the
impact of risk-aversion in an oligopoly characterized by a homogeneous non-storable
good, sticky prices and uncertainty. The continuous-time limit of our formulation nests
the classical dynamic oligopoly model with sticky prices by Fershtman and Kamien
(Econometrica 55:1151–1164, 1987) and extends it by accommodating uncertainty
and risk-aversion. We show that in the continuous-time limit of our infinite horizon
formulation the optimal production strategy and the consequent equilibrium price
are, respectively, directly and inversely related to the degrees of uncertainty and risk-
aversion. However, the effect of uncertainty and risk-aversion crucially depends on
price stickiness since, when prices can adjust instantaneously, the steady state equi-
librium in our model with uncertainty and risk-aversion collapses to Fershtman and
Kamien’s analogue.

Keywords Differential oligopoly games · Uncertainty and Risk-aversion · Sticky
prices

JEL Classifications C73 · D43 · L13
1 Introduction

How do price stickiness, uncertainty and risk aversion affect the equilibrium outcome
of an oligopoly where firms compete over the demand of a homogeneous, non-storable
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good?We address such a question by extending Fershtman and Kamiem’s differential
game for an oligopolisticmarketwith sticky prices and a non-storable good (Fershtman
and Kamien 1987) to a formulation with uncertainty and risk-aversion. We derive the
optimal (sub-game perfect) production strategy, and the corresponding equilibrium
price, and compare it to theNash equilibria obtained by Fershtman andKamien (1987).
The main contribution of this extension is twofold. Firstly, we shed further light on the
quite controversial issue—which has never been investigated in a dynamic oligopoly
with sticky prices—of how uncertainty and risk-aversion affect market competition.
Secondly, we show that the impact of uncertainty and risk-aversion crucially depends
on price stickiness, as the stationary equilibrium collapses to Fershtman and Kamien’s
analogue when prices can adjust instantaneously.

We contribute to the literature extending the model developed by Fershtman and
Kamien (1987). Dockner (1988) generalizes Fershtman and Kamien (1987) to the
case of more than two firms showing that the dynamic oligopoly price converges
to the long run (zero profit) competitive price when the number of firms goes to
infinity, independent of the assumption of open-loop or feedback strategies. Tsutsui
and Mino (1990) introduce the possibility of price ceilings to consider the case of
nonlinear feedback strategies finding that, when the price ceiling is not too high,
feedback equilibrium prices can be higher than the equilibrium price that arises under
the linear feedback strategy assumed by Fershtman and Kamien (1987). Piga (2000)
shows that when firms can invest in advertising the nonlinear feedback equilibrium
price may be greater than the open-loop equilibrium price, while the latter is above the
linear feedback equilibriumprice.Other extensions includeDockner andGaunerdorfer
(2001) and Benchekroun (2003) who analyze the profitability of horizontal mergers,
Cellini and Lambertini (2007) dealing with the case of firms selling differentiated
products, and Wiszniewska-Matyszkiel et al. (2015) focusing on firms’ behavior off
the steady state price path.

Our model nests the classical dynamic oligopoly with sticky prices of Fershtman
and Kamien (1987) that can be viewed as its continuous-time limit with no uncer-
tainty and no risk aversion. Our analysis starts from a discrete-time formulation of a
dynamic oligopolistic market with sticky prices which allows to introduce uncertainty
and risk-aversion in a tractable manner by means of a special form of the recursive
preferences proposed by Hansen and Sargent (1995). Such preferences are largely
used in economics and finance (Hansen et al. 1999; Tallarini 2000; Luo 2004; Luo and
Young 2010; Hansen and Sargent 2013) and correspond, under certain conditions, to
Epstein–Zin’s recursive preferences (Epstein and Zin 1989; Epstein 1991).

Thus, we derive the optimal (sub-game perfect) production strategy for symmet-
ric firms and, focusing on the continuous-time limit of the infinite time formulation,
we obtain several results. Notably, in the presence of demand volatility risk-averse
entrepreneurs choose to produce larger quantities of the non-storable good, vis-à-vis
their risk-neutral counterparts, since this reduces the variability of their payoffs. Such
behavior is exacerbated when demand shocks are more volatile and, as a result, the
steady state value of the equilibrium price results to be decreasing in both uncertainty
and risk-aversion. Albeit this reaction to a higher degree of uncertainty can appear
counter-intuitive fromfirst sight, it is not unprecedented inmodels where agents strate-
gically act in dynamic contexts. In fact, also in Fershtman and Kamien (1987) the way
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each firm takes rivals’ reactions to price changes into account brings about a gener-
alized incentive to produce more. In our model, this effect is enhanced as risk-averse
agents can reduce the variability of their future payoffs by further increasing their
current production.

Other interesting results are derived from the analysis of specific limit cases. Firstly,
as it happens for the case without uncertainty and risk-aversion analyzed by Dockner
(1988), when the number of firms goes to infinity the steady state price converges to
the marginal cost. This is interesting because it shows that his result is robust with
respect to the introduction of uncertainty and risk-aversion. Secondly, when the time-
discounting factor goes to zero the steady state price converges to the value that would
prevail in a static equilibrium with price-taker firms. In this case firms behave as
price-takers because they do not take their future profits into account and, given the
characterization of price stickiness, their production choices do not affect the current
price level either. Thirdly, the steady state price converges to the equilibrium value
of a perfectly competitive static market also when prices tend to be infinitely sticky.
Obviously, here the result arises because firms’ production choices can affect neither
present nor future prices. These limit cases emphasize the important conclusion that
uncertainty and risk-aversion do not push firms to produce more when they behave
as price-takers and cannot strategically take future outcomes into account. Fourthly,
when prices become infinitely flexible the steady state price converges to a limit value
which is higher than the price of the static equilibriumwith price-taker firms and lower
than that of the static Cournot oligopoly. Since in a duopoly such limit case coincides
with the deterministic analogue discussed in Fershtman and Kamien (1987), we see
that the impact of uncertainty and risk-aversion on a dynamic oligopoly where firms
compete over the production of a homogeneous and non-storable good crucially hinges
on the presence of price-stickiness. Finally, when we instead consider the special case
of a unique firm in the market, we observe that an infinitely flexible price brings about
the convergence of the stationary price towards the static Cournot price (coinciding in
this case with the monopoly price).

The rest of the paper is organized as follows. In Sect. 2we first introduce uncertainty
and risk-aversion in a discrete-time formulation of a market for a non-storable good
with sticky prices, then we consider its continuous-time limit and characterize the
equilibrium solutions. In Sect. 3 we concentrate on the stationary solution for the
infinite horizon formulation and analyze the impact of risk-aversion and uncertainty.
Finally, Sect. 4 investigates the limit cases and Sect. 5 concludes. The proofs of all
results discussed in the paper are relegated in a separate Appendix.

2 AMarket for a Non-Storable Goodwith Sticky Prices

We start from a discrete-time formulation of a market for a non-storable good with
sticky prices which allows to introduce uncertainty and risk-aversion in a sim-
ple, intuitive and tractable manner. We then consider its continuous-time limit and
derive several theoretical results. The discrete-time formulation is set out so that its
continuous-time limit is consistent with that of Fershtman and Kamien (1987).
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Let us assume that production and consumption take place at equally spaced in
time moments between time 0 and time T . These moments are t1, . . .,tn , tn+1, . . .,
tN , where tn+1 = tn + �, with � some positive interval of time, while tN coincides
with the final date T in which production is interrupted. By pushing � towards zero
our formulation converges to the continuous-time one employed by Fershtman and
Kamien (1987). In addition, by pushing T towards infinity we converge towards an
infinite horizon formulation which allows to study stationary equilibria.

The discrete-time counterpart of the continuous-time formulation employed by
Fershtman and Kamien (1987) for the dynamics of the price of the non-storable con-
sumption good is as follows

pn+1 = α s � + (1 − s�) pn − s�xn + εn+1 , (1)

where pn is the price of the non-storable good at time tn , �xn is the corresponding
quantity produced and brought to the market, εn+1 is an idiosyncratic shock to its
demand function, with εn+1 ∼ N (0, σ 2

ε �), while α and s are positive constants with
s representing a measure of the speed of price adjustment.

The quantity produced and brought to the market �xn is the product of the time
interval� and the output rate/intensity xn for period n. In oligopoly, where M identical
firmsproduce the non-storable good,�xn = �u1,n+�u2,n . . .+�uM,n ,where�um,n

corresponds to the quantity produced by firm m in period n. This is the product of �

and firm m’s output rate/intensity um,n .1

Equation (1) can be reformulated as

pn+1 − pn = s� ( p̂n − pn) + εn+1 , (2)

where p̂n = α − xn is the inverse demand functionwhich prevails in amarket inwhich
prices adjust immediately to the level determined by the demand function for a given
level of output. Because of price stickiness the adjustment process takes time and in
fact Eq. (2) indicates that the price variation from period n to period n + 1 is a linear
function of the gap between the price indicated by the demand function for the currently
produced quantity and the current market price. The degree of price stickiness depends
on the constant parameter s that measures how much of the difference between p̂n

and pn is corrected in a given interval of time. Thus, a larger s would allow a faster
convergence of the price to its static equilibrium level with immediate convergence
when s goes to infinity. On the other hand, when s = 0 we have maximum stickiness
and changes in the production level do not provoke any variation in prices. Moreover,
we note that what firms produce today has an effect on tomorrow price but it does
not affect the current price pn whose level depends, in turn, on production decisions
occurred at tn−1. This is crucial for the results that we derive.

Note that for� ↓ 0 this discrete-time formulation converges to its continuous-time
counter-part. In particular, the continuous-time analogue of Eq. (1) is given by the

1 Fershtman and Kamien refer to ui as firm i’s output rate.
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following expression

dp(t)

dt
= s(α − x(t) − p(t)) + ε(t) , (3)

where x(t) = u1(t) + · · · + uM (t). Importantly, for M = 2 and ε(t) ≡ 0 we have
Eq. (1.2) in Fershtman and Kamien (1987). Given our formulation the condition that
no variation in the price is expected is

Et

[
dp(t)

dt

]
= 0 .

It can be said that if this condition is met the good market is in steady state in that the
good price p(t) adjusts instantaneously to the equilibrium level that would prevail in
a static model. Let p∗(t) ≡ α − x(t) be such a price. Substituting it out in Eq. (3)
we find that

dp(t)

dt
= − s (p(t) − p∗(t)) + ε(t) , (4)

which is the continuous-time correspondent of Eq. (2) unveiling mean-reverting
dynamics toward the static equilibrium price.

We assume the M firms are perfectly symmetrical in that they share the same cost
function, while the entrepreneurs which own and run them share the same degree of
risk-aversion. Therefore, without loss of generality, let us analyze the optimal produc-
tion strategy of firm 1. As in Fershtman and Kamien (1987) firm 1 is characterized
by quadratic production costs. Specifically, in n the intensity of these costs is 1

2u2
n ,

where for simplicity we write u1,n = un . The sale of the non-storable good generates
a revenue which is linear in the quantity brought to the market. This implies that the
intensity of the firm’s revenue in n is pnun , while that of the corresponding profits is
pnun − 1

2u2
n .

The entrepreneur maximizes the discounted value of all the profits her firm gen-
erates. As the future prices at which the firm will be able to sell the quantity of the
non-storable good it produces are subject to idiosyncratic shocks, this discounted value
is uncertain. Therefore, we assume the entrepreneur is risk-averse and is endowedwith
a special form of recursive preferences proposed by Hansen and Sargent (1995). In
particular in period n, with n = 1, 2, . . . , N , the entrepreneur solves the following
recursive optimization

Vn = min
un

{
�cn + 2

ρ
ln

(
En

[
exp

(
δ� ρ

2
Vn+1

)])}
, (5)

where ρ (with ρ > 0) is a risk-enhancement coefficient, δ (with 0 < δ < 1) is a
time-discounting factor, �cn is the (per-period) loss function, with cn = 1

2u2
n − pnun ,

and Vn is the value function (with final condition VN+1 = 0).
The optimization criterion in (5) accommodates risk-aversion through the curvature

of the exponential function. As the convexity of ln(E[exp(δ� ρ
2
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Vn+1)]) increases with ρ, this coefficient determines the entrepreneur’s degree of
risk-aversion. Importantly, for ρ ↓ 0, the recursive optimization in (5) converges to
Vn = minun En[�cn + δ�Vn+1].2 As this is the Bellman equation a risk-neutral
entrepreneur will solve in our formulation, we conclude that our formulation sub-
sumes that of Fershtman and Kamien, when ρ = 0, and extends it by allowing for
risk-sensitive preferences, when ρ > 0.

In the Appendix we prove the following Lemma that describes the optimal produc-
tion strategy when the time interval between two periods converges to zero (� ↓ 0).

Lemma 1 When M identical firms operate in the oligopolistic market for the produc-
tion of the non-storable good and � ↓ 0, the optimal production strategy of the generic
firm converges in t to

u(t) = κ(t) p(t) − 2 s ϑ(t), with κ(t) = (1 + 2 sπ(t)) (6)

with π(t) and ϑ(t) satisfying the following differential equations

dπ(t)

dt
− 2

(
sπ(t) + 1

2

) (
(2M − 1)sπ(t) + 1

2

)

+ (ln δ − 2s)π(t) + ρσ 2
ε π(t)2 = 0 , (7)

dϑ(t)

dt
+

(
ln δ − (1 + M)s

)
ϑ(t)

−
(
2(2M − 1)s2 − ρσ 2

ε

)
π(t)ϑ(t) − αs π(t) = 0 , (8)

with boundary conditions π(T ) = 0 and ϑ(T ) = 0.

Proof See the Appendix. ��
Solving the two differential equations in Lemma 1 is involved. In particular, an

explicit solution exists only for the former and hence numerical procedures are called
for to describe the dynamics of the equilibrium presented in Lemma 1. However, in
the infinite horizon formulation, where the final date T is pushed forward to infinite,
we easily characterize the following.

Proposition 1 When M identical firms operate in a oligopolistic market for a non-
storable good, � ↓ 0 and T ↑ ∞, the optimal production strategy of the generic firm
converges in t to

u(t) = κ̄ p(t) − 2 s ϑ̄ (9)

where κ̄ = limt↓−∞ κ(t) and ϑ̄ = limt↓−∞ ϑ(t).

Proof The proof of Proposition 1 as well as the derivation of κ̄ and ϑ̄ are in the
Appendix. ��
2 The proof of these and other results are available on request. See also Vitale (2017).
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3 Comparative Statics: Risk-Aversion and Uncertainty

In a stationary equilibrium the price of the homogeneous non-storable good fluctuates
around a steady state value p∗. Correspondingly, the quantity produced by a firm
in a stationary equilibrium, u(t) = κ̄ p(t) − 2sϑ̄ , fluctuates around the steady state
value u∗ = κ̄ p∗ − 2sϑ̄ . Since κ̄ depends positively on both ρ and σε , the first term
of u∗ is also increasing in ρ and σε . Therefore firms react aggressively to a greater
uncertainty by increasing their productions for any given level of price and such
behavior is further amplified by higher degrees of risk-aversion. However, if all firms
increase their production, in steady state, the price will be smaller, so that the term
κ̄ p∗ could either increase or decrease. Moreover, ϑ̄ depends on ρ and σε too. This
suggests that establishing the overall effect of risk-aversion and uncertainty on the
optimal production strategy and on the equilibrium price is a complicated endeavor.

However, the following Proposition allows us to establish that when the risk-
adjustment coefficient and the volatility of demand shocks increase, the steady state
price decreases and the M firms produce larger quantities of the non-storable good.

Proposition 2 In a stationary equilibrium, for any parametric constellation, the steady
state price, p∗, and the expected quantity produced by an oligopolistic firm in steady
state, u∗, are respectively decreasing and increasing both in ρ, the coefficient of risk-
aversion, and in σε , the volatility of demand shocks.

Proof See the Appendix. ��
We conclude that uncertainty and risk-aversion affect the strategies of firms pro-

ducing a homogeneous non-storable good in a dynamic oligopoly market with sticky
prices. In particular, we observe that the optimal firms’ reaction to a higher degree of
risk-aversion (or a higher level of uncertainty) is to increase their production in order
to reduce the variability of their future payoffs. This result is driven by the Epstein
and Zin recursive preferences employed in this paper. In fact, as it is discussed in
Vitale (2017) and Valentini and Vitale (2019), such preferences imply that relative
risk-aversion is greater than the inverse of the inter-temporal elasticity of substitu-
tion. Kreps and Porteus (1978) show that under these circumstances agents are pushed
towards earlier resolution of uncertainty vis-a-vis the standard case of expected utility.
Thus, in our formulation, while it might appear a counter-intuitive response to uncer-
tainty, risk-aversion induces firms to expand production as this reduces the variability
of their future profits.

We conclude that risk-aversion exacerbates the effect of the strategic interaction
among firms firstly unveiled by Fershtman and Kamien. Indeed, they note that firms
know that as they expand their production and cause a fall in price their rivals will
be induced to contract their production. Then, such firms find it convenient to expand
production to augment their market share and their overall profits. We extend Fersht-
man and Kamien result by showing that such effect is magnified in the presence of
uncertainty and risk-aversion.

Anticipating results we will illustrate extensively in the next section, two com-
ments on the effect of uncertainty and risk-aversion are worth making. Firstly, these
effects vanquish when firms do not act strategically and do not consider the impact

123
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of their production decisions on prices. Thus, our conclusions crucially hinge on the
assumption that firms are not price-takers. Secondly, the apparently surprising effects
of uncertainty and risk-aversion are the consequence of the forward-looking behavior
of the firms. Indeed, if they were not concerned with the future implications of their
current decisions wewill not observe an increase in production associatedwith a larger
degree of uncertainty and/or risk-aversion.

Interestingly, the apparently counter-intuitive effects of risk-aversion and uncer-
tainty we find are not novel to models of strategic interaction among agents. Thus,
Subrahmanyam (1991) extends Kyle (1985) seminal paper on the strategic interaction
of privately informed traders in securities markets to the case in which these agents
are risk-averse. Within the static version of Kyle’s model, in which these agents only
trade once, Subrahmanyam shows that risk-aversion induces the informed traders to
trade less than their risk-neutral counterparts. On the contrary, Holden and Subrah-
manyam (1994) introduce risk-aversion in the dynamic,multi-period, version ofKyle’s
model and show the opposite result. The reason of the different impact of risk-aversion
between the static and dynamic version of Kyle’s model is analogous to that which
applies to our model. In the dynamic version the informed traders choose to trade
more as this reduces the uncertainty over their future payoffs, while in the static one
such consideration dissipates.

4 Some Limit Cases

Here we investigate what happens to the steady-steady of our formulation when the
number of firms goes to infinity (M ↑ ∞), time-discounting collapses to zero (δ ↓ 0)
and when prices become either infinitely sticky or perfectly flexible (s ↓ 0 and s ↑ ∞
respectively). These limit scenarios are interesting per se but also because they help
unveiling how competitiveness, risk-aversion, time-discounting and price stickiness
interact.

The first result pertains to the impact of the number of firms in the oligopolistic
market. This is established in the following Proposition.

Proposition 3 When the number of firms goes to infinity the steady state price p∗
converges to the firms’ per period marginal production cost.

Proof See the Appendix. ��
The convergence of the steady state price p∗ towards the firms’ marginal cost in the

limit case of M going to infinity was firstly showed by Dockner (1988) in a dynamic
oligopoly without uncertainty. Therefore, Proposition 3 reveals that (i) Dockner’s
result is robust to the introduction of uncertainty and risk-aversion and (ii) the degree
of uncertainty and risk aversion do not affect the steady state price when the number of
firms producing a homogeneous non-storable good in the dynamic market with sticky
prices becomes infinity.

We now compare our dynamic formulation with a static one in which prices are
always equal to the level dictated by the demand schedule,while entrepreneurs are risk-
neutral. In such a static formulation two alternative scenarios can prevail. In the former
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firms are price-takers and act competitively, while in the latter they act strategically
as they take into account the impact that their output has on the equilibrium price.

It is relatively simple to establish that in the former scenario the expected equi-
librium price for the homogeneous good, E[pt ], is equal to pcomp = α

1+M , while
the production strategy of the individual firm implies that ut = κcomp pt , where
κcomp = 1. When firms act strategically, instead, the expected equilibrium price is
equal to pstra = 2α

2+M , while ut = κstrat pt with κstrat = 1
2 .

For δ ↓ 0 the steady state of our dynamic formulation converges to the equilibrium
of the static model with price-taker firms, as suggested by the following Proposition.

Proposition 4 When the time-discounting factor falls to zero the steady state price of
the stationary equilibrium with M firms converges to the expected price, E[pt ], of the
static equilibrium with price-taker firms, in that

lim
δ↓0 p∗ = pcomp .

Proof See the Appendix. ��
An implication of Proposition 4 is that for δ ↓ 0 the steady state of our dynamic

formulation coincides with the competitive equilibrium of the static formulation of the
model presented by Fershtman and Kamien (1987).3 Indeed, in our formulation firms,
when choosing their output, know the current price for the homogeneous good, but
are uncertain about its future values. Thus, their risk-aversion affects their production
strategies insofar they care for future profits. When δ ↓ 0 they do not take into account
future profits and hence their uncertainty about future prices and their risk-aversion
become irrelevant.

The steady state of our dynamic formulation manifests similar properties when
prices become infinitely sticky. In fact, also when s collapses to zero our steady state
converges to the equilibrium of the static model with price-taker firms. This result is
posited in the following Proposition.

Proposition 5 When prices become infinitely sticky (s ↓ 0), the steady state price
of the stationary equilibrium converges to the expected price, E[pt ], of the static
equilibrium with M price-taker firms, in that

lim
s↓0 p∗ = pcomp .

Proof See the Appendix. ��
In this extreme scenario firms are aware that their output does not affect prices.

In addition, while they care for future profit opportunities they also know that their
current decisions will not bear upon the future. Consequently, firms act as price-taker
agents which maximize their expected current profits exactly as in Fershtman and
Kamien’s original formulation.

3 More precisely, this happens for M = 2 when in their formulation the linear cost coefficient is set equal
to zero, ie. c = 0.
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When prices become perfectly flexible the properties of the steady state of our
formulation change dramatically, as shown in the following Proposition.

Proposition 6 When prices become perfectly flexible (s ↑ ∞), the steady state price
of the stationary equilibrium converges to a limit value which for M = 1 coincides
with the expected price, E[pt ], of the static equilibrium with a strategic monopolist,
in that

lim
s↑∞ p∗ = pstrat

while for M ≥ 2 lies between the expected price, E[pt ], of the static equilibrium with
price-taker firms and that of the static equilibrium with strategic firms, in that

pcomp < lim
s↑∞ p∗ < pstrat .

Proof See the Appendix. ��
When prices become perfectly flexible they immediately adjust to the level deter-

mined by the demand for the homogeneous good. Thismeans that themanagement of a
monopolistic firm will choose its production policy taking into account the immediate
and complete impact that this will have on the price of the homogeneous good. More
precisely, in t it will select the optimal production quantity u(t) considering its effect
through the inverse demand schedule p(t) = α−u(t). In this way the monopolist acts
as a single strategic agent and the steady state of the stationary equilibrium converges
to the corresponding static equilibrium.

Interestingly, in oligopoly the steady state of the stationary equilibrium does not
converge to the corresponding static equilibrium with strategic firms. The steady state
price is in fact smaller. Firms find it optimal to eat into their competitors’ market
shares and hence choose to increase output above the level consistent with the static
equilibrium with strategic firms.

In particular, for M = 2, when s ↑ ∞ our formulation collapses to the stochastic
analogue of the static model discussed by Fershtman and Kamien (1987). Indeed, by
substituting M = 2 in the formula of lims↑∞ p∗ derived in the Proof of Proposition 6
we can easily verify that

lim
s↑∞ p∗ =

pcomp + 2
√
2√
3

pstrat

1 + 2
√
2√
3

,

where pstrat = 1
2α and pcomp = 1

3α. This result coincides with that in Theorem
4 of Fershtman and Kamien (1987) when production costs do not include a linear
component, ie. for c = 0 in their formulation.

This suggests that when prices become perfectly flexible the impact of uncertainty
and risk-aversion on the firms’ production strategies and the market equilibrium in
our dynamic formulation dissipates. Indeed, this is a general result which we posit in
the following Proposition.
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Proposition 7 When prices become perfectly flexible (s ↑ ∞), the production
strategies of the risk-averse entrepreneurs collapse to those of their risk-neutral coun-
terparts.

Proof See the Appendix. ��

The intuition for this result is immediate. In fact, as prices become perfectly flexible
they immediately converge to the level determined by the demand for the homoge-
neous good. This implies that uncertainty over future prices vanishes and the optimal
production strategy of the oligopolistic firms is unaffected by the entrepreneurs’ degree
of risk-aversion. We conclude that the impact of risk-aversion and uncertainty on the
optimal production strategies of oligopolistic firms crucially hinges on the stickiness
of the good price. Only when prices adjust slowly the attitude of the firms’ manage-
ment and their uncertainty on the dynamics of future prices affect their production
decisions.

5 Concluding Remarks

This paper has shown how price stickiness, uncertainty and risk aversion interact in
oligopolistic markets of homogeneous and non-storable goods. Such markets are not
just a theoretical curiosity. Electricity, for instance, is perfectly homogeneous, difficult
to store and typically provided by few firms in retail markets which are characterized
by demand uncertainty and prices adjusting very slowly to changes in the wholesale
electricity prices.

To analyze these markets we have extended a classical dynamic oligopoly game
with sticky prices by developing a discrete-time formulation that allows to intro-
duce uncertainty and risk-aversion via recursive preferences à la Hansen and Sargent
(1995). Starting from a discrete-time formulation allows both to move easily to the
continuous-time counterpart and shed light on the role of price stickiness and uncer-
tainty. Thus, we have seen that as uncertainty or risk-aversion increases, firms produce
more and, consequently, the equilibriumprice falls. However, the impact of uncertainty
and risk-aversion on production and price levels crucially depends on the presence of
price stickiness as it is greater when price stickiness increases and disappears when
prices can adjust instantaneously. Indeed, since uncertainty on price dynamics con-
cerns solely next periods, the strategic behavior of risk-averse firms collapses to that
of risk-neutral ones when the current price can converge instantaneously to its equi-
librium value.

Funding Open access funding provided by Università degli Studi G. D’Annunzio Chieti Pescara within the
CRUI-CARE Agreement.
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Appendix

The following Lemma is preparatory for the proofs of Lemma 1 and Proposition 1.

Lemma 2 In the discrete-time formulation with M identical firms, in any period n the
optimal production strategy of the generic firm is un = κp,n pn + κe,n(αs�π̃n+1 −
ϑ̃n+1), where

κp,n =
1
2 + s(1 − s�)π̃n+1
1
2 + M s2�π̃n+1

and κe,n = s
1
2 + Ms2�π̃n+1

with π̃n+1 = δ�πn+1(1 − δ�ρσ 2
ε �πn+1)

−1 and ϑ̃n+1 = δ�ϑn+1(1 − δ�ρσ 2
ε �

πn+1)
−1, while

πn = 1

2
�κ2

p,n − �κp,n + [
(1 − s�) − M s �κp,n

]2
π̃n+1 (A.1)

and

ϑn = [1 − (M − 1)sπ̃n+1 �κe,n][−Ms �κp,n + (1 − s�)](ϑ̃n+1 − αs�π̃n+1).

(A.2)

Proof Suppose firm 1’s entrepreneur conjectures that in n firms 2, 3, . . ., M will
all choose to produce the same quantity �yn . In addition, assume that Vn+1 =
πn+1 p2n+1 − 2ϑn+1 pn+1 + νn+1, where πn+1 and ϑn+1 are some time-variant coef-
ficients. Under this assumption, Lemma 4 in Vitale (2017) shows that solving the
recursion in (5) is equivalent to solving the double recursion

Fn(pn) = LL̃ Fn+1(pn+1) , where Fn+1 ≡ πn+1 p2n+1 − 2ϑn+1 pn+1 ,

L̃φ(p) = max
ε

[
δπ(p + ε)2 − 2δϑ(p + ε) − 1

ρ

1

σ 2
ε �

ε2
]

and

Lφ(p) = min
u

[
�c + φ

(
αs� + (1 − s�) p − s� [u + (M − 1)y ]

)]
.

Applying the L̃ operator to Fn+1 we find that L̃Fn+1(pn+1) = π̃n+1 p2n+1 −
2ϑ̃n+1 pn+1 with π̃n+1 = δ�πn+1(1 − δ�ρ σ 2

ε �πn+1)
−1, ϑ̃n+1 = δ�ϑn+1(1 −

δ�ρ σ 2
ε �πn+1)

−1 and the second order condition that δ�πn+1 − 1
ρ

1
σ 2

ε
< 0, which

will always be satisfied insofar πn+1 < 0.
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In applying theL operator to Fn+1(pn+1) = π̃n+1 p2n+1 − 2ϑ̃n+1 pn+1 we find the
following first order condition

(
1

2
+ s2�π̃n+1

)
un −

(
s(1 − s�)π̃n+1 + 1

2

)
pn

+ (M − 1)s2�π̃n+1yn − s(αs�π̃n+1 − ϑ̃n+1) = 0

and hence the optimal production is

un =
1
2 + s(1 − s�)π̃n+1

1
2 + (M − 1)s2�π̃n+1

pn + (M − 1)s�π̃n+1
1
2 + (M − 1)s2�π̃n+1

yn

+ s(αs�π̃n+1 − ϑ̃n+1)
1
2 + (M − 1)s2�π̃n+1

. (A.3)

Crucially, firm 1’s conjecture will need to be verified in equilibrium. This is trivially
achieved by assuming a symmetric equilibrium in that we posit that un = yn . Under
such restriction we find that

un = κp,n pn + κe,n(αs�π̃n+1 − ϑ̃n+1) , with

κp,n =
1
2 + s(1 − s�)π̃n+1
1
2 + M s2�π̃n+1

and κe,n = s
1
2 + Ms2�π̃n+1

.

Inserting this expression into the argument of the L operator it is found that

πn = 1

2
�κ2

p,n − �κp,n + [
(1 − s�) − M s �κp,n

]2
π̃n+1 ,

ϑn = [1 − (M − 1)sπ̃n+1 �κe,n][−Ms �κp,n + (1 − s�)](ϑ̃n+1 − αs�π̃n+1) .

��
Proof of Lemma 1 In the limit, for � ↓ 0, (M−1)s�π̃n+1

1
2+(M−1)s2�π̃n+1

→ 0. In addition, for

� ↓ 0, as π̃n+1 → π(t) (while ϑ̃n+1 → ϑ(t)),
1
2+s(1−s�)π̃n+1

1
2+(M−1)s2�π̃n+1

→ 1+2sπ(t), while

s(αs�π̃n+1−ϑ̃n+1)
1
2 + (M−1)s2�π̃n+1

→ −2sϑ(t).

Hence, in the limit, the optimal production strategy for firm 1 in t is

u(t) = κ(t) p(t) − 2 s ϑ(t) , with κ(t) = 1 + 2 s π(t) ,

where κ(t) = lim�↓0 κp,n , 2s = lim�↓0 κe,n , π(t) = lim�↓0 πn and ϑ(t) =
lim�↓0 ϑn . To identify the limit functions π(t) and ϑ(t), firstly consider that since

[(1 − s�) − M s�κn]
2 = (1 − 2s�) − 2 M s �κn + o(�2)
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it follows that Eq. (A.1) can also be written as

πn = π̃n+1 + �

(
1

2
κ2

p,n − κp,n − 2s π̃n+1 − 2 M s κp,n π̃n+1

)
+ o(�2) ,

where o(�) indicates a term of order � or superior. This implies that

πn − πn+1

�
= π̃n+1 − πn+1

�
− 2s π̃n+1 + κp,n

×
(
1

2
κp,n − 1 − 2 M s π̃n+1

)
+ o(�) .

Notice, that it can be established that

κn

(
1

2
κp,n − 1 − 2 M s π̃n+1

)
= − 1

2

(
1
2 + sπ̃n+1

1
2 + M s2�π̃n+1

)

×
(

1
2 + (2M − 1) sπ̃n+1

1
2 + M s2�π̃n+1

)
+ o(�) .

Now, lim�↓0 πn −πn+1
�

= − dπ(t)
dt , lim�↓0 π̃n+1 −πn+1

�
= ln δ π(t) + ρσ 2

ε π(t)2 and
lim�↓0 π̃n+1 = lim�↓0 πn+1 = π(t). Given the expression above we also see that
lim�↓0 κp,n

( 1
2 κp,n − 1 − 2 M s π̃n+1

) = −2 ( 12 + sπ(t))( 12 + (2M − 1) sπ(t)).
We conclude that in the limit π(t) solves the following differential equation

dπ(t)

dt
− 2

(
sπ(t) + 1

2

) (
(2M − 1)sπ(t) + 1

2

)

− 2s π(t) + ln δ π(t) + ρσ 2
ε π(t)2 = 0 .

Similarly, Eq. (A.2) can also be written as follows

ϑn = ϑ̃n+1 − �

(
s + M s κp,n + (M − 1) s κe,n π̃n+1 + o(�)

)
ϑ̃n+1

−�(α s + o(�)) π̃n+1 ,

so that

ϑn − ϑn+1

�
= ϑ̃n+1 − ϑn+1

�

−
(

s + M s κp,n + (M − 1) s κe,n π̃n+1

)
ϑ̃n+1 − α sπ̃n+1 + o(�)) .

Considering that lim�↓0 ϑn −ϑn+1
�

= − dϑ(t)
dt , lim�↓0 ϑ̃n+1 −ϑn+1

�
= ln δ ϑ(t) +

ρσ 2
ε π(t)ϑ(t), lim�↓0 ϑ̃n+1 = lim�↓0 ϑn+1 = ϑ(t) and that lim�↓0 κp,n = 1 +
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2sπ(t)) and lim�↓0 κe,nπ̃n+1 = 2s π(t), we conclude that in the limit ϑ(t) solves the
second differential equation

dϑ(t)

dt
+

(
ln δ − (1 + M)s

)
ϑ(t) −

(
2(2M − 1)s2 − ρσ 2

ε

)
π(t)ϑ(t) − απ(t) = 0 .

��
Proof of Proposition 1 We can rewrite (7) as follows

d π(t)

d t
= 1

2
+ λπ(t) + γπ(t)2 ,

where λ = (
2(1+ M)s − ln δ

)
and γ = 2(2M −1)s2 −ρσ 2

ε . This can be transformed
into a homogeneous ordinary differential equation of order two,

d2 z(t)

d2 t
− λ

d z(t)

d t
+ 1

2
γ z(t) = 0

with π(t) = − 1
γ

d z(t)
d t

z(t) . Assume then that z(t) = m exp(ζ t). We have a solution of the
ODE iff

ζ 2 m exp(ζ t) − ζ λ m exp(ζ t) + 1

2
γ m exp(ζ t) = 0 ,

ie. iff m ζ 2 − m λ ζ + m
1

2
γ = 0 .

This admits two roots equal to ζ =
{

ζ1 = 1
2 λ + 1

2 D
ζ2 = 1

2 λ − 1
2 D

, with D = [λ2 − 2γ ]1/2.

Thus, z(t) = m1 exp(ζ1 t) + m2 exp(ζ2 t). Given that π(t) = − 1
γ

d z(t)
d t

z(t) , we can
write that

π(t) = −m1ζ1 exp(ζ1t) + m2ζ2 exp(ζ2t)

γ (m1 exp(ζ1t) + m2 exp(ζ2 t))
.

We can impose the terminal condition π(T ) = 0 to find that

m1 ζ1 exp(ζ1 T ) + m2 ζ2 exp(ζ2 T ) = 0 ⇔ m2 = −ζ1

ζ2
m1 exp((ζ1 − ζ2) T )

= −ζ1

ζ2
m1 exp(D T ) .

Re-inserting this expression in that for π(t) we find that

π(t) = − 1

γ

(
ζ1 exp(ζ1 t) − ζ1 exp(D T ) exp(ζ2 t)

exp(ζ1 t) − ζ1
ζ2

exp(D T ) exp(ζ2 t)

)
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= − ζ1

γ

(
1 − exp(D T ) exp(−(ζ1 − ζ2) t)

1 − ζ1
ζ2

exp(D T ) exp(−(ζ1 − ζ2) t)

)

= − ζ1

γ

(
1 − exp(−D (t − T ))

1 − ζ1
ζ2

exp(−D (t − T ))

)

= − ζ1

γ

(
exp(D (T − t)) − 1

ζ1
ζ2

exp(D (T − t)) − 1

)
,

as ζ1 − ζ2 = D. Importantly, we can find the stationary value of π pushing t to −∞,

lim
t↓−∞ π(t) = π̄ = − ξ2

γ
.

We then immediately see that limt↓−∞ κ(t) = 1 + 2sπ̄ and that limt↓−∞ ϑ(t)
= απ̄s

ln δ−s(1+M)−γ π̄
. �

In Lemmas 3–6 we establish a number of results that are important for the economic
coherency of our model and/or necessary for the proofs of Propositions 2–7.

Lemma 3 For any parametric constellation κ̄ is positive

Proof Let w denote sπ̄ . From the expression solved by π̄ we see that w is a root

of the quadratic equation Aw2 − Bw + 1
2 = 0, where A =

(
2(2M − 1) − ρ

σ 2
ε

s2

)
and B = (

2(1 + M) − ln δ
s

)
. Now w > −1/2. To verify this inequality notice that

it is equivalent to the condition that B−√
B2−2A
A > −1. This is equivalent to B +

A >
√

B2 − 2A for A > 0 and B + A <
√

B2 − 2A for A < 0. In the former
case, as we take squared values, we see that B + A >

√
B2 − 2A corresponds to

A2 + 2A + AB > 0. This is inequality is obviously satisfied as both A and B are
positive. In the latter case, as A < 0 we notice that

√
B2 − 2A > B > B+ A. Because

w > − 1
2 we conclude that κ̄ = 1 + 2w is positive.

Lemma 4 For any parametric constellation p∗ is positive

Proof In a stationary symmetric equilibrium, dp(t)
dt = αs − sp(t) − s Mu(t) + ε(t)

and u(t) = κ̄ p(t) − 2sϑ̄ . It follows that dp(t)
dt = αs − Ap(t) + 2s2Mϑ̄ + ε(t), with

A = s (1 + M κ̄). From this it is immediately to derive that the steady state price
is p∗ = A−1 (αs + 2Ms2ϑ̄). Consider that from the differential equation (8) it can
be concluded that in a stationary equilibrium ϑ̄ = απ̄s

ln δ−s(1+M)−γ π̄
. Substituting the

expression for ϑ̄ into that for p∗ we conclude that p∗ = αs
A

(
1 + 2Ms2π̄

ln δ−s (1+M)−γ π̄

)
.

Then, notice that we can write ln δ − s(1 + M) − γ π̄ = ln δ − s(1 + M) + s(1 +
M) − 1

2 ln δ − 1
2D = 1

2 (ln δ − D) ≡ Q. Since both Q and π̄ are negative, while
A = s(1 + M κ̄) is positive we conclude that p∗ is positive. ��
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Fig. 1 The determination of π̄ for γ > 0. For any choice of ρ and σ 2
ε there are two interceptions between the

straight line (− 1
2 −λπ ) and the parabola (γπ2). That closer to the origin corresponds to π̄+ = − 1

2
λ
γ + 1

2
D
γ .

When either ρ or σ 2
ε rises, so that γ falls to γ ′, the parabola moves downward (while the straight line is

unaffected given that λ is independent of these two parameters) and the stationary value moves up to π̄ ′

Lemma 5 In a stationary equilibrium, for any parametric constellation, the expected
quantity produced by an oligopolistic firm is positive.

Proof In a stationary symmetric equilibrium, the expected quantity produced by a
generic firm is u∗ = κ̄ p∗ − 2sϑ̄ . Hence, consider that p∗ = 1

(1+M κ̄)

(
α + 2Msϑ̄

)
.

Therefore, u∗ = 1
1+M κ̄

(
κ̄α − 2sϑ̄

)
, which will be positive if κ̄α − 2sϑ̄ > 0. Then,

consider the expressions for κ̄ = 1+2sπ̄ and ϑ̄ = απ̄s
Q .Substituting the expressions for

κ̄ and ϑ̄ into that for u∗, we find that u∗ = α
[
1
2 +

(
Q−1

Q

)
sπ̄

]
. Because 0 <

Q−1
Q < 1.

Then, since sπ̄ > − 1
2 , as seen in the proof of Lemma 3, we see that u∗ is positive. ��

Lemma 6 In the stationary equilibrium, the production strategy of an oligopolistic
firm is more aggressive for a larger ρ and/or larger σε , in that κ̄ is larger.

Proof Notice that π̄ corresponds to the root π̄+ = − 1
2

λ
γ

+ 1
2

D
γ

of the following

quadratic equation γ π̄2+λπ̄+ 1
2 = 0, which is obtained from the differential equation

(7) by imposing that π(t) = π̄ and dp(t)/dt = 0. Then, we rely on a graphical
argument. In Figs. 1 and 2 we show how the determination of π̄+ changes when either
ρ or σ 2

ε augments. In Fig. 1 we consider the case in which γ is positive, while in Fig. 2
that in which it is negative.

Both figures allow to determine what happens when an increase in ρ and/or in σ 2
ε

brings about a reduction in γ . In both cases graphical inspection shows that for a larger
degree of risk-aversion and/or a larger volatility of the demand shocks the stationary
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Fig. 2 The stationary value π̄ for γ < 0. For any choice of ρ and σ 2
ε there are two interceptions between

the straight line (− 1
2 − λπ ) and the parabola (γπ2). That smaller one corresponds to π̄+ = − 1

2
λ
γ + 1

2
D
γ .

When either ρ or σ 2
ε rises, so that γ falls to γ ′, the parabola moves downward, while the straight line is

unaffected since λ does not depend on either of these two parameters, and the stationary value moves up to
π̄ ′

value π̄ , which is always negative, rises. Then, since κ̄ = 1 + 2s π̄ and s is positive
we see that κ̄ is increasing in π̄ . Then, we conclude that for a larger ρ and/or a larger
σ 2

ε κ̄ is larger. ��

Proof of Proposition 2 We have seen in the proof of Lemma 4 that p∗ = αs
A(

1 + 2M s2 π̄
ln δ − s (1+ M) − γ π̄

)
. Then, we notice that in Lemma 6 we proved that π̄ and

κ̄ are increasing in ρ and σε . In addition, we notice that A = s(1 + M κ̄) is positive
and increasing in κ̄ . This implies that s(1 + M κ̄) is increasing in ρ and σε . This
means that to establish our result we need to prove that the derivatives of the ratio

2M s2 π̄
ln δ − s(1+ M) − γ π̄

with respect to ρ and with respect to σε are negative, so that this
ratio is proved to be decreasing in these two parameters. Consider that this ratio can
also be written as Gπ̄

H − I π̄ , where G > 0 and H < 0. The derivative of this ratio wrt ρ
(equivalently with respect to σε) is

1

(H − I π̄)2

[
G(H − I π̄ )

dπ̄

dρ
− Gπ̄

(
−I

dπ̄

dρ
− d I

dρ
π̄

)]

= G

(H − I π̄)2

[
H

dπ̄

dρ
+ π̄2 d I

dρ

]
.

This expression is negative. In fact, G
(H − I π̄)2

is positive, while H dπ̄
dρ

is negative,

since H is negative and dπ̄
dρ

is positive. Finally, π̄2 d I
dρ

is negative because clearly d I
dρ
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is negative. An identical argument applies to σε . This proves that p∗ is decreasing in
both ρ and σε .

Moreover, in the proof of Lemma 5 we have seen that u∗ = α
[
1
2 +

(
Q−1

Q

)
sπ̄

]
,

where 0 <
Q−1

Q < 1 and − 1
2 < sπ̄ < 0. Notice that

(
Q−1

Q

)
sπ̄ is negative. However,

in the proof of Lemma 6 we have established that π̄ , while negative, is increasing in
ρ and σ 2

ε . In addition, Q is negative and decreasing in both ρ and σ 2
ε , while

Q−1
Q is

positive and increasing in Q. Combining these results we conclude that when either
ρ or σ 2

ε rises u∗ augments. ��
Proof of Proposition 3 As M ↑ ∞ both λ and γ tend to infinity (just recall their
definitions) and hence π̄ converges to zero (just consider the graphical inspection of
Fig. 1. for λ and γ raising to infinity). From this it follows that κ̄ = 1 + 2sπ̄ → 1.

Now recall that p∗ = αs
A

(
1 + 2M s2 π̄

ln δ − s (1+ M) − γ π̄

)
, where A = s(1 + M κ̄).

Using the latter result we see that for M ↑ ∞ A converges to ∞. In addition the ratio
2M s2 π̄

ln δ − s (1+ M) − γ π̄
can also be written as 2s2 π̄

ln δ − s − γ π̄
M − s

which clearly converges to zero

for M ↑ ∞. From this we conclude that p∗ converges to zero for M ↑ ∞.
Notice also that for M ↑ ∞ ϑ̄ converges to zero too. To see this consider that in

an infinite horizon formulation π(t) and ϑ(t) become invariant values, respectively

π̄ and ϑ̄ . This implies that dϑ(t)
dt = 0 and Eq. (8) simplifies to the following

(
ln δ −

(1 + M)s

)
ϑ̄ − (

2(2M − 1)s2 − ρσ 2
ε

)
π̄ ϑ̄ − αs π̄ = 0.

We have seen that for M ↑ ∞ π̄ ↓ 0. Then, assume that ϑ̄ converges to a value
different from zero, say ϑ , for M ↑ ∞. Thence, the first term in the equation rises
with M at the same rate (for M large it will be proportional to M). The second term
cannot rise with M at the same rate, as π̄ converges to zero when M ↑ ∞ (and hence
for M large the second term in the equation will be less than proportional to M).
The third term converges to zero. Then, for M large the equation cannot be satisfied.
Consequently, we conclude that ϑ̄ must also converge to zero.

Now, recall that according to Proposition 1 in a stationary equilibrium u(t) =
κ̄ p(t) − 2 s ϑ̄ . As we have just proved that for M ↑ ∞, p∗ converges to zero, κ̄

converges to 1 and ϑ̄ converges to zero, we conclude that the quantity produced in a
steady state by a single firm is zero. As we have quadratic costs the marginal cost for
a production level equal to zero is also zero. In brief, we conclude that the marginal
cost and the steady state price coincide for M ↑ ∞. ��
Proof of Proposition 4 It is sufficient to prove that for δ ↓ 0 both π̄ and ϑ̄ converge to
zero, so that the optimal production strategy for the M firms is u(t) = p(t), that is that
in the static formulation when the firms’ management takes the good price as given. In
addition, the steady state price, p∗, converges to p∗ = α

1+M , which corresponds to the
expected good price, Et [pt ], in the static formulation when the firms’ management
takes such price as given.

In order to prove that δ ↓ 0 π̄ converges to zero, once again, a graphical argument
would suffice. In particular, consider Fig. 3, which, without loss of generality, is drawn
under the assumption that γ > 0 (a similar analysis would apply for γ < 0).
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Fig. 3 The stationary value π̄ for γ positive. For any choice of M there are two interceptions between the
straight line and the parabola. That closer to the origin corresponds to π̄+ = − 1

2
λ
γ + 1

2
D
γ . When δ falls λ

rises to λ′, while γ is unaffected. This means that the straight line rotates clockwise, while the parabola does
not move. The stationary value moves up to π̄ ′. For δ ↓ 0 λ ↑ ∞ and the straight line becomes infinitely
steep

Notice that as δ falls λ (λ = 2(1 + M)s − ln δ) increases, while γ (γ = 2(2M −
1)s − ρσ 2

ε ) is unaffected. This implies that as δ falls the straight line − 1
2 − λπ̄ rotates

clock-wise and in the limit becomes vertical. This implies that for δ ↓ 0 π̄ converges
to zero. In the expression for ϑ̄ (ϑ̄ = απ̄s

ln δ − s (1+ M) − γ π̄
) for δ ↓ 0 the denominator

converges to −∞, while the numerator converges to 0. ��

Proof of Proposition 5 As before notice that for s ↓ 0 γ (γ = 2(2M − 1)s − ρσ 2
ε )

converge to −ρσ 2
ε , while λ (λ = 2(1 + M)s − ln δ) converges to − ln δ. Thus, π̄

becomes the negative root of −ρσ 2
ε π̄2 − ln δπ̄ + 1

2 = 0. This implies that both sπ̄
and ϑ̄ converge to zero for s ↓ 0 and hence that u(t) = p(t), while the stationary
price converges to p∗ = α

1+M . ��

Proof of Proposition 6 Recall from the Proof of Proposition 4 that in the static formula-
tion, if the M firms are price takers, then pcom = α

1+M . In addition, it is immediate to

see that if they are strategic pstrat = 2α
2+M . This implies that pstrat = (1+ S)pcom,

with S = M
2+M . We have seen in the proof of Lemma 3 that w = sπ̄ solves equation

Aw2 + Bw+ 1
2 = 0. Given the expressions for A and B, it is immediate to see that for

s ↑ ∞ this equation converges to 2(2M −1)x2 +2(1+ M)x + 1
2 = 0, which implies

that lims↑∞ w = x ≡ − 1+M−�
2(2M−1) , with� = [(1+ M)2−(2M −1)]1/2 = [M2+2]1/2.
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In the proof of Proposition 2 we have seen that

p∗ = α

1 + M κ̄

(
1 + 2Ms w

ln δ − s(1 + M) − 2(2M − 1)sw + ρσ 2
ε

)
.

For s ↑ ∞ it converges to

lim
s↑∞ p∗ = α

lims↑∞(1 + M κ̄)

(
1 + M + 2(M − 1)x

(1 + M) + 2(2M − 1)x

)
.

Consider that κ̄ = 1 + 2sπ̄ = 1 + 2w. Then lims↑∞ κ̄ = 1 + 2x . This implies that
lims↑∞(1 + M κ̄) = (1+M)(M−1)

2M−1 + M
2M−1�. In addition, 1 + M + 2(2M − 1)x = �

and 1 + M + 2(M − 1)x = (1+M)M
2M−1 + M−1

2M−1�. Substituting in the expression for
lims↑∞ p∗ we find that

lim
s↑∞ p∗ = α

�

(
(1 + M)M + (M − 1)�

(1 + M)(M − 1) + M�

)

= α

(1 + M)�

(
M + (M − 1)�

(M − 1) + M�

)
, where � = �

1 + M
.

This implies that lims↑∞ p∗ = pcomp
(

M+(M−1)�
�[(M−1) + M�]

)
= pcomp(1 + R) with

R = M(1−�2)
�[(M−1) + M�] . Notice that 0 < � < 1 so that 0 < R. Now for M = 1

R = 1
3 = S, so that lims↑∞ p∗ = 2

3α = pstrat, while for M ≥ 2 0 < R < S, so that
pcomp < lims↑∞ p∗ < pstrat. In fact, consider that for M = 1 R = (1−�2)/�2,
while for M ≥ 2 R < (1 − �2)/�2. In addition, given the expressions for � and �,
we see that (1− �2)/�2 = (2M − 1)/(2+ M2). The latter is equal to 1/3 and S for
M = 1 and it is not larger than S for M ≥ 2. In fact, (2M −1)/(2+M2) ≤ M/(2+M)

is equivalent to 2(M2 − 1) ≤ M(M2 − 1) which holds for M ≥ 2. ��
Proof of Proposition 7 It is sufficient to notice that for s ↑ ∞ κ̄ → 1 + 2x , where as
shown in the proof of Proposition 6 x is function only of the number of firms, M ,
while ϑ̄ → 0. To prove the latter notice that ϑ̄ = αw

Q and that when s ↑ ∞, w → x ,

while Q ↑ ∞. In fact, Q = 1
2D with D = [λ2 − 2γ ]1/2. Given the expression for λ

and γ for s very large D ≈ 2s(2 + M2)1/2. ��
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