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Abstract 
This study aims to investigate the effects of different mapping unit scales and study area scales on the uncertainty rules of 
landslide susceptibility prediction (LSP). To illustrate various study area scales, Ganzhou City in China, its eastern region 
(Ganzhou East), and Ruijin County in Ganzhou East were chosen. Different mapping unit scales are represented by grid units 
with spatial resolution of 30 and 60 m, as well as slope units that were extracted by multi-scale segmentation method. The 
3855 landslide locations and 21 typical environmental factors in Ganzhou City are first determined to create spatial datasets 
with input-outputs. Then, landslide susceptibility maps (LSMs) of Ganzhou City, Ganzhou East and Ruijin County are pro-
duced using a support vector machine (SVM) and random forest (RF), respectively. The LSMs of the above three regions 
are then extracted by mask from the LSM of Ganzhou City, along with the LSMs of Ruijin County from Ganzhou East. 
Additionally, LSMs of Ruijin at various mapping unit scales are generated in accordance. Accuracy and landslide suscepti-
bility indexes (LSIs) distribution are used to express LSP uncertainties. The LSP uncertainties under grid units significantly 
decrease as study area scales decrease from Ganzhou City, Ganzhou East to Ruijin County, whereas those under slope units 
are less affected by study area scales. Of course, attentions should also be paid to the broader representativeness of large 
study areas. The LSP accuracy of slope units increases by about 6%–10% compared with those under grid units with 30 m 
and 60 m resolution in the same study area's scale. The significance of environmental factors exhibits an averaging trend as 
study area scale increases from small to large. The importance of environmental factors varies greatly with the 60 m grid 
unit, but it tends to be consistent to some extent in the 30 m grid unit and the slope unit.
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Graphic abstract

Highlights

• Influences of study area scale and mapping unit scale on the LSP uncertainties are explored;
• LSP accuracy increases while uncertainty decreases from a large to a smaller area scale under grid units;
• LSP accuracy and uncertainty under slope units are less affected by study area scales;
• Importance of environmental factors shows an averaging trend from a small to a larger area scale;
• Slope units are shown to be superior to grid units for LSP modeling.

Keywords Landslide susceptibility prediction · Uncertainty analysis · Study areas scales · Mapping unit scales · Slope 
units · Random forest

Abbreviations
LSP  Landslide susceptibility prediction
LSM  Landslide susceptibility map
LSIs  Landslide susceptibility indexes
DEM  Digital Elevation Model
RF  Random forest
SVM  Support vector machine
AUC   Area under the receiver operation characteristic curve

1 Introduction

Landslides are regarded as complex geological phenomena, 
and they pose a significant risk to human life, property and 
living conditions (Froude and Petley 2018; Haque et al. 

2019; Wu et al. 2022). High-precision landslide suscepti-
bility maps (LSMs) are helpful for the rational allocation 
of land resources and the reduction of pertinent decision-
making risks.

Nowadays, Landslide susceptibility prediction (LSP) is 
still a significant research topic around the worldwide (Xu 
et al. 2012). Numerous uncertainty issues, including study 
area scales (Thi Ngo et al. 2021), mapping units scales (such 
as grid units and slope units) (Huang et al. 2021a), the quan-
tity of landslide samples (Huang et al. 2022), the quality 
of original data sources(Chen et al. 2020b; Schlögel et al. 
2018), the choice and combination of environmental factors 
(Huang et al. 2021b) and the selection of LSP models (such 
as data-driven models) (Cavazzi et al. 2013), all have an 
effect on the LSP modeling process (Zhao et al. 2024). These 
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uncertainty issues are viewed as errors in a broader sense 
and have an impact on our comprehension of LSP modeling.

Among the above uncertainty issues, the spatial patterns 
of landslides exhibit glaring differences and further trans-
formed to the LSP results under different study area scales 
and mapping unit scales, although few attentions have been 
paid (Miller et al. 2015; Yu and Gao 2020). LSP modelling 
requires the preliminary selection of a suitable scale, such 
as county scale, watershed scale and/or large regional scale. 
The study scale also includes mapping unit scales that maxi-
mizes internal homogeneity and between-units heterogeneity 
(Calvello et al. 2013). Both scale characteristics can be found 
in remote sensing images, DEMs and other data sources used 
to describe topographic and geological characteristics, as 
well as land surface characteristics. Meanwhile, the combi-
nations of environmental factors and LSP models have vary-
ing degrees of adaptability under various study areas scales 
and mapping unit scales. The reliability and accuracy of LSP 
results may be lowered, if the uncertainty issues related to 
both scales are poorly taken into account and the global and 
local study areas are generalized (Miller et al. 2015; Zhu 
et al. 2018a). This is because there will be no "adaptation" 
to local conditions for different scales (Huang et al. 2023b). 
Furthermore, few studies have explored how to jointly opti-
mize various study area scales with landslide mapping unit 
scales and their various spatial resolutions. Grid units, for 
instance, are suitable for LSP under various spatial resolu-
tion conditions, while slope units, based on high-resolution 
Digital Elevation Model (DEM) data, are more suitable 
for both LSP and risk warning in a variety of study areas 
(Hodasová and Bednarik 2021).

To sum up, should LSP modeling be done at what study 
area scale and/or mapping unit scale? And do both scales 
affect how environmental factors are mapping for landslide 
evolution? These two problems suggest that joint considera-
tion of study area scale and mapping unit scale is very crucial 
for LSP modeling. This study aims to investigate the effects 
of different study area scales and mapping unit scales on the 
uncertainty rules of LSP. The Ganzhou City, Ganzhou East, 
and Ruijin County in China were selected to represent differ-
ent study area scales. Different mapping unit scales are repre-
sented by grid units with spatial resolution of 30 and 60 m, as 
well as slope units that were extracted by multi-scale segmen-
tation method, so as to realize modeling uncertainty analysis 
under the combined working conditions of different scales.

2  Review of related studies

The identification of uncertainty issues is crucial to LSP 
modeling. This paper primarily examines these uncertainty 
issues, including the determination of study area scales 

and mapping unit scales, as well as the environmental fac-
tors selection.

2.1  Influence of environmental factors selection 
on LSP

In the past 30 years, countless environmental factors, such 
as slope, lithology, aspect, hydrology, river, curvature, et al., 
have been proposed based on mapping units in various geo-
logical and climatic settings (Yang et al. 2023). By using 
synonyms and environmental factors with similar descriptors 
but not necessarily identical meanings, Reichenbach et al. 
(2018) reclassified a large number of environmental factors 
into 23 categories. The 23 identified categories were then 
divided into five subject groups, including geology, hydrol-
ogy, land cover, landform, and other variables. According 
to an analysis of the literature database, researchers prefer 
"simple" (direct) measures of landform, such as DEM, relief, 
slope, aspect, and curvature, and the majority of articles 
used environmental factors that were primarily related to 
landform (Gaidzik and Ramirez-Herrera 2021). We observe 
that slope has consistently shown to be the most useful envi-
ronmental factor for LSP (Loche et al. 2022). From 5 to 22 
environmental factors, with an average of 9 variables, were 
used for each individual SLP modeling, which may have 
been constrained by data sources and spatial analysis tech-
niques. Most studies only include more than ten types of eas-
ily measurable environmental factors. For instance, Huang 
et al. (2020a) chose 13 different categories of environmental 
factors, including lithology, topographic wetness, slope, and 
aspect. Hong et al. (2018) chose 16 environmental factors for 
LSP, including lithology, topography, hydrology, and aver-
age annual rainfall. The accuracy of the LSP modeling will 
inevitably be impacted by the use of these few categories of 
environmental factors, which make it difficult to accurately 
reflect landslide characteristics (Huang et al. 2022).

Furthermore, it can be challenging to assess the signifi-
cance of different environmental factors on LSP modeling 
in a study area (Huang et al. 2020b; Huang et al. 2023c). 
As a result, in order to accurately represent the develop-
ment characteristics of landslides from various angles, it 
is necessary to gather a relatively rich category of envi-
ronmental factors in the early stages of modeling (Youssef 
and Pourghasemi 2021)., The slope stability characteris-
tics under heavy rainfall, engineering slope cutting, land 
cover, slope body structure, and soil mechanical proper-
ties can be taken into consideration based on the evolu-
tion characteristics of rainfall-type landslides in Ganzhou 
City of China. The analysis of annual rainfall, rainstorm 
frequency, topography, highway density, vegetation cover, 
soil clay/sand content, accumulation layer thickness, and 
rock weathering intensity can be focused on as the appro-
priate environmental factors (Li et al. 2021). Landform 
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and lithology environment factors (DEM, slope, aspect, 
plan curvature, profile curvature, slope forms, topography 
relief, DEM variation, cutting depth, surface roughness, 
lithology and fault), hydrological and land cover environ-
ment factors, and other environmental factors are all cat-
egorized into 21 classes that correspond to four thematic 
clusters in Ganzhou City (terrain wetness indexes, modi-
fied normalized differential water index, drainage density, 
average rainfall, normalized differential vegetable index, 
normalized differential building index, road density and 
population density).

2.2  Review of influences of study area scales on LSP 
modelling

There is a lot of subjectivity and uncertainty because most 
studies do not take into account the spatial correlation of 
the study area with its surroundings (Shirzadi et al. 2019). 
In general, soil types are similar between regions with 
similar landforms, climates, lithologies, and other condi-
tions. The corresponding LSP results ought to be similar 
even though these locations are discontinuous in space 
because they typically have comparable environmental fac-
tors or combinations of environmental factors. Geographi-
cal features are closer together in environments that are 
more similar to one another (Zhu et al. 2018b). Landslide 
disasters are a type of environmental geological problem 
with specific spatiotemporal properties, and they contain 
relative properties at various scales. They are natural phe-
nomena that occur at specific times and locations (Shou 
and Lin 2016; Zhu et al. 2015a). Additionally, because it is 
a regional natural condition, its scale has an impact on how 
environmental factors are characterized and evolve (Fres-
sard et al. 2014; Kuan-Tsung et al. 2019; Zhu et al. 2015b). 
The dominant environmental factors affecting landslide 
evolution are different as a result of different geographical 
environments, climatic conditions, and human activities at 
various scales within a study area, which causes different 
spatial distribution of landslides (Miller et al. 2015).

The weight of spatially associated environmental fac-
tors and different sample quantities used for LSP model 
building can both be directly impacted by study areas with 
different scales. The first and most important step in LSP 
is the selection of environmental factors in the study area 
(Shi et al. 2018). In study areas with various scales, these 
landslide-related environmental factors, particularly ter-
rain and hydrological factors, have a significant impact 
on LSP (Du et al. 2020; Zhu et al. 2018b). The actual 
characteristics of environmental factors are weakened or 
confused by a large study area (Yu and Gao 2020). Envi-
ronmental factors can reflect changes in landslides in 
micro-regional environments in small study area (Kang 

et al. 2016; Zhu et al. 2018a). Additionally, the primary 
environmental factors vary by study areas and scale.

2.3  Review of influences of mapping unit scales 
on LSP modelling

A mapping unit is a section of the land surface that is distin-
guished from neighboring units by a unique set of ground 
conditions (Reichenbach et al. 2018). A mapping unit of 
landslides and associated environmental factors for LSP can 
be thought of as an observation window at the scale of the 
analysis, though it is difficult to choose the best observation 
window (Loche et al. 2022). All of the commonly employed 
mapping units for LSP that have been suggested in the litera-
ture can be categorized into one of the following groups: I 
grid units, II slope units, III small watershed units, IV topo-
graphic units, V political or administrative units (Alvioli 
et al. 2016; Drǎguţ et al. 2010). Grid units and slope units 
are thought to be the two primary types of object units used 
for LSP, according to related literature (Huang et al. 2021a).

The most common mapping unit was by far grid units, 
which were distinguished by their constant shape and regular 
grid (Li et al. 2021). At the same time, we found that most 
LSP models used grid units with the same resolution for 
environmental and landslide factors, while very few used 
different resolutions for the mapping unit and the DEM 
(Gaidzik and Ramirez-Herrera 2021). The microtopographic 
morphometric signature can be captured in great detail by 
using small grid units (5 m × 5 m or less), but this may have 
little to or no geomorphological, geological, or geomorphic 
climatic significance for large study scale areas, where a 
coarser resolution DEM would be more effective (Salciarini 
et al. 2016). Furthermore, the size of the spatial sampling 
unit, which directly affects the number of samples required 
to build the model and the overall number of grids in the 
study area, is the essence of spatial resolution (Guo et al. 
2022).

Slope units have received a lot of attention in the last 
15 years because they accurately reflect the physical rela-
tionships between landslides and morphological features, 
but the extraction of slope units has always baffled cartog-
raphers (Wang et al. 2018). Meanwhile, the slope unit is 
derived from the grid units, and it should meet the follow-
ing three conditions: (1) continuous closed geographical 
space; (2) uniform slope and aspect; (3) no jump in surface 
slope. Based on the above requirements, an object-oriented 
multi-scale image segmentation method is used to extract the 
slope units in the study area (Liu et al. 2023). This method 
is applicable in various study areas with different landforms, 
and is more efficient and accurate comparing to other slope 
unit extraction methods (Chang et al. 2023; Ma et al. 2023). 
The image pixel is transformed into the slope through multi-
scale segmentation, which collects the pixels with the same 
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spatial and spectral characteristics into a "homogeneous and 
uniform" unit (Lim and Keles 2019). The size of the spa-
tial sampling unit, which determines how many samples are 
needed to build the model and how many grids are present 
in the study area, is the key to understanding spatial resolu-
tion. The object units for LSP model building in this study 
are slope units obtained by multi-scale segmentation method 
and grid units with spatial resolution of 30 m and 60 m.

3  Summary

To determine LSP, a variety of methods have been put forth 
(Reichstein et al. 2019). Despite the variations, the reproduc-
ibility issue of "to what extent this conclusion can be applied 
to other regions" (Liu et al. 2022) affects all methods. The 
majority of geo-disaster studies lack a natural analytical 
scale, and the rules discovered in a study region depend 
on how the mapping units are divided, leading to variable 
mapping unit issues. The mapping unit issue is more appar-
ent, particularly when analysis based on spatial extensibility 
environmental factors. The model is also impacted by the 
ambiguous geographic study area scales. Finding univer-
sal laws is made more difficult by the fact that various pat-
terns can appear within the same study area (Liu 2022). The 
choice of the study area scale and the division of the map-
ping unit scale determine which rule is more accurate. The 
overall goal of this study is to conduct more in-depth analy-
ses of LSP at various study area and mapping unit scales.

4  Methodologies

This study makes extensive use of multi-source remote sens-
ing technology (Lissak et al. 2020), geographic information 
systems (Chen and Chen 2021), and data-driven models 
(Chen et al. 2020a) to construct LSP modelling in order 
to discuss the effects of study with various scales on LSP 
modeling. Three distinct study are chosen: Ganzhou City 
in China, Ganzhou City's eastern region (Ganzhou East), 
and Ruijin County in Ganzhou East's a region. To represent 
various mapping unit scales, grid units with 30 m and 60 m 
spatial resolutions, as well as slope units extracted using 
the multi-scale segmentation method, are used. In order to 
create landslide and non-landslide spatial datasets, the Gan-
zhou City landslide inventory data is first determined, and 
21 landslide environmental factors are extracted.

The above spatial datasets are then trained and tested 
using SVM and RF models in order to obtain LSMs for Gan-
zhou City. In order to address LSP in Ganzhou East and Rui-
jin County, respectively, landslide information for Ganzhou 
East and Ruijin County is also extracted from Ganzhou City, 
followed by a repetition of the aforementioned modeling 

process in Ganzhou City. The LSMs of Ganzhou East and 
Ruijin County are then extracted using masks from those of 
Ganzhou City, and the LSMs of Ruijin County are extracted 
using masks from that of Ganzhou East. In order to analyze 
the uncertainty rules of LSP modeling under study areas 
with different scales based on LSMs predicted and masked 
through the aforementioned 9 types of conditions, accuracy 
and distribution rule of LSIs are adopted. The specific flow 
chart used in this study is shown in Fig. 1.

4.1  Multi‑scale segmentation method

In order to study regional LSP at various study area scales, 
grid units and slope units have chosen as mapping units 
(Alvioli et al. 2020). The ArcGIS 10.1 platform makes it 
relatively easy for grid units to implement LSP at various 
study area scales. The multi-scale segmentation method's 
extracted slope units are not a single pixel, but rather a 
homogeneous object with spectral features, spatial features, 
and shape features (Alvioli et al. 2022). Through iterative 
updating, adjacent pixels with similar spectral and shape 
features are combined into slope units with the same homo-
geneous properties based on the top-down region-growing 
segmentation algorithm of pixels (Fig. 2). The weighted sum 
of spectral and shape heterogeneity yields the heterogeneity 
index f (Eq. (1)) between slope units (Huang et al. 2021a).

where wcolor is the spectral weight, hcolor represents the object 
spectral heterogeneity, which is determined by the scale and 
spectral standard deviation of the object, and hshape repre-
sents the object shape heterogeneity, which is determined by 
the weighted sum of compactness and smoothness.

4.2  Machine learning models

The LSP models are also mainly divided into deterministic 
models, knowledge-driven models and machine learning 
models (Du et al. 2020; Huang et al. 2020a; Zheng et al. 
2019). The deterministic model’s reliance on many com-
plex soil mechanical parameters and the knowledge-driven 
model’s reliance on human subjectivity can be somewhat 
reduced by the data-driven model, as well as the LSP accu-
racy can be improved when there are gaps in the data or the 
data is of poor quality (Juliev et al. 2019; Pham et al. 2022; 
Zheng et al. 2023). To determine characteristics and discri-
minant rules of landslide occurrence, data-driven models 
primarily use the internal relationships between known land-
slides and different environmental factors (Hu et al. 2020; 
Sun et al. 2020). At present, remote sensing and machine 
learning models have been widely used in the regional LSP 
and a series of research results have been achieved (Pradhan 

(1)f = wcolorhcolor + (1 − wcolor)hshape
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et al. 2023). Logistic regression, artificial neural networks, 
support vector machine (SVM), boosting algorithm, deci-
sion tree, random forest (RF), and deep learning models are 
typical examples of machine learning models (Huang et al. 
2020a; Lombardo and Mai 2018; Lombardo and Tanyas 
2020; Xiao and Zhang 2023; Zhao et al. 2019). Merghadi 
et al. (2020) have reviewed and compared various machine 
learning algorithms for landslide susceptibility studies. 
Among them, SVM and RF models are the most widely 
used, have the best prediction accuracy, and are not sensitive 
to the multicollinearity of environmental factors.

4.2.1  Support vector machine

SVMs are conducted to find the best hyperplane to use for 
modeling and to use support vectors on the hyperplane to 

maximize the space between classes. By converting the input 
variables into an n-dimensional eigenspace using a kernel 
function, nonlinear data can be linearly separable. mi repre-
sents each environmental factor for a set of linearly separable 
training vectors mi(i = 1, 2,… , n) , with the corresponding 
output categories yi = ±1 being landslides and non-land-
slides, respectively. In order to categorize landslides, the 
maximum distance through n-dimensional hyperplanes is 
determined. Between them, 1

2
‖s‖2 is the widest spacing. 

Additionally, it uses relaxation variables ξi to control classi-
fication error for data with linear inseparability, and the cor-
responding constraint condition is yi((s ⋅ mi) + b) ≥ 1 − �i . 
Furthermore, by introducing �(0, 1) , incorrect classification 
is taken into account. Equation (2) displays the hyperplane 
distance, where λi is the lagrange multiplier, b is the con-
stant, ||s|| is the norm of the normal hyperplane. The linear, 

Fig. 1  Flow chart of LSP under 
different scales of study areas 
(AUC is the area under the 
receiver operating characteristic 
curve, Terrain wetness indexes, 
modified normalized differen-
tial water index, normalized 
differential vegetable index, 
normalized differential building 
index)

Fig. 2  Workflow of slope units 
extracted by multi-scale seg-
mentation method
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polynomial, radial basis, and Sigmoid functions are typi-
cally the main components of the SVM kernel function. This 
study (Xu et al. 2012) uses the radial basis kernel function, 
which has a good application in LSP.

4.2.2  Random forest

To diversify the generated classification trees, the RF is to 
build various training datasets extracted by putting back and 
to pick various features at random (Youssef et al. 2016). 
A collection of various classification trees can more fully 
reflect factual findings than a single tree, improve model 
predictability, and prevent over-fitting. In addition, RF uses 
out-of-bag error to achieve unbiased generalization error 
estimation, and it gradually converges as the number of trees 
grows. The out-of-bag error can also serve as a proxy for the 
significance of each factor variable. When only one variable 
is changing in out-of-bag data, the importance of the factor 
variable is determined by the size of the out-of-bag error 
change. Mean decrease accuracy and mean decrease Gini 
are also used to gauge the significance of the input variable. 
Additionally, the number of trees and features in the model 
is a key factor in determining how well it predicts (Huang 
et al. 2022).

4.3  LSP results assessment

AUC accuracy evaluation and LSI distribution rule are the 
two factors that most clearly illustrate the uncertainties in 
LSP modeling. AUC value is a metric used to quantitatively 
assess the overall effectiveness of LSPs (Garosi et al. 2019). 
The receiver operation characteristic is the following: first, 
LSIs are calculated, and various samples in the test datasets 
are ranked; second, different cut-off points are chosen in this 
order; third, the samples are used one at a time as positive 
samples to predict; and finally, the true positive rate and 
false positive rate calculated in the current predictor each 
time are taken into consideration as vertical and horizontal 
axes in the receiver operation characteristic curve. Better 
LSP performance is suggested by a higher AUC. Accord-
ing to Eq. (3), the AUC value represents the likelihood that 
randomly selected positive samples will rank higher than 
randomly selected negative samples.

(2)L =
1

2
‖s‖2 − 1

�n

n�

i=1

�i

(3)AUC =

∑n0
i=1

ri − n0 ×
�
n0 + 1

��
2

n0 × n1

where n0 represents the number of negative samples, n1 
represents the number of positive samples, ri represents the 
order of the ith negative sample in entire test samples. The 
mean value and standard deviation, on the other hand, pri-
marily reflect the different distribution rules of LSIs.

Additionally, the mean value depicts the LSIs' average 
level of distribution, and the standard deviation shows how 
widely distributed they are. The distribution rule of LSIs 
as a whole is analyzed using the mean value and standard 
deviation, which offers theoretical direction for LSP in the 
research area (Huang et al. 2020a).

5  Study area and materials

5.1  Study area

Ganzhou City is situated where the Jiangnan Hills and 
Lingnan Mountains meet (Figs. 3b, c). Cities like Ningdu, 
Shicheng, Ruijin, and Huichang are located in Ganzhou East 
(Fig. 3d). In the region, metamorphic rocks, such as Triassic 
strata, Cretaceous shale, siltstone, Cambrian strata, Sinian 
phyllite, and slate, as well as secondary intrusive magmatic 
rocks from each era, make up the majority of the exposed 
stratigraphic layers. There have been 2496 geological disas-
ters overall, with a 17.59/100  km2 average surface density. 
Eastern Ganzhou City's Ruijin County is situated at north-
ern latitudes of 25°30' and 26°20' and eastern longitudes of 
115°42' to 116°22'. Figures 3c, e show that rather than being 
next to one another, the study areas span from Ganzhou City 
to Ruijin County.

5.2  Landslide inventory information

Numerous environmental factors can cause landslides, and 
each environmental factor has a different weight and effect 
on the likelihood of a landslide (Abraham et al. 2020; Shi 
et al. 2018). The performance of the LSP in a study area 
is determined by the quality of the landslide data. Under-
standing the locations, movement types, triggering times, 
scales, and related evolution of geological environments of 
landslides from space is aided by information from landslide 
inventories (Franceschini et al. 2022; Segoni et al. 2018). 
Table 1 displays a series of data used for LSP.

The information is primarily derived from field surveys 
and high-resolution image interpretation of local geological 
disasters at 1:100000 scale. According to landslide inven-
tory in Ganzhou City, there were 9555 disasters, including 
3855 soil landslides with landslide density of 78/100  km2; 
by the end of 2014, there had also been a significant number 
of collapses, debris flows, and ground collapses in the study 
areas (Hungr et al. 2014). In Ganzhou East, there were 2041 
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Fig. 3  Landslide location in the 
study area

Table 1  Data lists used for LSP

Data types Grid resolution Data usage Extraction method

Landsat-8 MT Multispectral 8/30 m Normalized differential vegetable index; normal-
ized differential building index; modified 
normalized differential water index

Automatic information extraction in ENVI 5.4 
software

DEM 30 m Terrain factors, drainage density and Terrain 
wetness indexes

ArcGIS spatial analysis tools

Geological map 1:100000 Lithology and fault lines Vectorization
The network (http:// 

solar gis. cn/ imaps/)
30 m Obtaining population density and total radiation Data collation, interpolation

Landsat image Obtaining road density Automatic extraction in ArcGIS 10.3 software
Hydrological station Rainfall Data collation, interpolation analysis

http://solargis.cn/imaps/
http://solargis.cn/imaps/
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disasters, of which 1519 were landslides, with a landslide 
density of 14.07/100  km2, and they primarily occurred in the 
southern and eastern Ningdu City, the northern and north-
eastern Shicheng City, the northwestern Ruijin County, and 
the southern Huichang City; Additionally, Ruijin County had 
414 disasters, of which 370 were small- and medium-sized 
landslides, with a landslide density of 15.18/100  km2, which 
occupies 89% of the total disaster amount and is mainly dis-
tributed in the northern mountainous area (Figs. 3c–e).

5.3  Landslide related environmental factors

There is no set standard for the selection of environmental 
factors plays, despite the fact that it has a huge impact on 
the quality of an LSM during the LSP process (Kang et al. 
2016). Real-time rainfall (Fustos et al. 2020) and earth-
quakes are typically the main outside influence on initial 
landslides. The slope and basic environmental factors nearby 
also have an impact on the stability of landslides, particu-
larly in small areas with similar external factors. Addition-
ally, nearby basic environmental elements like topography, 
geology, hydrology, and vegetation conditions heavily influ-
ence landslide stability. Additionally, this study chose the 21 
landslide environmental factors listed in Table 2 based on 
previous LSP studies (Chen and Li 2020) and an analysis of 
environmental traits in study areas.

5.3.1  Topographic environmental factors

The influence of geography on landslide evolution can be 
reflected in terrain factors. 10 different types of terrain 
factors are obtained in this study using DEM (Figs. 4a–j). 
Climate can be influenced by elevation (Fig. 4a), can low- 
and middle-altitude regions are frequently conducive to the 
formation of landslides, which are frequently cited as envi-
ronmental factors (Shahabi et al. 2014). Due to its direct 
impact on the shear stress that leads to landslide instability 
and failure, slope is an significant factor in promoting the 

occurrence of landslides (Hong et al. 2017a). According to 
statistics, the majority of the slopes in Ganzhou City where 
landslides have occurred are between 15° and 45° (Fig. 4b). 
However, there are some variations in the slope-generating 
landslides in various locations with various lithologies. For 
instance, landslides typically occur on slopes between 15° 
and 25° in hilly areas, whereas they typically happen on 
slopes between 30° and 45°, in middle and low mountainous 
areas. Figure 4c shows the variation in soil moisture con-
tent and the distribution of vegetation cover in all directions 
(Hong et al. 2017b). The plan curvature and profile curvature 
in Figs. 4d, e show, respectively, how the topographic gradi-
ent affects flow velocity and convergence (Chen et al. 2017). 
The geometries of various slopes are known as slope forms 
(Fig. 4f). Both the elevation variation coefficient (Fig. 4h) 
and the topographic relief (Fig. 4g) are macroscopic indices 
that reflect the degree of surface relief and fragmentation. 
For the purpose of analyzing soil loss and the development 
of surface erosion, surface roughness (Fig. 4i) and surface 
cutting depth (Fig. 4j) are crucial reference indices.

5.3.2  Geology factors

The permeability, matric suction, and shear strength of rock 
and soil are all different, which is reflected in the difference 
in lithological and physical properties (Hong et al. 2017b). 
The primary lithology types in Ganzhou City are clastic 
and carbonate rocks, which are sporadically distributed in 
counties, metamorphic rocks which are primarily found in 
the western and southeastern regions of the study area, and 
metamorphic rocks which are widely distributed near rivers 
and other bodies of water. Additionally, geological maps of 
Ganzhou City at a scale of 1:100000 are used to generate the 
lithologies in various subareas (Fig. 4k). The metamorphic 
strata with a high incidence of geological disasters, which 
account for 1623 landslides 42% of the total number of land-
slides, are followed by the clastic, magmatic, and carbonate 
strata.

Table 2  Environmental factor 
types

Types Environmental factors Types Environmental factors

Terrain factors DEM Hydrology factors Terrain wetness indexes
Slope Modified normalized differential water index
Aspect Drainage density
Plan curvature Average rainfall
Profile curvature Total radiation
Slope forms Land cover factors normalized differential vegetable index; 

normalized differential building index
Topography relief Road density
DEM variation Population density
Surface cutting depth Geology factors Lithology
Surface roughness Distance to faults
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In the geological structure (Fig. 4l) also frequently has a 
negative effect on landslide stability, and tectonic movement 
is accompanied by differential lifting of faults and folds, 
which frequently creates a structural weak zone and lowers, 
the stability of rock and soil mass. The deep Anyuan—Ying-
tan, Xunwu—Ruijin, Dayu—Nancheng and Quannan—Any-
uan Faults are the main faults in Ganzhou City. The effect of 
geology on the evolution of landslides is represented in this 
study by lithology and the distance to faults.

5.3.3  Hydrological environmental factors

Topographic and remote sensing hydrological factors can 
be used to categorize hydrological environmental factors. 
The soil moisture content and groundwater distribution are 
shown by the terrain wetness indexes (Fig. 5a) (Xu et al. 

2012). In the visible and near-infrared bands, there are clear 
distinctions between the spectral reflectance of water and 
vegetation. Similar to the modified normalized differential 
water index (Fig. 5b), which is primarily used to identify 
surface water, the terrain wetness indexes can effectively 
extract comprehensive water information, such as surface 
runoff and groundwater. Drainage density (Fig. 5c) is used 
to represent the impact of rivers on landslide occurrences 
because rivers' scour and erosion have significant detrimen-
tal effects on landslide stability.

Total radiation, which has a significant impact on surface 
vegetation, soil humidity, and atmospheric temperature is the 
sum of direct solar radiation and sky radiation received from 
horizontal surfaces and the main energy source of atmos-
pheric circulation and water circulation (Huang et al. 2020c). 
Specifically, total radiation is the main energy source for 

Fig. 4  Landform and lithology environment factor maps in Ganzhou City a DEM b Slope c Aspect d Plan curvature e Profile curvature f Slope 
forms g Topography relief h DEM variation i Cutting depth j Surface roughness k Lithology l Fault
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plants to carry out photosynthesis, and its intensity and dura-
tion will affect the evaporation and loss of soil water, and 
also change the temperature by affecting the surface energy 
balance. One of the primary factors causing landslide evo-
lution in Ganzhou City is average annual rainfall (Fig. 5d). 
The weight of the landslide mass is greatly increased by 
rainfall infiltration, creating a weak zone. Additionally, as 
the landslide mass's pore water pressure rises, the effective 
stress decreases, which, in turn, lowers friction resistance 
in the sliding zone (Bai et al. 2020). In addition, factors 
affecting precipitation typically include total precipitation, 
rainfall days, and daily precipitation of more than 50 mm. 
The easiest way to quantify the impact of rainfall on land-
slide evolution is to use the annual average rainfall (Abra-
ham et al. 2020).

5.3.4  Land cover factors

In addition to improving geotechnical physical properties 
through root action, vegetation also successfully lowers the 
erosion and infiltration effect of rainfall on landslides, affect-
ing the stability of the landslide. The density and distribution 
of surface vegetation can be represented by the normalized 
differential vegetable index (Fig. 5e), which also prevents 
the evolution of landslides. In order to represent the distribu-
tion of residential building land and comprehend the dense 
local residential area, the normalized differential building 

index (Fig. 5f) shows relatively common building informa-
tion that has been extracted through remote sensing image 
data (Chang et al. 2020). Path/row 121/42 Landsat 8 images 
with a 30 m resolution taken on October 3, 2013 are used to 
calculate the normalized differential vegetable index and the 
normalized differential building index. The study area's pop-
ulation density can be measured using the population density 
(Fig. 5f), which is defined as the number of people per unit 
area. Landslides are negatively impacted by all phases of 
road construction and operation, and during the rainy sea-
son, artificially created high and steep slopes, excavation, 
blasting, and loading are common causes of landslides. To 
represent the impact of road and traffic facilities on landslide 
occurrences, the road density (Fig. 5g) is used.

5.4  Establishment of LSP modelling spatial dataset

5.4.1  Establishment of grid‑unit dataset

As the mapping units for LSP in this study, related data 
sources with various resolutions are resampled to grid 
units with 30 m and 60 m resolution. This research area 
in Ganzhou City spans a vast 10,794.86  km2 areas. Grid 
units of 45,525,924 (10,942,367), 9,310,512 (3,011,683), 
and 2,715,630 (687,633) are used to divide the study areas 
of Ganzhou City, Ganzhou East, and Ruijin County under 
30 m (60 m) raster resolution, respectively. Ganzhou City 

Fig. 5  Hydrological and land cover environment factor maps in Ganzhou City a TWI b MNDWI c Drainage density d Average rainfall e NDVI f 
NDBI g Road density h Population density
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saw a total of 3855 landslides, which were divided into 
53,078 (13,371), 17,115 (4499), and 5482 (1396) landslide 
grid units, respectively. Of these, 1519 landslides happened 
in Ganzhou East and 366 landslides happened in Ruijin 
County. In addition, a random number generator chooses 
the same number of non-landslide grids as corresponding 
landslide grids in the study areas. By randomly selecting 
non-landslides in non-landslide area, we can ensure that 
non-landslides are not concentered (Chang et al. 2023). 
Landslides and non-landslides are output variables with 
assigned values of 1 and 0, which build training datasets 
and test datasets with a random partition of 7:3. The origi-
nal 21 environmental factors are extracted as model input 
variables. To calculate LSIs, the trained model's original 
grid unit values from the entire study area are substituted 
in, and the model is then divided into 5 classes using the 
natural break point method (Li et al. 2019).

The input datasets of landslides used for modelling are 
shown in Table 3, and all polygonal landslide surfaces are 
converted into point data in ArcGIS 10.1 software. Through 
resampling and correlation analysis of DEM data with 30 m 
resolution and other relevant environmental factors, the envi-
ronmental factors in various study areas are discovered. 
Figures 4 and 5 display the environmental factor maps of 
Ganzhou City.

5.4.2  Establishment of slope‑unit datasets

In this study, slope units are extracted and a dataset is 
established using the multi-scale segmentation method. 
The software eCognition 8.7 performs object segmenta-
tion on the shaded relief and terrain aspect images using 
a multi-resolution segmentation algorithm. Scale param-
eters, shape weight, and compactness weight should be set 
when performing multi-scale segmentation. The landslide 

morphology and scale characteristics are combined with the 
literature's trial-and-error method (Huang et al. 2020b), and 
the parameters of scale, shape, and compactness are set as 
20, 0.8, and 0.8, respectively, to extract the ideal slope unit.

Based on the multi-scale segmentation method, the study 
areas, including Ganzhou City, Ganzhou East, and Ruijin 
County, are divided into slope units of 296,003, 78,565, and 
17,989, respectively. As positive sample data for slope unit 
research, Ganzhou City experienced a total of 3855 land-
slides, of which 366 occurred in Ruijin County and 1519 
in Ganzhou East. The results are displayed in Table 3 and 
are consistent with grid units' method for the selection of 
non-landslide sample data and the division of training and 
test datasets.

6  Results of LSP under different scales 
of study area and mapping unit

This study addresses RF modelling of spatial datasets at var-
ious study area scales using the random forest package of the 
R programming language (Youssef and Pourghasemi 2021). 
The number of the factor features and trees, which can be 
obtained by automatic parameter screening and out-of-bag 
errors for the best parameters (Hong et al. 2019), is what pri-
marily controls the RF's accuracy. The finding indicate that 
the number of factors features of 5 and the number of trees 
of 800 are the RF model's ideal parameters in Ganzhou City. 
Only a representative set of the parameters of other working 
conditions are presented because they do not significantly 
differ from those of this group. Then, using these parameters 
at various study area scales, LSIs for slope units and grid 
units with 30 m and 60 m resolution are predicted. By using 
the natural break point method, we finally categorize them 
into five classes of susceptibility zones (Li et al. 2021).

Table 3  Training datasets and test datasets of landslides in the study

Study areas Mapping unit Number of 
Landslides

Units in study area Landslide units Landslide density Training 
datasets/test 
datasets

Ganzhou City Grid unit of 30 m 3855 45,525,924 53,078 0.029% 18719/8023
Ganzhou East 1519 11,972,468 17,115 0.046% 5977/2561
Ruijing City 366 2,715,630 5482 0.052% 1954/838
Ganzhou City Grid unit of 60 m 3855 10,942,367 13,371 0.122% 18719/8023
Ganzhou East 1519 3,011,683 4499 0.149% 6299/2699
Ruijing City 366 6,87,633 1396 0.203% 1954/838
Ganzhou City Slope unit 3855 2,96,003 3855 1.302% 3855
Ganzhou East 1519 78,565 1519 1.933% 1519
Ruijing City 366 17,989 366 2.035% 366
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6.1  Landslide susceptibility results under different 
study area scales

To represent the various study area scales, Ganzhou City, 
Ganzhou East (the eastern portion of Ganzhou City), and 
Ruijin County in Ganzhou East were chosen. Along with 
that, LSMs from Ganzhou East and Ruijin County are also 
extracted by mask from that of Ganzhou City, as are LSMs 
from Ruijin from Ganzhou East. The rule of the aforemen-
tioned six different conditions is used to analyze the results 
of the study area scales used to determine the susceptibility 
to landslides. As an illustration, consider the results of RF 

models for land-slide susceptibility based on slope units and 
grid units with a 30 m resolution. Figures 6 and 7 demon-
strate that (1) As the size of the study area gradually shrinks, 
so do the areas of the low- and very low-susceptibility zones. 
(2) In addition, there are notable differences between the 
LSMs of Ruijin County extracted from the mask and those 
that were predicted. (3) Furthermore, the high susceptibil-
ity zones are primarily found in low and medium altitude 
regions below 400 m, have slopes of 8° –20°, have topo-
graphic relief of 3–12, and have a profile curvature of 3–18, 
according to overlay analysis between environmental factor 
maps and LSMs obtained by the RF model.

Fig. 6  LSMs under different study area scales a Ganzhou City of 
slope units and RF model b Ganzhou East extracted from Ganzhou 
City c Ganzhou East of slope units and RF model d Ruijin extracted 

from Ganzhou City e Ruijin extracted from Ganzhou East f Ruijin 
County of slope units and RF model
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6.2  Landslide susceptibility results under different 
mapping unit scales

The different mapping unit scales are represented by the grid 
units with 30 m and 60 m resolutions as well as the slope 
units. The rules of the aforementioned various conditions 
are adopted to analyze the landslide susceptibility results 
under various mapping unit scales, using the results for Rui-
jin County under RF models, Ruijin County extracted from 
Ganzhou East, and Ruijin County extracted from Ganzhou 
City as examples. Figure 8 demonstrates that (1) the areas 
of the low- and very low-susceptibility zones grow as the 

resolution of the grid units gradually declines. (2) In the 
same study area, very low to moderate susceptibility zones 
based on slope units are smaller than those based on grid 
units. (3) In addition, the slope units and grid units in the 
LSMs of Ruijin County differ significantly.

6.3  Uncertainties of LSP results under different 
scales

Accuracy and LSI distribution rule are used to express LSP 
uncertainties. The mean value of LSIs declines and the 
standard deviation of LSIs increases along with an increase 

Fig. 7  LSM under different study area scales a Ganzhou City of 
30 m grid units and RF model b Ganzhou East extracted from Gan-
zhou City c Ganzhou East of 30 m grid units and RF model d Ruijin 

extracted from Ganzhou City e Ruijin extracted from Ganzhou East f 
Ruijin County of 30 m grid units and RF model
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Fig. 8  LSMs of Ruijin County based on different mapping units 
under RF a–c Ruijin extracted from Ganzhou City, Ruijin extracted 
from Ganzhou East, and Ruijin County based on 30  m Grid units 
d–f Ruijin extracted from Ganzhou City, Ruijin extracted from Gan-

zhou East, and Ruijin County based on 60  m Grid units g–i Ruijin 
extracted from Ganzhou City, Ruijin extracted from Ganzhou East, 
and Ruijin County based on Slope units
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in accuracy and efficiency, while the level of uncertainty in 
LSPs decreases. The key to assessing the impact of uncer-
tainties on LSP is the availability of LSIs with high accu-
racy, low mean, and high standard deviation.

LSP's success depends on the evaluation of the mode-
ling quality. The corresponding AUC values are used, and 
Table 4 displays the AUC values for slope and grid units 
(30 m/60 m) based on LSP modeling in study areas of vari-
ous scales. With the reduction in study area scale from Gan-
zhou to Ruijin County, there is a tendency for the LSP accu-
racy of slope and grid (30 m/60 m) units in various study 
area scales to increase. For instance, the RF model's AUC 
values for slope units are 0.936 in Ruijin County, 0.928 in 
Ganzhou East, and 0.947 in Ganzhou City, respectively. Grid 
units (30 m) in the RF model have AUC values of 0.918. 
0 in Ruijin County, 0.888 in Ganzhou East, and 0.915 in 
Ganzhou City. Grid units (60 m) in the RFmodel have the 
following AUC values: 0.884 in Ruijin County, 0.856 in 
Ganzhou East, and 0.848 in Ganzhou City. Additionally, the 
results for the LSP accuracy of Ruijin extracted from Gan-
zhou City, Ruijin extracted from Ganzhou East, and Ruijin 
County based on the mapping units under RF model are all 
the same.

The distribution rule of LSIs in the RF model is reflected 
in study areas with various scales and units using the mean 
value and standard deviation (Li et al. 2020). The mean 
value is used to measure the overall bias of LSIs, and the 
standard deviation shows how widely distributed LSIs are. 
In study areas with various scales, Table 5 displays the aver-
age values and standard deviation of slope and grid units 
(30 m/60 m) based on LSP modeling.

6.3.1  Accuracy assessment under different study area 
scales

The accuracy of LSIs predicted by the RF in study areas 
with different scales has an increasing tendency as the 
scale of the area decreases from Ganzhou to Ruijin County 
(Fig. 9). According to Figs. 9c and e, the AUC values for 
grid units (30 m/60 m) in the RF model are 0.918 (0.884) 
in Ruijin County, 0.888 (0.856) in Ganzhou East, and 0.915 
(0.848) in Ganzhou City. The AUC values in Ganzhou East 
and City are 0.888 (0.860) and 0.856 (0.831), respectively. 
There is a tendency for the LSP accuracy to decrease 
between Ganzhou East and that extracted by masking from 
Ganzhou City. Ruijin County has the highest AUC accuracy, 

Table 4  AUC accuracies of slope (grid) units in different study area scales based on RF (SVM) model

AUC SVM model RF model

Slope units Grid units (30 m) Grid units (60 m) Slope units Grid units (30 m) Grid units (60 m)

Ganzhou City 0.932 0.875 0.822 0.947 0.915 0.848
Ganzhou East 0.889 0.861 0.839 0.928 0.888 0.856
Ganzhou East extracted from Ganzhou 0.899 0.820 0.819 0.915 0.860 0.831
Ruijin County 0.934 0.882 0.873 0.936 0.918 0.884
Ruijin East extracted from Ganzhou 

East
0.932 0.854 0.831 0.939 0.880 0.838

Ruijin East extracted from Ganzhou 
City

0.946 0.848 0.820 0.949 0.881 0.839

Table 5  Mean and standard deviation values of mapping units in different study area scales based on RF and SVM

Mean SD SVM model RF model

Slope unit Grid units (30 m) Grid units (60 m) Slope unit Grid units (30 m) Grid units (60 m)

Ganzhou City 0.190/0.196 0.362/0.276 0.342/0.310 0.150/0.163 0.307/0.231 0.346/0.294
Ganzhou East 0.217/0.182 0.335/0.234 0.304/0.232 0.174/0.172 0.330/0.212 0.264/0.226
Ganzhou East extracted from Ganzhou 0.200/0.202 0.357/0.265 0.315/0.223 0.159/0.172 0.363/0.234 0.333/0.207
Ruijin County 0.300/0.282 0.280/0.272 0.243/0.258 0.268/0.221 0.279/0.273 0.226/0.216
Ruijin East extracted from Ganzhou 

East
0.273/0.219 0.333/0.275 0.323/0.254 0.240/0.228 0.325/0.227 0.276/0.211

Ruijin East extracted from Ganzhou 
City

0.350/0.293 0.361/0.285 0.336/0.231 0.243/0.221 0.368/0.250 0.340/0.201
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followed by Ruijin extracted from Ganzhou East and Ruijin 
extracted from Ganzhou City (Figs. 9b, d and f). The LSP 
accuracy of Ruijin County and those extracted by mask-
ing from Ganzhou East and Ganzhou City are significantly 
different.

6.3.2  Accuracy assessment under different mapping unit 
scales

The effects of slope units and grid units with 30 m and 60 m 
resolution on the accuracy of LSP modeling are discussed. 

Fig. 9  AUC values of differ-
ent study area scales based on 
slope units and grid units with 
30/60 m resolution under RF 
model a–b Slope units c–d Grid 
units with 30 m resolution e–f 
Grid units with 60 m resolution

Fig. 10  AUC values of different mapping units in different study area scales based on RF model a Ganzhou City b Ganzhou East c Ruijin 
County
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These are the findings:

(1) The LSP accuracies of slope units extracted by 
Multi-scale Segmentation method are higher than those 
of grid units, and the efficiency of LSIs has signifi-
cantly increased, along with a reduction in the scale of 
the region from Ganzhou to Ruijin County. The AUC 
values for the slope-based RF model (grid units with 
a 30 m resolution) are 0.936 (0.918) in Ruijin County, 
0.928 (0.888) in Ganzhou East, and 0.947 (0.915) in 
Ganzhou City, respectively (Fig. 10). The LSP accu-
racy of slope units based on RF model is higher than 
that of grid units in Ruijin County and that extracted 
by masking from Ganzhou East and Ganzhou City 
(Fig. 10), and the LSP accuracy of slope units in Gan-
zhou East and that extracted by masking from Ganzhou 
City is also better (Fig. 11).

(2) There are significant differences between LSP accuracy 
of grid units with 30 m and 60 m resolutions in Ruijin 
County and that extracted by masking from Ganzhou 
East and Ganzhou City. Grid units (30 m/60 m) in the 
RF model have AUC values that are 0.918 (0.884) in 
Ruijin County, 0.888 (0.856) in Ganzhou East, and 
0.915 (0.848) in Ganzhou City (Fig. 11). The AUC 
values in Ganzhou East and Ganzhou City are 0.888 

(0.860) and 0.856 (0.831), respectively. There is a ten-
dency for the LSP accuracy to decrease between Gan-
zhou East and that extracted by masking from Ganzhou 
City (Fig. 11). The LSP accuracy tends to decline in 
Ruijin County and that which was extracted by masking 
from Ganzhou East and Ganzhou City.

In conclusion, the LSP modeling shows that the LSP 
accuracy significantly rises as the size of the study areas 
decreases from Ganzhou City to Ruijin County. The LSP 
accuracy in Ruijin County that was extracted by mask-
ing from Ganzhou City is, in turn, less accurate than 
that in Ganzhou East and that in Ruijin County that was 
directly predicted. Furthermore, Ganzhou East's LSP 
accuracy, which was obtained by masking Ganzhou City, 
is lower than it is for Ganzhou East with direct predic-
tion, indicating LSP accuracies that are comparable to 
those of Ruijin County. The RF and SVM models in Rui-
jin County have the highest LSP accuracy, with the LSP 
accuracy in study areas with different scales tending to 
increase as study area scales are reduced. In addition, 
slope units extracted using the multi-scale segmentation 
method have higher LSP accuracy than grid units with a 
resolution of 30 m.

Fig. 11  AUC values of different mapping units in Ganzhou East and Ruijin County based on RF model a, d Slope units b, e Grid units with 
30 m resolution c, f Grid units with 60 m resolution
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6.3.3  Distribution of LSIs under different study area scales

In comparison to those extracted by masking from Gan-
zhou City and Ganzhou East, the distribution rule of the 
LSIs directly predicted in Ruijin County is significantly 
different. Slope units, for instance, have mean values of 
0.243 in Ruijin County, extracted from Ganzhou City, 
0.240 in Ruijin County, extracted from Ganzhou East, 
and 0.268 in Ruijin County, directly predicted by Ruijin 
County (Figs. 12 and 13). Additionally, the standard devia-
tion illustrates how, under the same circumstances, the LSI 
distribution differs from the mean value. The distribution 
of LSIs obtained by direct prediction in Ruijin County is 
more consistent with the actual distribution of landslide 
susceptibility, and there are significant differences between 
the extracted and directly predicted LSIs there. In contrast 
to that extracted by masking from Ganzhou City, which 
is consistent overall, the distribution rule of LSIs in Gan-
zhou East with direct prediction is more consistent with 
the actual distribution of landslide susceptibility.

6.3.4  Distribution of LSIs under different mapping unit 
scales

The mean value of LSIs tends to decrease as the scale of 
study area decreases for grid units, whereas slope units 
show the opposite trend in accordance with the influences 
of study areas with different scales on the distribution rule 
of LSIs (Table 5). Take grid units with 60 m resolution 
as example (Fig. 12). In study areas with various scales, 
the mean values of the LSIs in the RF model are 0.342 
in Ganzhou City, 0.264 in Ganzhou East, and 0.226 in 
Ruijin County. The standard deviation, however, exhibits 
the mean's opposite trend. When the scale of the study 
area is reduced for grid units, the mean value of the LSIs 
rises while the standard deviation falls. The trend for slope 
units is the opposite, and they are more accurate, have a 
higher mean value, and are more effective than grid units 
(Fig. 12).

Fig. 12  The distribution of LSIs with RF (SVM) model in Ganzhou City
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7  Discussion

In general, the statistical results of big data in a larger study 
area scale should be more consistent with the actual situation 
because there are more landslide samples, and the results of 
LSP can better reflect the general rule(Araújo et al. 2022). 
LSP results under various scales using SVM model are set 
as the second case to demonstrate the generalizability of 

small study area scale and slope unit as mapping units with 
better LSP accuracy and smaller uncertainty in LSP model-
ling, and small study area scale can better reflect the spe-
cific law in the local range. This is because the accuracy on 
the resulting model is inconsistent due to the need for more 
detailed data for a larger study area scale (Kulsoom et al. 
2023). Therefore, it is expected to provide higher modeling 
accuracy and effectiveness in large study areas scale with 

Fig. 13  The distribution of LSIs with RF (SVM) model in Ruijin County in study areas with different scales a–f Slope units g–l Grid units with 
30 m resolution
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detailed landslide samples and diverse environmental factors 
(Gupta and Shukla 2023). For more accurate environmen-
tal factors and better LSP accuracy, the study area must be 
scaled appropriately at this stage (Pellicani et al. 2017). The 
importance of environmental factors and the accuracy of 
the LSP are discussed in this study from the perspectives of 
study areas at various scales.

7.1  LSP results under different scales using SVM 
model

For SVM modeling, SPSS modeler 18. 0 software is also 
used. The SVM's kernel function is chosen to be the popu-
lar radial basis kernel function (Huang and Zhao 2018). 
Debugging is used to determine the best regular param-
eter (C) and kernel parameter (γ), with the default values 
being applied to the other parameters. The trained SVM 
is used to acquire LSIs in the study area, and the spatial 
superposition analysis in ArcGIS is used to determine the 
distribution of LSIs in study areas with different scales. 
Additionally, the natural break point method categorizes 

LSIs into five classes: very low, low, moderate, high, and 
very high susceptibility zones.

7.1.1  Landslide susceptibility results under different study 
area scales

The LSMs of Ganzhou City, Ganzhou East, and Ruijin 
County in Ganzhou East using SVM models built on grid 
units with a 60 m resolution are considered as an illustra-
tion. Test results for landslide susceptibility at various study 
area scales revealed that as the study area's scale gradually 
shrank, so did the areas of the low- and very low-suscep-
tibility zones. With a decrease in scale from Ganzhou to 
Ruijin County, the LSP accuracy of grid (60 m) units in 
different study area scales based on SVM model tends to 
increase (Fig. 14). Grid (60 m) units in Ruijin County that 
were extracted by masking Ganzhou City have a lower LSP 
accuracy than grid (60 m) units directly predicted in Ruijin 
County and extracted by masking Ganzhou East. Table 5 
illustrates variations in the LSI distribution rule predicted 
by the RF and SVM models at various study area scales.

Fig. 14  AUC values of grid (60 m) units in different study area scales 
based on RF and SVM model a Ganzhou City b Ganzhou East and 
Ganzhou East extracted from Ganzhou City c Ruijin County, Gan-

zhou East and Ganzhou City based on RF model d Ruijin County, 
Ganzhou East and Ganzhou City based on SVM model
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7.1.2  Landslide susceptibility results under different 
mapping unit scales

The slope units in Ruijin extracted from Ganzhou City, Rui-
jin extracted from Ganzhou East, and Ruijin County under 
SVM models as examples, as well as the LSMs of grid units 
with 30 m and 60 m resolutions. The results of the SVM 
model's analysis of the susceptibility to landslides at vari-
ous mapping scales revealed that the very low to moderate 
susceptibility zones in the same study area are smaller when 
based on slope units than when based on grid (30 m/60 m) 
units. In the same study area, the LSP accuracy based on 
the SVM model gradually improves from grid units (60 m) 
and grid units (30 m) to slope units (Fig. 15). The results 
in the RF model and the distribution rule of the LSIs based 
on the SVM model under mapping unit scales are shown 
in Fig. 13.

7.2  Importance ranking of landslide related 
environmental factors

The correlation analysis tool in the SPSS 24.0 software is used 
to calculate the correlation coefficients of the 21 environmental 
factors. According to the findings, there are weak correlations 
between these environmental factors, as evidenced by correla-
tion coefficients that are less than 0.5 and a significance level 
of less than 0.05 (Huang and Zhao 2018). Each environmental 
factor is also subject to a collinearity diagnosis. The multicol-
linearity issues among the environmental factors by removing 
highly correlated variables and estimating the variance infla-
tion factor (VIF) by maintaining the threshold value (Zeng 
et al. 2023). A regression line was fitted between each predic-
tor variable and the other predictor variables to obtain the VIF 
by measuring the square of multiple correlation coefficients 
(Achu et al. 2023). The variance inflation factor and tolerance 

Fig. 15  AUC values of different 
mapping units in Ruijin County 
a, c, e RF model b, d, f SVM 
model
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are used to determine the degree of collinearity between these 
environmental factors, with a serious level of collinearity 
being indicated by a variance inflation factor greater than 5 
and/or a tolerance lower than 0.1. The findings demonstrate 
that there is no multi-collinearity among these environmental 
factors, with the maximum value of the variance inflation fac-
tor and the minimum value of the tolerance being 4.35 and 
0.29, respectively. Therefore, all the 21 environmental factors 
can be used in this study for LSP modelling. Meanwhile, some 
studies indicate that error levels in environmental factors have 
a great influence on the LSP results. For example, Huang et al. 
(2023a) found that the greater the proportion of random error 
levels in environmental factors, the greater the uncertainty of 
LSP results. These original continuous environmental factors 
are processed by eliminating the random errors using low-pass 
filter method.

7.2.1  Importance of environmental factors in different 
study area scales

The importance prediction of the SVM and the mean 
decreasing accuracy of the RF model are used to rank the 
significance of environmental factors at various study area 
scales. Figure 16a illustrates the mean decreasing accuracy 
in the RF model based on grid units with a 60 m resolution. 
In Ganzhou City, topography relief has the highest impor-
tance value of 0.12, followed by slope with a value of 0.08 
and TWI with a value of 0.07; in Ganzhou East, topography 
relief has the highest importance value of 0.16, followed by 
surface cutting depth with a value of 0 16. In the SVM based 
on 60 m resolution, Fig. 16b illustrates the significance of 
environmental factors in each study area. In Ganzhou City, 
the slope is of the utmost importance with a value of 0.18, 

Fig. 16  Environmental factors 
importance under different 
study area scales and 60 m grid 
units a RF b SVM
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followed by the normalized differential building index with 
a value of 0.14, the road density, and drainage density with 
a value of 0.10; in Ganzhou East, the slope is of the utmost 
importance with a value of 0.13, followed by surface cutting 
depth with a value of 0.11, and drainage density with a value 
of 0.10; In Ganzhou East, slope has the highest importance 
with a value of 0.13, followed by surface cutting depth with 
a value of 0.11 and drainage density with a value of 0.10; In 
Ruijin City, terrain wetness indexes has the highest impor-
tance with a value of 0.25, followed by the elevation varia-
tion coefficient with a value of 0.21, average annual rainfall 
with a value of 0.16, road density with a value of 0.09, faults 
with a value of 0.07 and lithology with a value of 0.06.

7.2.2  Importance of environmental factors in different 
mapping‑units scales

While it varies significantly from the 60 m resolution grid 
unit, the importance of environmental factors in the 30 m 
resolution grid unit and the slope unit tends to be consist-
ent to some extent. Figure 17a, using the RF model as an 
illustration, demonstrates that plan curvature, which has the 
highest importance value of 0.30, is followed by drainage 
density, which has a mean value of 0.15, and TWI, which 
has a mean value of 0.08 at various study area scales based 
on grid units with 30 m resolutions. Meanwhile, plan cur-
vature, drainage density, and TWI have respective mean 

Fig. 17  Environmental factors 
importance under different 
study area scales and different 
mapping unit scales based on 
RF a Grid units (30 m) b Slope 
units
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values of 0.38, 0.20, and 0.08 at various study area scales 
Fig. 17b depicts that there is no difference in the importance 
of environmental factors at different study area scales based 
on the grid units with 60 m resolutions. In Ganzhou City, 
topography relief, slope, and TWI have importance values 
of 0.12, 0.08, and 0.07, respectively, while surface cutting 
depth, slope, and elevation variation coefficient have impor-
tance values of 0.10, 0.08, and 0.07, respectively.

7.3  Discussions about influence of different scales 
on LSP modelling

7.3.1  Influence of study area scales on importance 
of environmental factors

The weights of environmental factors in study areas with 
various scales differ obviously when the same data-driven 
model and the same environmental factors are used in 
LSP modeling (Huang et al. 2021b). It is easy to cause 
the average phenomenon of environmental factors in the 
local area or ignore the local characteristics when the 
study area scale is very large. Data mining or statistical 
rules are prone to distortion with the increase of the study 
area scale. However, it will be more closely matched with 
local landslide characteristics. The results also prove that 
the greater the diversity of environmental factors, the 
more LSP accuracy of data-driven model. The weight of 
environmental factors with slow spatial variation, such as 
lithology and land cover, becomes minimal for the LSP in 
Ruijin County (Hurlimann et al. 2022). The importance 
of environmental factors is significantly different, and the 
weights of the terrain wetness index and elevation vari-
ation coefficient increase, which can lead to better LSP 
results.

However, in a large-scale study area like Ganzhou City, 
the weights of the terrain, road density, drainage density, 
and normalized differential building index increase while the 
DEM variation and surface roughness decrease, and the sig-
nificance of environmental factors tends to be homogeneous. 
The scale of the study area directly affects how important 
landslide environmental factors are ranked in LSP modeling 
in study areas of various scales (Salciarini et al. 2016). The 
significance of environmental factors exhibits the phenom-
enon of "averageness" to take into account the characteristics 
of landslide evolution in a larger study area as the scale of 
the study area gradually increases (Grandjean et al. 2018). 
The differences between landslides and non-landslides in the 
training samples become more pronounced as the size of the 
study area shrinks, and there are more significant environ-
mental factors or combinations of them that play a signifi-
cant role in the evolution of landslides, which can produce 
better LSP results faster (Guo et al. 2022).

The importance of landslide environmental factors is 
directly impacted by the scale of the study areas, which 
shifts the environmental factors that were initially used to 
represent Ganzhou City's susceptibility in the surrounding 
areas of Ganzhou East and Ruijin County. The importance 
of environmental factors varies at this time, which helps to 
better reveal the spatial variation in LSP (Palau et al. 2022).

7.3.2  Influence of mapping unit scales on importance 
of environmental factors

A mapping unit, at the level of the analysis, is a geographical 
region that captures environmental factors (Liu 2022). The 
initial selection of a suitable mapping unit that can express 
information about environmental factors is necessary for 
LSP modeling (Kedron and Holler 2022). Different map-
ping unit scales are represented by grid units with spatial 
resolutions of 30 and 60 m, as well as slope units that were 
extracted using the multi-scale segmentation method from 
study areas with various scales. Secondly, it has been discov-
ered that mapping unit scales significantly affect how envi-
ronmental factors are expressed. Plan curvature, drainage 
density, and TWI weights based on slope units and grid units 
with 30 m spatial resolutions increase as study area scales 
change. The importance of environmental factors under grid 
units with 30 m spatial resolutions and slope units based on 
RF and SVM models tends to be somewhat consistent. The 
importance of environmental factors in various study areas 
has also been discovered to differ significantly between grid 
units with 30 m resolution and 60 m resolution. Based on 
grid units with a resolution of 60 m, environmental factors 
are equally important and clearly regulated at various study 
area scales. The excellent slope units make up for this since 
the grid resolution directly affects how important environ-
mental factors are at various study area scales. The study of 
the mapping unit scale seeks to strike a balance between the 
maximum possible accuracy of LSP and the maximum pos-
sible efficiency of environmental factor expression. It also 
aims to determine the best way to make use of the mapping 
units' effect in order to maximize LSP's effectiveness.

In study areas using various scales and/or models, the 
differences in the significance of environmental factors are 
generally significant. Plan curvature, slope, and DEM sig-
nificantly contribute to the RF and SVM models for Ruijin 
County, and plan curvature, terrain wetness indices, and 
drainage density significantly contribute to the models for 
Ganzhou East and Ganzhou City. The importance of envi-
ronmental factors varies greatly between the different map-
ping units, but it is generally consistent in the slope unit and 
the 30 m resolution grid unit. Additionally, there is a gradual 
decline in the differences in the weights given to various 
environmental factors from Ruijin County to Ganzhou East 
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and Ganzhou City, indicating that there is a general trend 
toward an "average" weighting of environmental factors 
from Ruijin County to Ganzhou East and Ganzhou City.

7.3.3  Influence of study areas scales on LSP accuracy

A challenging issue that significantly hinders the applica-
tions of machine learning model to large scale areas is the 
data incompleteness in most landslide inventories, particu-
larly the lack of detailed and accurate landslide inventory 
data that is a vital link between each landslide and its envi-
ronmental factors (Sun et al. 2023; Xiao and Zhang 2023). 
Hence, we have to reduce the study area scale in exchange 
for the prediction accuracy of the local region (Kulsoom 
et al. 2023; Moeen Hamid Bukhari et al. 2023).The Ganzhou 
City landslide inventory data and 21 landslide environmental 
factors are used in modeling to produce the LSP results. In 
order to obtain LSP results, Ganzhou City also extracts the 
landslide and environmental factor data for Ganzhou East 
and Ruijin County. A smaller scale of the study area results 
in a higher LSP accuracy, and a lower mean value of the 
LSIs indicates a better LSP performance under the same 
mapping unit scale and environmental factors with three dif-
ferent scales of the study area (Deng et al. 2022; Kirschbaum 
et al. 2011). The grid units in the RF (SVM) model have 
AUC accuracies of 0.848 (0.822), 0.856 (0.839), and 0.884 
(0.873) in Ganzhou City, Ganzhou East, and Ruijin County, 
respectively.

There is a sizable difference in LSP accuracy when small-
scale areas are extracted from larger-scale areas using the 
same data-driven model and the same environmental factors. 
Ruijin County between direct prediction and mask extraction 
from Ganzhou City and Ganzhou East is taken as an illus-
tration. The corresponding mean values of LSIs in the RF 
(SVM) model are 0.368 (0.361), 0.325 (0.333), and 0.279 
(0.280), with an increasing standard deviation trend. The 
AUC values of grid units with resolution of 30 m in the RF 
(SVM) model are 0.881 (0.848) in Ruijin extracted from 
Ganzhou City, 0.880 (0.854) in Ruijin extracted from Gan-
zhou East, and 0.918 (0.882). The LSIs in Ruijin County 
under the three different study area scales differ significantly, 
and the LSIs with direct prediction in Ruijin County are 
more trustworthy. Additionally, the accuracy, LSI distribu-
tion rule, and significant difference in study areas with vari-
ous scales in Ganzhou East are identical to those in Ruijin 
County. This demonstrates that as the scale of the study 
area decreases, the mean value of the LSIs decreases, and 
the standard deviation tends to increase, the LSP accuracy 
of grid units in study areas with different scales increases. 
The LSP accuracy of slope units in study areas with various 
scales is superior to grid units and has little effect on scale 
reduction (Alvioli et al. 2022; Huang et al. 2021a).

In order to increase the number of samples and lower the 
LSP's level of uncertainty, the study area was enlarged from 
Ruijin County to Ganzhou City. The findings show that, 
despite an increase in the number of landslide samples due 
to the study area expansion, the rule of spatial heterogeneity 
in geography is broken by incomplete sample information 
(Yu et al. 2022). On the other hand, the prediction perfor-
mance is better in the smaller study area.

7.3.4  Influence of mapping unit scales on LSP accuracy

The accuracy and efficiency of slope units divided by high-
resolution grid data are less affected by the scale of the 
study area. Whereas the trend for grid units is the opposite, 
the LSP accuracy of grid units increases by about 5% as 
the study area's scale decreases (Liu et al. 2023). In the RF 
(SVM) model, grid units with a resolution of 60 m have 
AUC accuracies of 0.848 (0.822), 0.856 (0.839), and 0.884 
(0.873), respectively, while grid units with a resolution of 
30 m have AUC accuracies of 0.915 (0.875), 0.888 (0.861), 
and 0.918 (0.882), respectively. Additionally, with an 
increasing standard deviation, the mean LSI values for grid 
units with a resolution of 30 m (60 m) in the RF model are 
0.342 (0.346) in Ganzhou City, 0.264 (0.304) in Ganzhou 
East, and 0.226 (0.243) in Ruijin County. The AUC accura-
cies of slope units are better than grid units with resolution 
of 30 m and 60 m, with values of 0.947 (0.932) in Ganzhou 
City, 0.928 (0.889) in Ganzhou East, and 0.936 (0.934) in 
Ruijin County. The LSP accuracy of slope units in study 
areas with various scales is superior to grid units and has 
little effect on scale reduction (Alvioli et al. 2022; Huang 
et al. 2021a).

7.4  Future study prospects

In conclusion, a smaller study area scale from Ganzhou 
City to Ruijin County improves prediction accuracy. To 
better reveal the spatial variability of geographical phe-
nomena, the next step is to study the township level, tak-
ing into account regional variations in towns and coun-
ties, shifting the environmental factors originally used to 
reflect global relationships to reflect each township area, 
and comparing the scale effect of township area (Gariano 
et al. 2017; Palau et al. 2022; Yu et al. 2022). To produce 
a regional LSM that is accurate to the objective reality, it 
is important to select an appropriate study area scale that 
takes into account both the spatial correlation and spatial 
heterogeneity of the geographic environment. Applying the 
combination of multi-scale segmentation and physically-
based numerical modeling to suitable study area scales for 
disaster risk management will require additional work. The 
resolutions of 30 m and 60 m are representative for the grid 
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units in various study area scales. The uncertainty rules of 
LSP under grid units with 30 m and 60 m resolution can 
be well compared with those under the slope unit. Addi-
tionally, it is important to investigate the uncertainty rule 
of LSP modeling at various spatial resolutions, including 
mapping units with 10 m, 15 m, 30 m, 60 m, 90 m and 
120 m resolutions.

8  Conclusions

In the present study, the effects of mapping unit scales 
and study area scales on the uncertainty rules of LSP are 
introduced. The study areas are Ganzhou City, the East-
ern portion of Ganzhou City (Ganzhou East), and Ruijin 
County in Ganzhou East. Different mapping unit scales 
are represented by grid units with spatial resolution of 30 
and 60 m, as well as slope units that were extracted using 
multi-scale segmentation method. The effects of combined 
consideration of the study areas at various scales on the 
uncertainty of LSP modeling are discussed. These are the 
conclusions:

(1) LSP accuracies under grid units significantly increases 
as the study area scales decrease from Ganzhou City to 
Ruijin County, whereas the accuracy of LSP under the 
slope units is less affected by study area scales. How-
ever, the standard deviation of LSIs shows the opposite 
trend, the mean values of LSIs in Ruijin County that 
were extracted by mask from Ganzhou City are higher 
than those that were extracted from Ganzhou East and 
those that were directly predicted. Considering that a 
larger study area can provide more abundant model 
training and testing landslide samples, more studies are 
needed in research fields of different study area scales.

(2) In the study areas with various scales, LSP modelling 
under slope units is more accurate, stable, and efficient 
than those under grid units with 30 m resolution and 
60 m resolution. Slope units outperform grid units in 
terms of efficiency and mean value.

(3) The environmental factors displayed an averaging trend 
at the larger study area scale, and their importance 
changes significantly with the decrease of the study 
area scales. The importance of environmental factors 
varies greatly between the different mapping units, but 
it is generally consistent in the slope units and the grid 
units with 30 m resolution.
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