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Abstract
Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one 
of the best ways to achieve synergistic development of "Carbon Peak–Carbon Neutral" and "Underground Resource Utiliza-
tion". Starting from the development of Compressed Air Energy Storage (CAES) technology, the site selection of CAES in 
depleted gas and oil reservoirs, the evolution mechanism of reservoir dynamic sealing, and the high-flow CAES and injection 
technology are summarized. It focuses on analyzing the characteristics, key equipment, reservoir construction, application 
scenarios and cost analysis of CAES projects, and sorting out the technical key points and existing difficulties. The devel-
opment trend of CAES technology is proposed, and the future development path is scrutinized to provide reference for the 
research of CAES projects in depleted oil and gas reservoirs.
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1 Introduction

Due to accelerated industrialization and increased energy 
consumption, substantial amounts of carbon dioxide have 
been released into the atmosphere, resulting in a series of 
changes in the Earth's climate and weather systems. While 
countries around the world are actively engaged in carbon 
dioxide storage projects, these efforts are still insufficient 
to mitigate global temperature changes (Su et al. 2022; Li 
et al. 2023; Kumar and Eswari 2023). Since the late 1990s, 
humanity has started to acknowledge the environmental 
risks associated with fossil fuels and has shown a grow-
ing interest in green energy sources such as solar and wind 
power. However, renewable energy sources including wind 
and solar cannot reliably serve as grid-scale power sources 
due to their intermittent nature unless excess energy can be 
stored and supplied later during periods of shortage (Jarvis 
2015; Sun et al. 2023a). Compressed Air Energy Storage 
(CAES) is considered a promising solution for mitigating 
short-term fluctuations in renewable energy production. It 

achieves this by rapidly increasing energy output and ena-
bling efficient part-load operation (Succar and Williams 
2008; Fushimi 2021). CAES system generally includes six 
main components: (1) compressor, generally multi-stage 
compressor with intermediate cooling device; (2) expander, 
generally multi-stage turbine expander with interstage reheat 
equipment; (3) combustion chamber and heat exchanger for 
fuel combustion and recovery of waste heat.; (4) storage 
device, underground or above ground cavern or pressure 
vessel; (5) motor/generator, connected to the compressor 
and the expander through the clutch; (6) control system and 
auxiliary equipment, including control system, fuel tank, 
mechanical drive system, piping and accessories. As shown 
in Fig. 1. With advantages such as substantial storage capac-
ity, extended storage duration, high system efficiency, long 
operational lifespan, flexibility, intermittency management, 
low cost, and scalability, CAES is regarded as one of the 
most promising large-scale energy storage technologies 
(Ozarslan 2012; Wan et al. 2023a; Wang et al. 2018).

These facilities typically take two primary forms:

Fig. 1  Working principle and main components of a CAES station
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aboveground liquefied natural gas (LNG) ball tanks and 
underground gas storage (UGS) (Liu et al. 2014). UGS 
encompasses various types, including gas reservoirs, oil 
reservoirs, salt caverns, and abandoned pits (Cooper et al. 
2011). Notably, more than 75% of the world's gas reservoirs 
are currently of the depleted reservoir type, and 81% of glob-
ally stored underground natural gas is found in depleted oil 
and gas fields (Xie et al. 2009). CAES brings economic ben-
efits by using depleted, hydraulically fractured oil and gas 
wells to store electrical energy in the form of compressed 
natural gas. The porous geologic environment of fracked 
wells, which is used to release hydrocarbons, is also condu-
cive to storing and releasing gas on a daily or seasonal basis. 
Round-trip storage efficiencies are estimated to range from 
40 to 70%, based on natural reservoir temperature, with stor-
age costs estimated at $70–270/MWh, making it comparable 
to pumped storage (Young et al. 2021).

The United States was the first country to show interest in 
CAES technology, with the publication of the first literature 
paper in 1976. However, Europe (EU-27) and China lead the 
way in research on CAES today, whose publication accounts 
for nearly half of the published literature on the subject. 
Notably, China has become the leading investor in CAES 
development, with several demonstration and commercial 
CAES plants currently under development and commission-
ing (Borri et al. 2022).

The types of gas storage include salt cavern, depleted oil 
and gas reservoir and aquifer. The surrounding rock of salt 
cavern has good creep property and the high salt content can 
inhibit some microorganisms, but the suitable sites are few 
and the gas storage is limited. Aquifers have large gas stor-
age capacity. However, they have long construction period 
and high cost. The produced gas also needs to be dehydrated.

On August 17, 2023, the international first 300 MW-
class advanced CAES system expander jointly developed 
by the Institute of Engineering Thermal Physics (IETP) 
of the Chinese Academy of Sciences and China National 
Energy Technology Co., Ltd. completed the integration test 
and successfully rolled off the production line. Its successful 
development will promote China's advanced CAES technol-
ogy to a new level (Hou 2024; Agrawal et al. 2023; Yang 
et al. 2023a, b).

In recent years, more research has been conducted on 
the application of gas storage, including ground hydrogen 
storage for zero emissions (Al-Yaseri et  al. 2023; Peng 
2023; Nguyen 2023; Kalam et al. 2023) and carbon capture 
utilization and storage strategies for carbon dioxide injec-
tion (Gao et al. 2023a, b). The development of depleted oil 
and gas type reservoirs is of great significance to the change 
of energy structure and the promotion of the development 
of energy technology, and also lays a solid foundation for 
the construction and development of smart grids, energy 
internet and smart cities (Feng 2023). Urgent verification 

is needed for energy storage feasibility, for this reason, this 
paper combines the development history of CAES technol-
ogy to research on the site selection of depleted gas reser-
voirs (DGR), reservoir dynamic sealing evolution mecha-
nism, and high flow rate CAES injection and extraction 
technology, to support the development of the depleted gas 
storage type reservoirs.

2  Advancements in CAES technology

The overall goal of CAES is to store energy during periods 
of low power demand and then use it during periods of high 
demand. Conventional CAES satisfy the following concepts, 
excess electricity is utilized to compress the surrounding 
air, capturing and storing heat in a thermal energy storage 
system, which is applicable for adiabatic CAES. The com-
pressed air is stored in a vessel, later released and preheated 
in a heat exchanger, and directed to a turbine generator to 
produce expensive electricity. Finally, the electricity is fed 
back into the electricity grid (Duhan 2018; Sun et al. 2023b; 
Zong et al. 2023).

2.1  Current status of CAES technology

2.1.1  Principles of operation

There are many types of CAES technologies, which can be 
classified into three categories according to whether they 
require preheated air in the combustion chamber, the size of 
the storage, and whether they utilize heat of compression as 
shown in Table 1 (Xu and Song 2021).

Figures 2a, b show the schematic diagrams of the sup-
plementary fired CAES and non-supplementary fired CAES. 
The supplementary fired CAES system is based on the work-
ing principle of gas turbine, the supplementary fired cham-
ber is set up at the entrance of the turbine, and the fuel is uti-
lized to heat the air to increase the amount of work done by 
the turbine, which is a reliable and stable system. However, 
the fuel combustion will emit pollutants and cause environ-
mental pollution, which does not conform to the require-
ments of the development of green environmental protec-
tion. The non-supplementary fired CAES system abandons 
the traditional compensatory fired chamber and utilizes a 
heat storage device to collect the compression heat generated 
during the air compression process, which is used to heat the 
inlet air of the first-stage turbine expander when releasing 
energy, thus realizing a zero-pollution working process (Xu 
and Song 2021; Li et al. 2022).

Isothermal CAES systems use certain measures (such as 
pistons, showers, bottom injection, etc.), through the spe-
cific heat capacity of the liquid (water or oil) to provide an 
approximate constant temperature environment, increase the 
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air–liquid contact area and contact time, In this way, the air 
in the process of compression and expansion is infinitely 
close to the isothermal process and the heat loss will be 
reduced to a minimum, improving the efficiency of the sys-
tem (Dolatabadi et al. 2013; Hu et al. 2023).

Due to the high technical requirements and costs asso-
ciated with the realization of single-stage adiabatic CAES 
concepts, great interest has been shown in Isothermal or 
Quasi-Isothermal CAES concepts in recent years. As shown 
in Fig. 3, the focus here is on dividing compression and 
decompression into several stages so that each stage is asso-
ciated with only a slight temperature increase (Donadei and 
Schneider 2016).

Statistics on some isothermal CAES systems at home and 
abroad, as shown in Table 2. The isothermal CAES systems 
mainly use liquid piston technology, and the average circula-
tion efficiency is about 70%.

In addition to the basic types mentioned above, research-
ers have proposed many CAES derivatives based on the fun-
damentals of CAES in the innovation stages. Among them, 
the more representative derivative schemes are:

(1) Liquid air energy storage (LAES)

 As shown in Fig. 4, according to the liquefaction phase 
change properties of air, compressed air is liquefied and 
stored in low-temperature storage tanks. As the density of 
liquid air is more than 10 times that of CAES, the container 
volume required for air liquefaction storage will be greatly 
reduced, reducing the impact of geographical conditions, 
but its conversion efficiency needs to be improved (Morgan 
et al. 2015).

(2) Super critical compressed air energy storage (SC-
CAES)

 As shown in Fig. 5, its components and the existing CAES 
system and liquefied air energy storage system is more simi-
lar. It can be used as a heat and cold storage device for air 
compression. At the same time, which not only has much 
higher energy density than that of CAES, but also greatly 
improves the efficiency of LAES (Liu 2012; He et al. 2018).

Table 1  Types of CAES 
technologies

Main type Subcategory

Combustion chamber preheating air Supplementary combustion system
Non-supplementary combustion systems

Energy storage scale Large-scale systems
Small system
Micro-system

Utilization of compression heat Non-insulated
Adiabatic
Thermostatic

Fig. 2  The difference between supplementary fire and non-supplementary fired systems. a Supplementary fired system b Non-supplementary 
fired system
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(3) Small scale CAES (SS-CAES)

 Small scale CAES system has less requirements for the 
geographic location, and it can be used in the form of tank 

storage of compressed air storage. In order to maintain 
a constant temperature and high-pressure safety of tank, 
it can be buried in the ground, and the efficiency of this 
system can be up to about 50% (Xu et al. 2021) (Table 3).

Fig. 3  Sketch of the principle 
behind the isothermal concept

Table 2  Current researches and technical characteristics of isothermal CAES

Project or company Area Cycle 
efficiency 
(%)

Technical characteristics Literature

Enairys Powertech (2011) Switzerland Using liquid piston technology Dib et al. (2021)
LightSail Energy (2012) United States 70–90 Using liquid spray, liquid piston and waste 

heat recovery technologies
He et al. (2022), Luo et al. (2016)

Sustain X (2013) United States 70–90 Using premixed aqueous foam to achieve 
isothermal technology

Fu et al. (2019)

FLASC (2015) Malta, Netherlands 75 Using liquid piston technology, which can 
be integrated with offshore wind projects

Buhagiar and Sant (2017)

GLIDES (2015) United States 66–82 Using liquid piston, liquid spray and heat 
exchange technology

Odukomaiya et al. (2016)

Gravity Energy Storage (2017) Morocco Using liquid piston technology to combine 
CAES with gravity energy storage

Berrada et al. (2017)

SEGULA Technologies (2018) France 70 Using liquid piston technology, which can 
be used in the marine environment

Maisonnave et al. (2018)

Liquid Control CAES (2019) China 70–85 Using liquid piston technology and porous 
media technology

Fu (2019)

Air-Battary (2020) Israel 81 Using liquid piston, heat exchange and 
other technologies

Ackerman and Pacheco (2020)
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Fig. 4  Liquid CAES system schematic

Fig. 5  SC-CAES system 
schematic

Table 3  Comparison of the characteristics of several major energy storage technologies

Type Peculiarity Main equipment Shortcoming Literature

LAES High-pressure air is liquefied and 
stored to increase energy density

Liquefaction unit and cryogenic stor-
age tank

Poor liquefaction performance、low 
efficiency and complex system

Chino and 
Araki 
(2000), 
Rabi et al. 
(2023)

SC-CAES Combine the characteristics of adi-
abatic CAES system and liquid air 
energy storage system

Heat storage device, liquefaction unit 
and cryogenic storage tank

Complex systems and low overall 
efficiency when heat storage and 
liquefaction units are inefficient

Guo (2013)

SS-CAES Store higher pressure compressed air 
in air receivers or gas pipelines, free 
from geographical restrictions

High-pressure storage tanks and gas 
storage pipelines

Underground pipelines are more 
expensive

Yang et al. 
(2020), 
Brahim 
et al. 
(2008)



Development and technology status of energy storage in depleted gas reservoirs  Page 7 of 24    29 

2.1.2  Development status

The development of CAES technology is inseparable from 
the change of energy structure, which can be roughly divided 
into three stages: rapid development, slow development, and 
then rapid development. Since 1949, the German engineer 
Stal Laval put forward the concept of energy storage using 
compressed air in underground caverns. Each country has 
carried out a lot of research and practice. The world's two 
earliest CAES systems, were established in Germany in 1978 
with a power of 290 MW Huntorf CAES system, as well as 
the United States in 1991, the power of 110 MW McIntosh 
CAES system (Guo 2013; Budt et al. 2016). The parameters 
of these two systems are shown in Tables 4 and 5.

Combining the actual circumstances of oilfield enter-
prises, utilizing underground porous media space to rebuild 
energy storage can reduce the cost of electric power con-
sumption in oil and gas fields and improve production effi-
ciency. This is one of the best paths to realize the synergistic 
development of "energy storage" and "underground resource 
utilization". Domestic oilfield enterprises such as Shengli 
Oilfield, Daqing Oilfield, Qinghai Oilfield, and Jilin Oilfield 
have already deployed plans to convert depleted gas reser-
voirs into energy storage and have conducted preliminary 
exploration. In June 2022, Shengli Oilfield completed the 
project in collaboration with Tsinghua University and other 
units. In April 2023, Qinghai Oilfield conducted bidding 
for the horizontal well fracturing and construction of CAES 
project. The other projects are shown in Table 6.

After China completed the 0.5 MW Wuhu non-supple-
mentary fired demonstration project in 2014, the 10 MW 
CAES validation platform in Bijie, Guizhou and the 10 MW 
CAES peaking power plant in Feicheng (Phase I) went into 
operation in 2021, and the 100 MW CAES project in Zhang-
bei entered the power-carrying commissioning stage in 2022 
with the technical support of the IETP (Zhao et al. 2023).

The development history of CAES projects is shown in 
Fig. 6 The earliest program was Stal Laval in Germany in 
1949, followed by the rapid growth of the CAES program in 
China in recent years. With the support of Tsinghua Univer-
sity, the 100kW composite CAES industrial demonstration 
project in Xining, Qinghai was put into operation in 2016, 
the 60 MW salt cavern CAES in Jintan, Jiangsu Province 
has been connected to the grid for power generation in May 
2022 (Guo et al. 2019). In addition, the projects of Hubei 
Yingcheng 300 MW, Gansu Jiuquan 300 MW, and Shandong 
Tai'an 350 MW, under China Energy Digital Technology 
Group Co.,Led., have already started construction.

2.2  Key equipment for CAES

As shown in Fig. 7, CAES system contains compression, 
gas storage, heat/cold storage, heat/cold return, expansion 
power generation and other sub-systems. The key equipment 
mainly includes compressors, heat exchangers and expanders 
and the technology of the relevant equipment is relatively 
mature. Through the project demonstration and construction, 
it has a certain industrial chain basis.

2.2.1  Compressor

Compressor, mainly divided into turbine, piston and screw 
type, is a kind of compressed gas to increase gas pressure 
or transport gas machine. It can be used for CAES system 
compressor and has the characteristics of large flow rate 

Table 4  Technical parameters of Huntorf project in German (Guo 
2013)

Parameter Value

Turbine power (MW) 290
Compressor power (MW) 60
Turbine air flow rate (kg/s) 417
Compressor air flow rate (kg/s) 108
Flow rate ratio 0.25
Number of salt caverns 2
Salt cavern volume  (m3) 3.1 ×  105

Top of the salt cavern is buried deep (m) 650
Salt cavern bottom buried deep (m) 800
Minimum operating pressure of air in the salt cavern 

(MPa)
4.3

Maximum operating pressure of air in the salt cavern 
(MPa)

7.0

Maximum pressure reduction of air in the salt cavern 
(MPa/h)

1.5

Table 5  Technical parameters of McIntosh project in USA (Succar 
and Williams 2008)

Parameter Value

Turbine power (MW) 110
Turbulent air flow rate (kg/s) 154
Compressor air flow rate (kg/s) 96
Number of salt caverns 1
Salt cavern volume  (m3) 5.6 ×  105

Top of the salt cavern is buried deep (m) 459
Bottom of the salt cavern is buried deep (m) 807
Minimum operating pressure of air in the salt cavern 

(MPa)
4.5

Maximum operating pressure of air in the salt cavern 
(MPa)

7.04
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Table 6  Domestic CAES Projects (Wan et al. 2023b)

Time Project name Scale Efficiency of energy 
storage systems

Major Participating 
Units

Current state

2013 Hebei Langfang 
1.5 MW Supercriti-
cal CAES Demon-
stration Project

1.5 MW 52.1% Institute of Engineer-
ing Thermophysics, 
Chinese Academy 
of Sciences

Completed

2014 Anhui Wuhu 500KW 
CAES Demonstra-
tion Project

500 KW 33% Institute of Physi-
cal and Chemi-
cal Technology, 
Chinese Academy 
of Sciences

Tsinghua University
China Electric Power 

Research Institute

Completed

2017 Guizhou Bijie 10 MW 
CAES Validation 
Platform

10 MW 60.2% Institute of Engineer-
ing Thermophysics, 
Chinese Academy 
of Sciences

Completed

2018 Jiangsu Tongli 
500 kW Liquid Air 
Energy Storage 
Demonstration 
Project

500 kW / State Grid Corpora-
tion of China

Completed

2021 China Salt Group 
Jintan 60 MW Salt 
Cavern CAES Dem-
onstration Project

60 MW/300 MWh 58.2% China Salt Group, 
Tsinghua University

China Huaneng 
Group

Completed

2021 Shandong Feicheng 
10 MW CAES and 
Peaking Power Plant 
Project (Phase I)

10 MW 60.7% Institute of Engineer-
ing Thermophysics, 
Chinese Academy 
of Sciences

Completed

2022 Zhangjiakou 100 MW 
CAES Demonstra-
tion Project

100 MW/400 MWh 70.2% Institute of Engineer-
ing Thermophysics, 
Chinese Academy 
of Sciences

Zhong-Chu-Guo-
Neng (Beijing) 
Technology Co. Ltd

Completed

2019 Yungang Abandoned 
Tunnel CAES 
Power Station

100 MW Academician Lu 
Qiang's team and 
Tus-Holdings

Under construction

2021 Advanced Salt Cavern 
CAES Plant, Ye 
County, Pingding-
shan City, Henan 
Province, China

200 MW Pingdingshan Sheng-
guang Energy Stor-
age Co., Ltd

China Mechanical 
Equipment Engi-
neering Co., Ltd

Institute of Engineer-
ing Thermophysics, 
Chinese Academy 
of Sciences

Zhong-Chu-Guo-
Neng (Beijing) 
Technology Co. Ltd

Under construction

2022 Shandong Feicheng 
Salt Cavern 
Advanced CAES 
and Peaking Power 
Plant

300 MW/1500 MWh Institute of Engineer-
ing Thermophysics, 
Chinese Academy 
of Sciences

Zhong-Chu-Guo-
Neng (Beijing) 
Technology Co. Ltd

Under construction
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and high pressure. Currently, there are more manufacturers 
of compressors on the market and the technology is more 
mature. The main manufacturers include Atlas Copco, Comp 
Air, Sull Air and Siemens, etc. Atlas Copco has the most 
mature air compressor manufacturing technology and the 
highest global market share. Comp Air is a leading supplier 
of world-class rotary screw, reciprocating, centrifugal, and 
portable compressors. Sull Air Compressors originated in 
Michigan City, Indiana, USA, and has specialized in the 
development and manufacturing of screw air compressors 
for more than 50 years, with the following product types: 
stationary oil-flooded, stationary-oil-free, vacuum pump and 
other product types.

In China, China National Petroleum Corporation(CNPC) 
Jichai Power Company Limited has a wide range of prod-
ucts with power ranging from 10 to 7500 kW and maxi-
mum working pressure of 70 MPa, which can meet the 

different needs of natural gas booster and gathering and 
transportation.

The parameters of the two compressor systems are shown 
in Table 7, where the maximum discharge pressure reaches 
52 MPaG.

(2) Heat exchangers

 Heat exchangers are mainly categorized into shell and tube 
type and plate type. They are heat exchanger equipment that 
transfer part of the heat from the hot fluid to the cold fluid. 
Among them, the parameters of heat exchanger system have 
a greater impact on the energy storage efficiency of the sys-
tem. If the heat storage temperature and heat return tempera-
ture are higher, there will be lower loss of the system and 
higher energy storage efficiency of the system.

Table 6  (continued)

Time Project name Scale Efficiency of energy 
storage systems

Major Participating 
Units

Current state

2022 Hubei Yingcheng 
300 MW CAES 
plant

300 MW/1800 MWh China Energy Digital 
Technology Group 
Co., Ltd

Under construction

2022 Shandong Tai'an 
350 MW Salt Cav-
ern CAES Innova-
tion Demonstration 
Project

350 MW/1400 MWh China Energy Digital 
Technology Group 
Co., Ltd

Under construction

2022 Gansu Jiuquan 
300 MW CAES 
Plant

300 MW China Energy Digital 
Technology Group 
Co., Ltd

Under construction

2022 Liaoning Chaoyang 
300 MW CAES 
plant

300 MW China Energy Digital 
Technology Group 
Co., Ltd

Under construction

2023 Hunan Wangcheng 
CAES Power Sta-
tion Demonstration 
Project

300 MW/1200 MWh China Energy Digital 
Technology Group 
Co., Ltd

Underconstruction

2023 Advanced CAES 
Demonstration 
Project for Gas 
Storage Tanks in 
Ulan County, Haixi 
Prefecture

200 MW/800 MWh China Energy 
Engineering Group, 
China Power Engi-
neering

Under construction

2023 Air Liquide Energy 
Storage Demonstra-
tion Project in Gol-
mud City, Qinghai 
Province

60 MW/600 MWh China Green Devel-
opment Corporation

Under construction

2023 Datang Zhongning 
CAES Green Low 
Carbon Technology 
Research Project

100 MW/400 MWh China Datang Corpo-
ration

Under construction
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By improving the heat storage temperature and heat trans-
fer efficiency of the heat storage and return system, the over-
all efficiency of the system can be further improved. ARD's 
heat exchanger production technology is more mature, and 
its main products include detachable plate heat exchanger, 
heat exchanger gasket and heat exchanger plate.

(3) Expansion machines

 Expansion machine according to the structure and form of 
movement can generally be divided into turbine and pis-
ton type. It can be used to compress the gas expansion and 
decompression and output power to the outside, so that the 
temperature of the gas is lowered. Piston type is mainly 
suitable for small flow and high-pressure ratio of small and 
medium-sized high and medium pressure cryogenic equip-
ment, while the turbine type has a small size, simple struc-
ture, high flow, high efficiency and long operating cycle, 
etc., suitable for large and medium-sized deep cryogenic 
equipment. The turbine expander is generally used in CAES 
system.

Now in its 150th year, Atlas Copco's centrifugal turbine 
compressor solutions utilize either integral gear drive tech-
nology or single-shaft drive technology, and are capable of 
handling pressures up to 20 MPa and volumetric flow rates 
up to 480,000  m3/h (Quoilin et al. 2012).

Atlas Copco has a wide range of expansions with the 
product characteristics shown in Table 8, and its maximum 
inlet temperatures is up to 510 °C.

3  Siting analysis of depleted gas reservoir 
CAES

The requirements for CAES site selection in DGR mainly 
include four aspects: reservoir geological conditions, geo-
logic safety, historical factors, and economic efficiency 
factors. The CAES project for DGR conducted by PG&E 
in California, USA, is taken as an example for analysis. A 
detailed analysis is carried out on it, and its comprehensive 
evaluation system for CAES is shown in Fig. 8 (Jia et al. 
2015).

Fig. 6  CAES project develop-
ment history
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The main purpose of the construction of pressurized 
gas storage power plants is to regulate the peaks and val-
leys of electricity and to improve the quality of electric-
ity. Regulating power peaks and valleys is to alleviate the 
difference between day and night peaks and valleys in the 
power market, and to regulate the balance of power con-
sumption in the power grid in time and space.

The improvement of power quality is mainly aimed at 
improving the unstable quality of intermittent power sources 
such as wind power and photovoltaic power generation, and 
storing a large amount of wind and light discarded power dur-
ing the peak hours of grid supply. The construction purpose of 
the pressurized gas storage power plant is the primary factor in 
determining the regional siting of the storage reservoir, while 
the force characteristics of the underground storage reservoir 
are the key factor in determining whether it can be successfully 
sited. The selection principle of CAES is shown in Table 9.

3.1  Evaluation of reservoir property factors

3.1.1  Reservoir size and thickness

Reservoir size can be evaluated based on two dimensions: 
reservoir capacity and extent of distribution. The selection, 
of reservoir size depends on the storage and operational 
needs of the system as well as the value it can generate. 
Reservoirs that are too small do not have sufficient capacity 
to sustain gas recovery operations to meet project objectives, 
and reservoirs that are too large require the construction and 
maintenance of larger gas tops, which increases development 
and operating costs.

Fig. 7  Depleted gas reservoir CAES working principle and its main equipment

Table 7  Compressor at CNPC Jichai power company

Series Range 
of power 
(kw)

Air dis-
placement 
 (Nm3/d)

Max discharge 
pressure 
(MPaG)

Integral compressor unit 85–630 0.1–10 ×  105 35
Split compressor unit 10–7500 0.1–50 ×  105 52

Table 8  Expansion machines at Atlas Copco

Series Inlet temperature 
(°C)

Inspiratory 
pressure 
(MPa)

Applications

EC − 200 to 220 20 Hydrocarbon and 
petrochemical 
industries

EG − 200 to 300 20 Geothermal and waste 
heat

ET − 220 to 510 16 Hydrocarbon
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Fig. 8  Comprehensive evaluation system for CAES

Table 9  Principles of  CAES site selection (Guo et al. 2022)

Influencing factors Site selection principles

Electric load centers and peak and valley power consumption As close as possible to the center of the electrical load
Presence of intermittent energy sources Proximity to intermittent power supply areas, location of selection points based 

on location of renewable energy sources
Regional geological stability The regional geological structure is stable, there is no fracture zone, and the seis-

mic intensity of the gas storage area is less than 8 degrees
Engineering geology and hydrogeological conditions Where the stratigraphic structure is simple, the thickness of the rock is large, the 

form of production is gentle, the spacing of structural cracks is large, and the 
number of groups is small

Historical factors for the development of DGR Utilize existing depleted gas reservoir development conditions to continue 
construction

Old wells can be utilized Prioritize the use of abandoned caverns and old wells to reduce the cost of the 
construction project

Transportation and other supporting conditions Facilitates the transportation of construction materials and equipment and lays a 
good external foundation

Environmental factors Avoid development in formations with karst development, air-mining zones, 
hazardous gases and geothermal anomalies

Economic efficiency factors Integration of various factors to maximize economic benefits
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It is promising to utilize energy storage in coal goaf 
under the current "dual carbon" target (Wang et  al. 
2023b). In the context of underground coal seam gasifi-
cation reactions, Greg Perkins proposed a 0-dimensional 
cavity growth sub-model based on the concept of surface 
reactions, which provide more accurate cavity growth 
rates with reasonable input parameters (Perkins 2019).

Reservoir thickness is usually expressed as gross, net 
and average thickness. Gross thickness is measured from 
the highest point in the reservoir structure to the gas or water 
contact that normally defines the lower limit of the reservoir, 
without regard to changes in lithology within that interval. 
The net thickness is derived from log interpretations and 
excludes those lithologies within the reservoir that are of 
poor quality. A higher average reservoir thickness may imply 
a relatively compact reservoir spread compared to gross 
thickness, and conversely, a lower average thickness may 
imply a wider and more extensive reservoir spread.

3.1.2  Reservoir depth and pressure

When selecting the site, the depth of the reservoir should 
be neither too small (small circulating pressure causes low 
energy efficiency and requires more storage space) nor too 
large (the pressure is limited by the safety of the system, the 
economy and the performance of the equipment) (Dong and 
Li 2021). The burial depth of the reservoir primarily deter-
mines the range of pressure variations in the CAES system 
during buffer gas injection and cycling.

Different pressure ranges have a significant impact on the 
overall design of the reservoir, the surface compressor and 
the expander. When the effect of depth on compressor and 
expander design is not considered, the greater the depth of 
the target reservoir, the greater the storage efficiency of the 
overall storage system. And the geothermal energy is more 
likely to be recharged from the surrounding strata. How-
ever, with the increasing depth, the pressure buildup from 
injecting buffer gas is greater, which may cause mechanical 
damage to the storage cap layer.

Tables  10 and 11 give the range of reservoir depths 
for selected projects and the range of reservoir depths 

considered by the researchers in their evaluation of CAES 
siting.

3.1.3  Reservoir porosity

The pore structure of the reservoir directly affects the physi-
cal properties of the reservoir and has an important influence 
on the reservoir storage and seepage capacity (Wang et al. 
2021). The porosity of the reservoir reflects the size of the 
pore volume of the rock, which can be interpreted from bare-
eye logging curves or indirectly obtained from core analysis. 
Stottlemyre and Allen et al. in 1978 and 1983, respectively, 
proposed a reservoir porosity of greater than 10% for the sit-
ing of CAES in aquifers, and Succar et al. in 2008 proposed 
a minimum porosity of 13% for the reservoir (Dong and Li 
2021; Ngata et al. 2023).

3.1.4  Reservoir permeability

For low-permeability reservoirs, small changes in forma-
tion pressure will cause changes in reservoir porosity and 
permeability, which in turn affects the seepage capacity 
of the underground reservoir and ultimately affects the 
amount of gas injected into the underground reservoir. The 
lower the permeability of the reservoir is, the more drastic 
the change in permeability with the formation pressure 
will be (Guo et al. 2021; Zhang et al. 2019a). Permeability 
needs to be determined by analyzing core samples from 
the reservoir to determine actual vertical and horizontal 
permeability. The effect of permeability and reservoir 
thickness on reservoir performance needs to be assessed 
through reservoir modeling. Zhang et al. (2022) studied 
the injection and extraction simulation of low permeability 
gas reservoirs converted into underground storage reser-
voirs. Based on the inverse problem theory, the objective 
function was constructed by using the difference between 
the measured and calculated values of formation pres-
sure, and the problem of inverse identification of reservoir 
physical parameters was transformed into an optimization 
problem (Stottlemyre 1978; Hostetler et al. 1983).

Table 10  Reservoir depth for planned and construction works

Name Country Type Running status Depth (m) Literature

Huntorf Germany Salt cavern The power station is in operation 650–800 Dong and Li (2021), Zhang 
et al. (2019b)

Mclntosh United States Salt cavern The power station is in operation 460–760 Holden et al. (2000)
Norton United States Limestone cavern Power station is planning 670 Chen et al. (2016)
Iowa United States Aquifer Power station plan is suspended 780–900 Holst et al. (2012)
Pittsfield United States Aquifer The trial is complete 200–300 Wiles and Mccann (1983)
King Island United States Depleted oil and gas reservoir Power station is planning 1424.94–1463.04 Allen and Gutknecht (1980)
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3.1.5  Surplus oil and gas

All DGR contain a certain amount of residual gas, which 
can be estimated by analyzing the historical production 
data of the reservoir to estimate the original gas-in-place. 
Over time, the residual natural gas will gradually mix with 
the injected air, and the lower flammability limits of the 
methane-air fraction of a representative deep geologic 

reservoir are 3.8 mol% and 54.4 mol% at 25 °C and 85.5 
atmospheres, respectively (Zhang et al. 2022; King and 
Apps 2013).

3.1.6  Trapping mechanism

As shown in Fig. 9, for depleted oil and gas fields, the 
effectiveness of the trap depends on (1) whether the burial 
depth and area of the trap are favorable for the economic 
construction of the reservoir, (2) whether the closure 
height of the trap, and the cap and faults in and around 
the trap are favorable for the preservation of the injected 
natural gas, (3) the effect of the trap overflow point and the 
pressure of the overflow on the escape and transport of the 
stored gas (Zheng et al. 2020).

According to foreign experience, simple formations 
such as backslopes or fault traps are easier to develop 
and operate than complex formations. The more complex 
the reservoir becomes, the more likely it will be to need 

Table 11  The range of reservoir depths proposed by the researchers

Type of reservoir Depth (m) Literature

Porous media 183–1220 Stottlemyre (1978)
Aquifer 200–1000 Allen et al. (1985)

170–760 Succar and Williams (2008)
500–2000 Carneiro et al. (2019)
260–4000 Mouli-Castillo et al. (2019)

For  H2 storage 1500 Hassanpouryouzband et al. (2021)
1100 Iglauer (2022)
3000 Okoroafor et al. (2022)

Fig. 9  Schematic diagram of geological body of a depleted oil/gas field UGS (Zheng et al. 2020)
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additional wells. It will be more difficult to operate due to 
connectivity barriers within the reservoir.

3.1.7  Number of production layers

Some oil and gas fields are exploited with multiple produc-
ing horizons at different depths, which may be connected 
leading to mixing of oil and gas, or may be unconnected. 
Therefore, it is impossible to calculate the actual size of the 
reservoir based on the production records of a particular pro-
duction formation. At the same time, the reserves of a single 
producing formation do not meet the economic efficiency 
and production requirements of CAES, resulting in increased 
construction costs. To predict the geological reserves, firstly, 
the geological structure, reservoir condition and obtained 
oil and gas layers of a certain block should be counted, and 
the reservoirs with clear stratification will provide certainty 
for the reservoir size and the convenience of development.

3.1.8  Drive mechanism

Gas reservoirs are usually gas-driven and water-driven for 
gas recovery, and gas-driven reservoirs usually have very 
high gas recovery rates, above 80%. To study the driving 
mechanism, it firstly should start from the microscopic pore 
characteristics of the reservoir, and the experimental testing 
methods such as physical property test, cast thin section, 
scanning electron microscope, high pressure mercury pres-
sure, etc., should be used to classify and study the petro-
logical characteristics, physical properties and microscopic 
pore structure characteristics of the cores taken from this 
reservoir. On this basis, the oil–water two-phase seepage 
experiments are carried out through the sandstone model to 
reflect the pore structure (He et al. 2020; Xiong et al. 2023).

3.1.9  Geological complexity

From the perspective of CAES development and operation, 
the simpler reservoir geology is better, so as to reduce poten-
tial development risks and save costs. Prior to the develop-
ment of a depleted reservoir, the geology needs to be com-
prehensively evaluated combined with regional geological 
interpretations and logging records from exploration and 
production wells.

3.1.10  Types of reservoir native minerals

The chemical reaction of primary minerals with air in dif-
ferent reservoirs can have an impact on the economics and 
safety of the reservoir. Geochemical element logging, which 
provides access to the mineralogical composition of a reser-
voir, is a method of obtaining geochemical element data to 

determine the mineralogical composition of a tight reservoir. 
It is identified primarily by detecting gamma rays produced 
in the formation by neutron reactions. Oxygen from com-
pressed air entering the reservoir will oxidize with the pri-
mary minerals in the reservoir. Newly generated oxides can 
reduce the permeability and porosity of the reservoir due 
to increased volume or precipitation, as well as reduce the 
oxygen in the output gas, affecting the combustion efficiency 
of the fuel that enters the fired chamber during subsequent 
power generation. Therefore, when site selection is carried 
out, the primary mineral type of the reservoir can be analyzed 
through geochemical elemental logging, and reservoir areas 
with primary mineral types of iron or calcium with high sul-
fur content can be avoided as much as possible (Liu 2022).

Ying et al. (2023) established a multilayer model based 
on the fluid properties of rocks in the Huangcaoxia gas 
field. In order to understand the removal process of  H2S 
from sulfur-containing UGS, the evolution law of  H2S in 
the underground reservoir of Huangcaoxia sulfur depleted 
gas field was simulated by the numerical simulation method.

3.2  Geological safety factors

The sealing and stability of the geologic structure plays 
an important role in the safety of the entire energy storage 
system. When evaluating the site selection for underground 
CAES, whether the whole site can be used for CAES, and 
the safety and stability of its energy storage system must be 
considered (Vandeginste et al. 2023).

3.2.1  Cap stability

For a gas storage reservoir, the capping capacity of the cap 
is the ability of the reservoir to prevent the escape of natural 
gas, which controls the vertical distribution, abundance, and 
working pressure of natural gas in the reservoir (Liu et al. 
2021). The CAES process is prone to pressure buildup in 
the reservoir due to the need to inject a large amount of gas 
into the reservoir, and the excessive pressure may destabi-
lize the cap layer. The stability evaluation of the cap layer is 
mainly a study of its geo-mechanical properties. Mechanical 
effects of the cap layer may cause opening of initial fractures 
in the cap layer, and destruction of the cap rock or rock 
mass. Higher injection pressures may make the cap layer 
incomplete and induce potential leakage channels. The geo-
mechanical stability of the cap layer can be investigated by 
analyzing the stress–strain relationship of the rock through 
triaxial tests (Bai 2008).

3.2.2  Site stability

Site stability evaluation mainly refers to the evaluation of 
the impact of geological tectonic movements or natural 
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disasters on the gas storage structures and ground support-
ing engineering facilities at the candidate site. Earthquakes 
and active faults can drastically disrupt the confinement 
conditions of the storage system, thus affecting the stability 
and safety of the entire storage system. Among them, fault 
activity has greater impact. The active faults are the main 
source of risk for destructive earthquakes and the main cause 
of near-surface tectonic deformation, and their existence 
implies potential and unpredictable earthquakes, surface 
deformation and related secondary disasters and hazards (Xu 
et al. 2012; Wu et al. 2022). Combined with the geological 
complexity, the stability of the sites is evaluated and people 
prioritize these sites without the above risks to avoid major 
safety accidents.

3.2.3  Cap tightness

The macroscopic influencing factors of cap tightness mainly 
include lithology, thickness, burial depth, distribution con-
tinuity, mechanical stability, fault and fracture development 
and closure. The evaluation of aquifer compressed air stor-
age for the closure of the cap layer can draw on the evalu-
ation method of cap layer confinement in oil and gas engi-
neering and  CO2 geological storage engineering to a certain 
extent (Diao et al. 2011; Wang et al. 2023a).

3.3  Historical factors

Historical factors include human intervention for the reser-
voir, such as exploration and production wells, gas produc-
tion from the target reservoir and surrounding reservoirs, 
and well plugging and abandonment. Four types of historical 
data from prior exploration and development efforts are also 
important for CAES development, including the number and 
type of wells in the gas reservoir, well age, and abandonment 
history.

3.3.1  Number and type of wells

The advantages of using depleted reservoirs for energy 
storage are the availability of detailed geological informa-
tion and historical production records, lower exploration 
costs and shorter construction periods. According to sta-
tistics, the number of abandoned wells worldwide exceeds 
20 million, and in 2023, the number of abandoned wells 
in China has exceeded 100,000 (Raimi et al. 2021; Fang 
2023). If there is greater number of wells, there will be 
greater potential problems and higher additional devel-
opment costs. When selecting a site, a variety of factors 
should be analyzed, including the location, number, type 
and production history of each well, eliminating possible 

production hazards. Although no specific screening criteria 
is established, priority is given to reservoirs with fewer 
wells drilled.

3.3.2  Well age

Older wells have a higher risk of failure and potential leak-
age and they need to be analyzed for the economics of con-
verting an underground storage reservoir by learning the 
quality of cementing of old wells, plugging of abandoned 
wells, underground information, infrastructure (water, elec-
tricity, transportation, etc.), and planning for new wells to 
be drilled. If more underground information and surface 
infrastructure are available, there will be lower number of 
old wells to be rehabilitated and new wells to be drilled, 
and it will be more economical to build the reservoir (Jia 
et al. 2016).

3.4  History of abandonment

The abandonment history of each well needs to be evalu-
ated to ensure that potential hazards such as leaks do not 
occur. Many wells located within a target reservoir have 
been abandoned at the time of drilling or after a period of 
production. The following records of abandoned wells need 
to be evaluated: the geographic location of the abandoned 
well, the type and quantity of cement or other waste materi-
als, the abandonment process, the time the well was aban-
doned and mined and the presence of foreign material in the 
abandoned well.

3.5  Economic benefit factors

As shown in Table 12, the construction cost of the three 
domestic gas storage tanks is the lowest in Jintan, which 
is mainly due to the use of existing caverns to reduce the 
construction cost, and has a large volume so that the cost 
per unit volume is the lowest.

As shown in Table 13, the main factors affecting the eco-
nomic efficiency include, geographical location of the site, 
investment cost, scale of energy storage and economic loss 
due to wellbore corrosion in four evaluation indicators.

4  Mechanism of reservoir dynamic seal 
evolution

The engineering background of multi-cycle intensive injec-
tion and extraction in the lower reservoir makes the dynamic 
sealing capability and stability of trap caps and columns 
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under alternating loads a critical issue that cannot be ignored 
(Wen et al. 2021). When the gas breakthrough enters the cap 
layer, the gas replaces the water in the voids or fissures, and 
at the same time, the mechanical effect of the cap rock will 
be changed with the gas breakthrough. If the conditions of 
microcrack expansion of the cap rock are reached, the length 
and tensile degree of microcracks will be increased, and the 
permeability will rise sharply (Peng et al. 2014). The capping 
layer is depicted in different time scales as shown in Fig. 10.

4.1  Capillary sealing of capping layer 
under alternating stresses

4.1.1  Capillary closure mechanism

There are many parameters for evaluating the capillary 
closure capacity of the cap layer, mainly the replacement 
pressure, permeability, porosity, surface area ratio and 
microporous structure of the cap layer. However, according 
to statistics, it is found that there is an obvious functional 
relationship between the parameters of cap porosity, per-
meability, specific surface area, microporous structure and 
median radius of voids and replacement pressure, which 
indicates that the role played by these parameters in the 
evaluation of the capillary closure can be replaced by the 
replacement pressure (Davies 1991).

At present, the breakthrough pressure is mainly used to 
quantitatively evaluate the capillary closure, which is the 
most fundamental and direct evaluation parameter of capil-
lary sealing ability of the cover layer. It comprehensively 
reflects the influence of lithology, mud content, porosity, 
permeability, microscopic pore throat distribution on the 
capillary closure (Wen 2021).

Table 12  Comparison of construction costs of different gas storage (Wang et al. 2022)

Name Unit capacity 
(MW)

Gas storage form Volume  (m3) Total cost (CNY) Unit cost 
(CNY/
m3)

Jintan 60 Salt cavern 2.2 ×  105 5.3 ×  107 227
Yungang 60 Expansion of abandoned 

roadways
5.34 ×  104 (Before the expansion) 

9.37 ×  104 (After the expansion)
1.03 ×  108 1100

Zhangbei 100 Hard rock gas storage 3 ×  104 6.95 ×  107 2300

Table 13  Economic evaluation indicators and their selection principles (Dong and Li 2021)

Evaluation indicators Selection principle

Geographical location Good wind energy resources and electricity demand
Within 150 km from major cities or user centers
Far away from areas such as nature reserves, military zones, mineral resources protection zones, etc

Investment costs Low cost of exploration investment and surveying of regional facilities
Cementing and plugging of old and abandoned wells
Surface infrastructure and regional planning, etc

Energy storage scale Increase gas storage pressure to increase the capacity of the entire reservoir
Improve the energy storage effect of a single well and enhance the regulating capacity of the gas storage reservoir
Select a gas storage reservoir with high upper layer pressure

Wellbore corrosion Test and analyze the chemical composition of formation water and types of biological flora
Evaluate and analyze and take appropriate measures to prevent corrosion and reduce equipment maintenance costs

Fig. 10  Schematic diagram of the multi-field coupling process inside 
the cap layer



 J. Wan et al.   29  Page 18 of 24

4.1.2  Changing law of permeability of cover layer 
under alternating loading

Rock permeability is controlled by the pore and fissure struc-
ture of the rock itself, and during the deformation process, the 
pore and fissure of the rock changes, and therefore its perme-
ability also changes. Rock damage itself is an extremely com-
plex problem, and it is difficult to study the seepage-stress 
coupling in the damage process theoretically, and the main 
way to study it is to conduct experimental research.

At present, there are more experimental studies on the per-
meability of mudstone before the peak, and the conclusions are 
basically the same: in the elastic deformation stage, the mud-
stone micropores and fissures are compressed, and the perme-
ability decreases; with the further increase of stress, the rock 
micro-fissures begin to expand, and the permeability begins to 
increase; the peripheral pressure restricts the lateral deformation 
of the mudstone, which reduces the porosity, and restricts the 
fissure expansion and width. With the increase of the peripheral 
pressure, the permeability decreases (Han et al. 2011).

4.2  Mechanical integrity of the formation 
under variable stresses

Those factors including the tensile damage of reservoir 
and cap layer caused by local high pressure under alternat-
ing stress, and the risk of cap layer shear and long-term 
fatigue damage caused by local stress concentration due 
to complex geological structure, lithological changes, and 
laminar development, etc. are the focuses of formation 
mechanical integrity evaluation.

4.2.1  Mechanical closure mechanism of the cap layer

The capping layer must be thick enough to prevent rupture, 
and it needs to have low permeability and large capillary 
forces to prevent air migration through the capping layer. 
According to experience, the injection pressure in excess 
of the original formation pressure should not exceed 0.16 
bar/m depth of burial to avoid cracking of the capping 
layer (Succar and Williams 2008; Liu et al. 2021).

4.2.2  Damage mechanism of rock deformation 
under alternating loads

In situ rocks are essentially subjected to monotonic and 
cyclic or dynamic loads. Correct and detailed knowledge 
of how the mechanical properties of rocks change under 
different loading scenarios is necessary for the safe and 
correct design and construction of civil, mining and geo-
technical structures (underground openings, tunnels, rock 

columns, foundations), as well as for a better understand-
ing of other related operations (Vaneghi et al. 2018; Chen 
et al. 2023; Zhang et al. 2023).

Liang et al. (2019) conducted a study on acoustic emission-
based damage and fractal evolution trend of sandstone under 
loading and unloading conditions of isotropic layered cycling. 
The damage variable increased sharply in the cycling phase, and 
the increment of layered cycling was higher than that of isotropic 
cycling by 0.07. Sandstone showed greater damage under the 
action of layered cycling loading and unloading.

Zhang et al. (2021) established the damage ontology model 
of reservoir and cap layer through triaxial cyclic loading and 
unloading synchronized permeability test experiment, and stud-
ied the strength, permeability changing law and damage law of 
rocks under cyclic loading. The research results show that: under 
the action of external force, sandstone is easier to form con-
necting cracks and be damaged, while mudstone is not easy to 
produce connecting cracks due to the reduction of permeability 
by hydration and expansion.

(1) Risk of tensile damage

 High-rate injection and extraction during reservoir opera-
tion can exacerbate the effects of reservoir non-homo-
geneity. Especially during gas injection, the bottomhole 
pressures may exceed the upper limit of reservoir design 
pressure. The local pressure may be higher than the mini-
mum horizontal stress, causing tensile damage to the cap 
layer. In particular, the risk of tensile damage is much 
higher than the risk of shear damage in gas storage res-
ervoirs modified by shallow buried reservoirs. Therefore, 
when evaluating the risk of tensile damage to the cap layer, 
it is important to accurately test the captive ground stress, 
especially in DGR. The reservoir and cap geos-tresses can 
be tested by hydraulic fracturing or ground leakage tests and 
AE Kaiser effect experiments to evaluate the risk of tensile 
damage (Zheng et al. 2017).

(2) Risk of shear damage

 Evaluating the shear damage of the cap layer is mainly 
based on indoor rock mechanics experiments. Numerical 
simulation is carried out by establishing a three-dimensional 
dynamic geologic force model, and data are obtained by 
inversion (Teatini et al. 2014). On this basis, according to the 
shear damage criterion (e.g., Moore-Cullen criterion), with 
the shear damage safety index and other quantitative indexes, 
the cover shear damage safety index of the reservoir under 
any formation pressure during the injection and extraction 
process is calculated, so as to quantitatively evaluate the risk 
of the shear damage of the reservoir under the local high-
pressure gas injection and the long-term alternating loads 
(Sun et al. 2017).
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(3) Risk of fatigue damage

 The ground stress field in a gas storage reservoir varies 
cyclically with the injection and extraction cycles. In addi-
tion to varying degrees of elastic–plastic deformation, 
localized stress concentrations may be induced, and such 
stress concentrations can accumulate in the rock and form 
fatigue damage. Fatigue damage begins where the stresses 
are higher and will eventually lead to fatigue damage once 
microscopic deformation of the tissue begins to accumulate 
(Ren et al. 2019).

The fatigue damage risk evaluation is to carry out indoor 
core triaxial loading and unloading alternating stress experi-
ments to study the deformation and damage characteristics 
of the cap rock under simulated gas storage reservoir injec-
tion and extraction working conditions. It quantitatively 
evaluates the fatigue damage risk of the cap layer under the 
long-term alternating loads of the gas storage reservoir by 
using the accumulated plastic strain (Tenthorey et al. 2013). 
Ma et al. (2018) established a method to carry out triaxial 
loading and unloading alternating stress experiments by 
using constant circumferential pressure and variable axial 
pressure, and recommended the use of 0.1 Hz as the loading 
frequency of alternating stress for core experiments.

(4) Fault shear-slip instability

 Fault shear slip instability is similar to the principle of cap 
shear damage, but the fault is a geologically fractured zone, 
which is the largest mechanically weak surface, and cohe-
sion is generally ignored. Geomechanical studies show that 
in the process of ground stress disturbance caused by gas 
storage reservoir injection and extraction, when the shear 
stress acting on the fault surface is greater than the product 
of the friction coefficient and the effective positive stress, 
the fault slips and loses its sealing ability. Slip and destabi-
lization of far-field faults can cause substantial deformation 
of the formation, which in turn affects the integrity of the 
wellbore (Zheng et al. 2017).

5  Current status of high‑flow rate CAES 
injection and production operation 
technology

The primary focus of high-flow pressurized gas storage is 
on pipe column safety and the study of injection and extrac-
tion schemes. Currently, international research on utiliz-
ing depleted oil and gas reservoirs for gas storage is still in 
the exploratory and theoretical analysis stage. The Pacific 
Gas and Electric Company (PG&E) in California, USA, 
has developed a mature technology research program for a 
300MW-10h scale CAES plant located in the King Island 

depleted gas field in San Joaquin County (U. S. Department 
of Energy 2013; Wu 2019).

5.1  Safety evaluation of high‑frequency injection 
pipe column

During high-frequency injection and extraction, the injec-
tion and extraction pipe column is affected by corrosion and 
stress, and is prone to fatigue damage and fracture failure, 
which has a greater impact on the safety and stability of 
the gas storage reservoir (Wan et al. 2023b). In the design 
of the injection process and completion pipe column, it 
mainly relies on optimization and design software. It can 
comprehensively consider the factors such as load change, 
temperature and pressure alternating influence and corro-
sion, which have a great influence on the safety of the tubu-
lar column in the design process. The current research on 
column corrosion is more mature, and relevant corrosion 
prediction models have also been established. However, due 
to the dominant  CO2 and sulfide corrosion in the field, the 
study of oxygen corrosion is more focused on the study of 
the process of oil drive with the injection of air. There is less 
study on the separate injection of air, the corrosive influence 
of different flow rates, temperatures and pressures on the 
entire injection column.

Oliveira et al. (2021) introduced an additional module in 
the MATLAB reservoir simulation toolbox and described a 
new quadratic method, defined as the derivative of a strati-
graph-modified Lorentz diagram, which is based on the flow 
unit velocity at these depths. The depth range in the reservoir 
is divided into barrier, strong baffle, weak baffle and normal 
unit, and the ability of the analysis module in observing well 
geology is verified by case study.

Yao (2021) evaluated the risk of gas storage pipe columns 
by fuzzy comprehensive evaluation method. For the estab-
lishment of the evaluation index system and the calculation 
of the index weights in the evaluation process, they chose 
the fishbone diagram and the hierarchical analysis method 
respectively, and set up the fishbone diagram-fuzzy hier-
archical comprehensive evaluation model to judge the risk 
level of the pipeline columns, deriving the relative impor-
tance of the influencing factors for the damage of pipeline 
columns.

5.2  Research and optimization of efficient injection 
and production scheme

At present, most of the domestic and international studies on 
CAES projects in DGR are at the stage of theory and field 
test, and there are fewer studies on efficient injection and 
extraction programs. In the CAES operation process, the 
safety of injection and extraction column of reservoir can be 
evaluated by using methods including software and indoor 
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experiments. DGR storage can meet the flow rate and pres-
sure required for system operation, but proper system man-
agement and operation must be performed. During the initial 
gas top formation phase, additional boreholes are required 
to extract raw formation water while air is being injected in 
order to meet a reasonable construction time without exceed-
ing the allowable borehole pressure.

6  Developments and suggestions

Based on the conclusions of relevant domestic and inter-
national studies and field tests on CAES projects for the 
conversion of DGR, the following points are proposed:

(1) The domestic prospects for the development of CAES 
in DGR are promising. However, there is a need to 
enhance the localization of key equipment for CAES. 
This equipment primarily consists of compressors, heat 
exchangers, and expanders. While some related equip-
ment is available in the industry, it currently holds a 
small market share globally, and there is still a perfor-
mance gap compared to major manufacturers.

(2) At the CAES site selection stage, it is possible to drill 
sufficient core samples for surface testing to acquire 
data on permeability, mineral types, and potential sedi-
ment distribution. For testing purposes, injection and 
extraction wells can be positioned at different locations 
within the reservoir to analyze the composition and 
chemical properties of the extracted gas and water. This 
helps prevent issues such as scaling, corrosion, and oxi-
dation, thereby reducing the impact on the porosity and 
permeability of the reservoir.

(3) The nature of the reservoir, geologic safety, history of 
depleted reservoirs, and economics need to be evalu-
ated in advance of the project. A comparative analysis 
of the feasibility of the block can be made based on 
PG&E's evaluation of the CAES project in depleted 
reservoirs in KingIsland, USA, as compared to other 
commercial energy storage technologies.

(4) The dynamic sealing evolution mechanism of the reser-
voir is more complex. The numerical simulation studies 
of gas storage reservoir primarily focus on the reservoir 
itself, and there is less emphasis on the numerical simu-
lation of the geomechanics of the cap layer. Therefore, 
it is necessary to combine the analysis of both the res-
ervoir and the cap layer to conduct dynamic mechanical 
analysis and enhance system stability.

(5) High-flow compressed gas storage energy injection and 
production technology is a key technology for improv-
ing work efficiency. There are fewer studies on the 
safety evaluation and program of high-frequency injec-

tion and production pipe column, and further research 
in this area is needed to strengthen this aspect.

7  Conclusions

Based on the current situation and development of CAES 
technology in China, the characteristics of CAES siting in 
DGR, the evolution mechanism of reservoir dynamic seal-
ing, and the high-flow pressurized gas storage and injection 
technology are analyzed.

The current research status of capillary confinement 
mechanism under alternating load, change rule of cap per-
meability, mechanical confinement mechanism of cap, as 
well as the risk of tensile, shear, fatigue and fault shear-slip 
damage under alternating load are summarized. Taking the 
project of 300 MW-10 h CAES power plant in the depleted 
gas reservoir of Golden Island, San Joaquin County, Cali-
fornia, USA, as an example, this paper analyzed the safety 
evaluation of the pipe columns and the study of efficient 
injection and extraction schemes, which can provide a refer-
ence for the study of CAES engineering in DGR.
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