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Abstract
A quantitative research on the effect of coal mining on the soil organic carbon (SOC) pool at regional scale is beneficial to the 
scientific management of SOC pools in coal mining areas and the realization of coal low-carbon mining. Moreover, the spatial 
prediction model of SOC content suitable for coal mining subsidence area is a scientific problem that must be solved. Tak-
ing the Changhe River Basin of Jincheng City, Shanxi Province, China, as the study area, this paper proposed a radial basis 
function neural network model combined with the ordinary kriging method. The model includes topography and vegetation 
factors, which have large influence on soil properties in mining areas, as input parameters to predict the spatial distribution 
of SOC in the 0–20 and 2040 cm soil layers of the study area. And comparing the prediction effect with the direct kriging 
method, the results show that the mean error, the mean absolute error and the root mean square error between the predicted 
and measured values of SOC content predicted by the radial basis function neural network are lower than those obtained by 
the direct kriging method. Based on the fitting effect of the predicted and measured values, the R2 obtained by the radial basis 
artificial neural network are 0.81, 0.70, respectively, higher than the value of 0.44 and 0.36 obtained by the direct kriging 
method. Therefore, the model combining the artificial neural network and kriging, and considering environmental factors 
can improve the prediction accuracy of the SOC content in mining areas.

Keywords Mining area · Soil organic carbon · Radial basis function neural network · Environmental factor · Spatial 
prediction

1 Introduction

China’s coal production was 3.90 ×  109 tonnes in 2020, 
accounting for 50.4% of total world coal production (IEA 
2021). Coal mining process have caused serious damage to 
the land resources, crop production, and the ecological envi-
ronment (Shrestha and Lal 2011), and induced a very severe 
disturbance of the soil organic carbon (SOC) pool.

Considering that the SOC pool is the largest potential 
factor in reducing the carbon emissions of terrestrial eco-
systems (Miller et al. 2015; Zhang and Ni 2017), China 
and other major coal-producing countries in the world must 
quantitatively study the disturbing influence of coal mining 
on the SOC pool, so as to improve scientific management 

of SOC pool in coal mining areas and realize regional land 
low-carbon utilization.

At present, due to the frequent human mining activities, 
which will result in the changes of some ecological environ-
mental factors in coal mining subsidence areas such as land 
subsidence (Liu et al. 2021), surface destruction (Redondo-
Vega et al. 2017), soil erosion (Wang et al. 2020; Su 2021), 
vegetation destruction (Li et al. 2016), surface runoff and 
groundwater hydrology (Hu 2021; Song et al. 2021), etc. 
No matter which factor changes, it will have an impact on 
the soil carbon pool, so that the SOC content in the mining 
area usually has strong spatial variability (Cheng et al. 2014; 
Jun et al. 2015).

In recent years, a plenitude amount of work has been con-
ducted in the impact of coal mining on the SOC pool. For 
instance, Fu (2017) analyzed the distribution of SOC and 
the liable organic carbon fraction in the typical subsidence 
wetland. Furthermore, the main impact factors of SOC for-
mation and distribution have also been studied. In addition, 
subsidence wetland with different utilization types has been 
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chosen to study the human impact on SOC. Huang (2014) 
found that the carbon sink amount of the vegetation-soil sys-
tem, affected by coal mining, reduced in the Xinzhouyao 
coal mine, Datong Mining Area, Shanxi. In order to under-
stand carbon dynamics in mine soil, the spatial variation of 
SOC contents was investigated in two types of landscapes 
destroyed by coal mining, i.e., subsidence slope and ground 
fissure site from Jiaozuo mine area, China (Cheng et al. 
2014). Many studies of SOC pool in farmland ecosystems 
have also been conducted. Tian (2020) took the Changhe 
Basin mining area as an example and established a method 
for estimating the carbon sequestration loss of farmland eco-
system caused by coal mining, concluding that the influ-
ence of coal mining on carbon sequestration in the farmland 
ecosystem belongs to a carbon loss effect. The carbon loss 
effect of coal mining on SOC pool in farmland has also been 
demonstrated in another study (Xu et al. 2019). These stud-
ies have shown that when the soil in mining areas is dam-
aged, the carbon stored in the soil also decreases massively. 
Therefore, understanding the spatial distribution of SOC in 
mining areas is of great significance for controlling green-
house gas emissions and land management in mining areas.

To efficiently and accurately understand the spatial dis-
tribution of SOC, various geostatistical methods have been 
applied to predict SOC. Kriging is one of the most widely 
used methods among the stochastic techniques and is the 
best linear unbiased estimator in the sense that it minimizes 
the variance of the estimation error (Dai et al. 2014; Ren 
et al. 2021). Therefore, it shows considerable advantages in 
SOC prediction. However, this method does not consider the 
relationship between soil properties and environmental fac-
tors. Based on the shortcomings of this method, prediction 
models for SOC, taking into account environmental factors, 
began to develop. It mainly includes multiple linear regres-
sion (MLR) (Zhang et al. 2017), regression kriging(RK) 
(Zhang et al. 2012), and geographically weighted regression 
model (GWR) (Wang and Wu 2020). Kriging and regression 
analysis are both based on the linear relationship between 
the target and environmental factors, but the relationship 
between soil and environmental factors is usually a compli-
cated nonlinear relationship. To overcome these problems, 
machine learning algorithms, driven by big data, have been 
increasingly applied to spatial prediction of soil organic car-
bon such as random forest (RF) (Yuan et al. 2021), support 
vector machine (SVM) (John et al. 2020), artificial neural 
network (ANN) (Pudełko et al. 2020) and Boosted regres-
sion tree (BRT) (Akpa et al. 2016).

Because ANN can automatically learn and analyze 
the nonlinear relationship between multi-source inputs, 
researchers have successively applied it to the spatial pre-
diction of SOC, and achieved fairly good prediction per-
formance (Lai et  al. 2020). For instance, Morais et  al. 
(2021) combined laboratory NIR spectral data with ANN 

to estimate the SOC content of pasture soils in Portugal. 
Were (2015) compared the performance of SVR, ANN and 
RF in predicting and mapping SOC stocks in the Eastern 
Mau Forest Reserve, Kenya. As a traditional ANN, the radial 
basis neural network (RBFNN) can approximate arbitrary 
functions with arbitrary accuracy due to its strong nonlin-
ear fitting ability, and is widely used in digital soil map-
ping. Using RBFNN and high-precision surface model, Luo 
(2016) achieved high-precision simulation and prediction 
of the spatial variation of SOC in Purple Soil Hilly area of 
Mid-sichuan Basin. Lai et al. (2020) used the RBFANN and 
its model combined with OK (RBFNN-OK) to predict the 
spatial distribution of SOC content, comparing its perfor-
mance with MLR, RF, OK.

In summary, many models and methods have been estab-
lished for the prediction of regional SOC and its spatial dis-
tribution, but the model, suitable for prediction of SOC and 
its spatial distribution in coal mining subsidence areas with 
intricate terrains, is relatively few and short of relevant case 
studies. In this paper, the Changhe River Basin was chosen 
as a study area and the RBFNN was used to predict the spa-
tial distribution of SOC. The prediction precision of this 
model was compared with the conventional Kriging model 
to explore a spatial prediction model suitable for soil organic 
carbon in coal mining subsidence areas.

2  Materials and methods

2.1  Study area

The study area is the Changhe River Basin (35°30ʹ10ʺ N to 
35°38ʹ06ʺ N and, 112°40ʹ37ʺ E to 112°46ʹ04ʺ E), which 
is located in northwest Jincheng City, Shanxi Province, 
China, with a total coverage of approximately 113.224  km2. 
There are 48 administrative villages in the region including 
Chuandi Township, and Dadonggou and Xiacun towns. The 
location is shown in Fig. 1. The study area has a warm-tem-
perate semi-humid continental monsoon climate. The mean 
annual air temperature, precipitation and sunshine hours are 
10.9 ℃, 628.3 mm and 2392.8 h, respectively. The area is 
located on the southeastern edge of the Loess Plateau and 
the west terrain is higher than the east, with an elevation 
between 723 and 1174 m. The topographic relief fluctuates 
greatly, showing a geographical pattern of two mountains 
and a river. The east and west are mountains and hills with 
complex terrain and the Changhe River flows from north 
to south in the middle, forming river valleys in the central 
region. The main soil type in the area is cinnamon soil, and 
there is a small amount of meadow soil. Alkaline soil is 
the main soil type in the hilly area, which is mainly culti-
vated. Corn, potatoes and wheat are the main crops in the 
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agricultural cultivation area, with types of wheat and maize 
planted according to rotation cropping, producing three 
crops over two years.

In this area, coal mines are relatively concentrated, with 
large coal production, abundant coal resources and good coal 
quality. Currently, coal seams No. 3, 9 and 15 are mainly 
used. There are several coal mines across the region. The 
area is therefore affected by high-intensity coal mining 
and large areas of land have collapsed to different degrees. 
According to observed data from the mines, after a few 
decades of mining subsidence, the maximum subsidence is 
6500 mm, the maximum incline deformation is 25.7 mm/m, 
the maximum horizontal movement is 2840 mm. The maxi-
mum horizontal deformation is 38.2 mm/m. Therefore, this 
is a typical study area for coal mining subsidence.

2.2  Soil sampling and analysis

Field sampling was conducted in the Changhe River Basin 
in July 2015. Based on the location of the study area, the 
sampling points should be distributed as uniform as pos-
sible, and therefore the grid sampling method was used 
in this study. First, the study area was divided into 1 km 
× 1 km grids. Taking the center of the grid as the circle 

center and 5 m as the radius, 5 points were set along two 
diagonal lines in each soil layer. On each grid, five sub-
samples of 0–20 cm and 20–40 cm were collected and 
merged into one composite sample (about 1 kg), respec-
tively. Finally, the soil samples were brought back to the 
laboratory and their coordinates were recorded using a 
handheld GPS (Sun et al. 2018). A total of 106 soil sam-
ples were collected from each soil layer, and 20 samples 
were randomly selected as validation samples to validate 
the accuracy of the SOC prediction model. The remain-
ing 86 samples were used for model prediction. Using the 
“create subset” function of Geostatistical Analyst in Arc-
GIS 10.0 to classify these samples. The distribution of the 
sampling points is shown in Fig. 1.

The soil samples collected outdoors were taken back 
to the laboratory, air-dried and crushed to pass through 
a sieve with a 2  mm mesh to remove the animal and 
plant residues. The soil organic carbon content of the 
sample was determined using the potassium dichromate 
 (K2Cr2O7) oxidation-titration method. During this pro-
cess, the SOC is oxidized by potassium dichromate and 
heated to 170–180 °C for approximately 5 min. The excess 
organic potassium dichromate was then titrated by stand-
ard 0.2 mol/L ferrous sulfate  (FeSO4) to determine the 
SOC content (Guo et al. 2019).

Fig. 1  Location of the study area and distribution of soil sampling sites
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2.3  Analytical thinking

2.3.1  Auxiliary variables

Previous studies have shown that factors such as topographic 
properties (Hao et al. 2002) and vegetation (Lemma et al. 
2006; Soleimani et al. 2017), climate change (Coxson and 
Parkinson 1987) and land use (Brejda et al. 2001) and other 
factors have a great impact on the spatial distribution of soil 
properties. For a particular mining subsidence land, climate 
change is not the dominant factor affecting soil organic car-
bon change because of the small region, while vegetation 
and land use are important factors affecting soil organic 
carbon change.

In the coal mining areas, the goaf areas are formed after 
the coal mining panels excavated in the study area, which 
destroyed the original stress equilibrium of the subterra-
nean strata. And the stress transmitted through the stratum 
induces an inconsistent deformation of the overburden rock 
above the goaf areas. The stress makes the surface deforma-
tion in the horizontal and vertical directions, which changes 
the topography of the mining subsidence area. The surface 
deformation caused by coal mining is the root cause of SOC 
changes in the mining subsidence areas. The conventional 
indexes describing surface deformation are subsidence, incli-
nation, curvature, horizontal movement, horizontal deforma-
tion, distortion and shear deformation. Firstly, the physical 
changes such as surface subsidence and cracks in the mining 
area have direct damage to the vegetation (Xu 2012). Sec-
ondly, the surface deformation directly affects the erosion 
intensity of precipitation on surface soil, thereby affecting 
the loss and accumulation of SOC (Ren et al. 2018).

Coal mining may lead to changes in groundwater systems 
and surface runoff in subsidence areas, which will change 
the soil water content, and ultimately change the carbon stor-
age and spatial SOC distribution in mining subsidence areas. 
The evaporation and infiltration of surface water, water ero-
sion, wind erosion are changed by the cracks and collapses 
formed by coal mining, which further leads to change of 
the soil water content (Qie et al. 2015; Wu et al. 2019; Mo 
et al. 2015). Change in soil water content can further affect 
crop carbon input (Wang et al. 2017a, b) and characteristics 
of microorganisms (Chang et al. 2021). In addition, stud-
ies have also shown that soil water content will affect soil 
enzyme activity, and ultimately affect the conversion and 
circulation of soil nutrients such as carbon, nitrogen and 
phosphorus (Han et al. 2019).

Land use change, surface subsidence, terrain slope and 
vegetation coverage induced by coal mining are also impor-
tant factors affecting SOC pool in the subsidence area. Min-
ing subsidence induces topographic slope in the subsidence 

area. Affected by the rainfall, wind and other external fac-
tors, soil erosion loss in the areas with lower vegetation frac-
tion occurs, which will change the carbon storage and spatial 
SOC distribution in mining subsidence areas. Different ter-
rain factors will control the surface water, heat redistribution 
and vegetation zonality, thereby affecting the accumulation 
of SOC (Chang et al. 2021; Li et al. 2013; Huang et al. 2018; 
Meng et al. 2017; Zou et al. 2019). Under different land use 
patterns and vegetation types, the roots, the quantity and 
quality of litterfall, and the mineralization rate of SOC are 
different, resulting in significant differences in SOC content 
(Chen et al. 2019; Li et al. 2019). In addition, human dis-
turbance, soil structure, physical and chemical properties, 
soil microbial communities and other differences affect the 
formation and change of SOC (Huang et al. 2018; Du et al. 
2016; Wang et al. 2017a, b).

Based on the above analysis on the affecting factors of 
SOC pool in mining subsidence area, And for the sake of 
data acquisition convenience by GIS and RS, we elected 
the following affecting factors to predict the SOC spatial 
distribution in subsidence area: (1) indicators representing 
surface deformation in subsidence area: elevation, vertical 
curvature, horizontal curvature, topographic relief, slope 
of aspect, slope of slope; (2) Indicators representing runoff 
change in subsidence area: topographic humidity index; (3) 
Indicators representing land use, terrain slope and vegetation 
coverage in subsidence area : land use type, slope, aspect and 
vegetation coverage index.

These spatial factors are used as auxiliary variables in 
the spatial prediction of SOC (Mueller et al. 2003; Wu et al. 
2009; Mishra et al. 2010; Francaviglia et al. 2012), which 
will help to improve prediction accuracy. Furthermore, 
with the increasing development of GIS and remote sensing 
technology, multi-source remote sensing data has showed 
great advantages in the spatial prediction of soil properties, 
which is more practical through GIS and remote sensing data 
(Summers et al. 2011; Sullivan et al. 2005).

2.3.2  Data acquisition

The digital elevation model (DEM) of the study area with 
a spatial resolution of 30 m was obtained from the Profes-
sion scientific research of public welfare in Ministry of Land 
and Resources. The calculation of the various environmental 
factors was based on previous research (Zhang et al. 2010). 
The Arc GIS spatial analysis tools were used to extract the 
terrain factors from the DEM data for the study area, includ-
ing elevation, slope, aspect, vertical curvature, horizontal 
curvature, the relief degree of land surface, SOS, SOA and 
the topographic wetness index. The detailed extraction pro-
cess is shown in Table 1.
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Landsat 8 images were obtained from the International 
Scientific Data Service Platform, Computer Network Infor-
mation Center, Chinese Academy of Sciences and the NDVI, 
and land use type (LUTP) were obtained by raster calcu-
lation from ENVI 5.1 in the third and fourth bands. The 
date of the image is July 2015. Based on Arc GIS, a GIS 
database of the research area was created, which includes 
the sample information collected in the research area of the 
sampling point and the ten environmental pieces of informa-
tion extracted from remote sensing data. The DEM data and 
calculated NDVI values are shown in Fig. 2 (Dai et al. 2014).

2.4  Spatial prediction model of regional SOC 
content using RBF neural network

2.4.1  Prediction model of the RBF neural network

The RBF neural network is a three-layer feedforward neural 
network model with a single hidden layer. The three-layer 
data layer includes an input layer, a hidden layer with a non-
linear RBF activation function and a linear output layer, with 
a number of neurons in each. Each input neuron is fully con-
nected to all the hidden neurons, and the hidden neurons and 

Table 1  Terrain factors and the detailed data extraction process

Terrain factors The detailed acquisition process

Elevation The difference between the maximum elevation value and the measured elevation in the area, that is H
max

− H

Slope Formula:  arctan
(
f 2x + f 2y

)
 , where, fx and fy are the elevation change rates of north–south, east–west, respec-

tively
Aspect

Formula: 
270

◦
+ arctan

(
fy

fx

)
− 90

◦
fx

|fx| , all parameters are the same as above
Vertical curvature

Formula: 
−

p2r+2pqs+q2 t

(p2+q2)

√
1+p2+q2 , where, p =

�z

�x
,q =

�z

�y
,r = �

2z

�x2
,t = �

2z

�y2
,t = �

2z

�x�y
 , x, y, z are the distance difference in 

two horizontal directions and vertical direction, respectively
Horizontal curvature

Formula: 
−

p2r−2pqs+q2 t

(p2+q2)

√
1+p2+q2 , all parameters are the same as above

The relief degree of land surface That is, the difference between the highest point and the lowest point in an area
SOA Slope of the aspect. It is necessary to calculate the slope variability SOA1 of positive topography and SOA2 

of anti-topography, and then correct them. Formula: (SOA1+SOA2)−(SOA1−SOA2)∗abs
2

SOS Slope of the slope. It is necessary to calculate the aspect variability SOS1 of positive topography and SOS2 of 
anti-topography, and then correct them. Formula: (SOS1+SOS2)−(SOS1−SOS2)∗abs

2

Topographic wetness index
Formula: 

Ln

(
�

tan(�)

)
,
 where, � is the catchment area of a unit contour line, � is the terrain slope

Fig. 2  The main environmental factors in the study area
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output neurons are also connected to each other through a set 
of weights. It has obvious advantages in learning speed and 
parameter setting, compared with the widely used BP neu-
ral network model (Alp et al. 2005). When using the radial 
basis neural network to predict SOC content, the larger the 
spread constant, the smoother the function fitting. How-
ever, the large spread means that more neurons are needed 
to adapt to the rapid changes in the function, which places a 
lot of pressure on the calculation of the function. However, 
if the spread is set too small, the designed network perfor-
mance will be poor (Wallisch et al. 2014). Therefore, dif-
ferent spread values need to be tested in the network design 
to determine an optimal value (Zhou et al. 2014). Similarly, 
the more hidden neurons, the smaller the prediction error 
of the model. However, increasing the hidden nodes of the 
neural network will increase the amount of computation. 
The longer it takes for neural network training and testing, 
the lower the learning rate of the neural network, and the 
lower the real-time performance of the neural network in 
the application. Conversely, too many hidden nodes may 
produce over-fitting results (Pan 2017). Therefore, before 
performing the radial basis neural network simulation, it is 
first necessary to debug the extended constant spread of the 
radial basis function and the maximum number of neurons, 
MN, of the hidden layer, and then select the spread and MN 
when the error is the smallest.

In this study, the RBF neural network was used as the tool to 
input 11 quantitative environmental factor variables as the net-
work input, and then the SOC content at the corresponding point 
was used as the network output to establish an artificial neural 
network model that could express the quantitative relationship 
between the environmental factors and SOC content. The envi-
ronmental factor enters the network through 11 input neurons, 
including elevation, slope, aspect, vertical curvature, horizontal 
curvature, the relief degree of land surface, SOS, SOA, topo-
graphic wetness index, LUTP and NDVI. Then the information 
is transmitted to the hidden neurons through Y = [y1, y2, y3, y4, 
y5, y6, y7, y8, y9, y10, y11] T. Each hidden neuron then trans-
forms the input neuron using a transfer function ∅.

The functional relationship between each input neuron and 
the hidden neuron is (Schmitz et al. 2005) :

where h
t
 is the hidden neuron, Y is the output neuron, and �() 

is the transfer function, which in this study is the gaussian 
radial basis function. || || is the Euclidean norm and h

t
 is the 

center of the t neuron in the hidden layer, which is the width 
of the hidden neuron. This can be computed by:

(1)h
t

(
y
s

)
= �

(
−

‖‖Y − c
t
‖‖

�

)

where d
max

 is the maximum distance between the cent-
ers of the hidden neurons and T is the number of hidden 
neurons.

Finally, the output layer responds to the output of the 
hidden layer through the mapping function, which is a linear 
function and a linear combination of the output results of the 
hidden layer through connecting weights. The formula is:

where Ẑ
ANN

 is the estimated value of SOC content, w
t
 is the 

connecting weight between the hidden neuron and the output 
neuron, and ∅

t
(Y) is the response of the tth hidden neuron 

resulting from all input data.
In MATLAB, the new function is called for the operation 

of the radial basis function. The call format is:

where net represents the neural network model that needs to 
be established; P represents the input matrix, which is the 
matrix Y that contains all the environmental information; 
T is the output matrix, and the SOC content is predicted 
using this function. Goal is a scalar, representing the speci-
fied mean square error; Spread refers to the expansion speed 
of the radial basis function; MN represents the maximum 
number of hidden neurons; and df represents the number of 
neurons added between two displays.

2.5  Estimate of residuals by ordinary kriging

The measured value of SOC content was divided into two 
parts: the sum of the predicted value by the radial basis func-
tion and the residual value. The formula is defined as:

where Z
(
xi
)
 represents the measured value of SOC content 

at point xi , ẑANN
(
xi
)
 represents the predicted value of SOC 

content at point xi by an artificial neural network, and r
(
xi
)
 

represents the residual value.
Using the above formula, the residual value at each sam-

ple point was obtained and the residual value was spatially 
predicted by the ordinary kriging method to calculate the 
residual value of the whole region. Finally, the predicted 
values of SOC content and the spatial predicted values of 
the residual were raster-added in Arc GIS 10.0 to obtain the 
predicted values of SOC content for the entire region. The 
formula is:

(2)� =
d
max√
2T

(3)Ẑ
ANN

=

m∑

t=1

w
t
�
t
(Y)

(4)net = newrb(P, T, goal, spread, MN, df)

(5)Z
(
xi
)
= ẑ

ANN

(
xi
)
+ r

(
xi
)
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2.6  Evaluation of the accuracy of the interpolation 
methods

Based on previous research (Dai et al. 2014; Richard et al. 
1991), the three errors of ME, MAE and RMSE were 
selected for accuracy analysis. The formulas for the three 
indicators are:

where ẑ
(
xi
)
 represents the predicted value at point xi , z

(
xi
)
 

represents the measured value of SOC content at point xi , 
and n represents the number of validation sites. The smaller 
the values of MAE, ME, and RMSE, the smaller the simula-
tion error of the model, and the higher the accuracy.

3  Results and discussion

3.1  Descriptive statistics of the SOC content

(6)ẑ
(
xi
)
= ẑ

ANN

(
xi
)
+ r̂

ok

(
xi
)

(7)ME =
1

n

n∑

i=1

[
ẑ
(
xi
)
− z

(
xi
)]

(8)MAE =
1

n

n∑

i=1

|||ẑ
(
xi
)
− z

(
xi
)|||

(9)RMSE =

√√√√1

n

n∑

i=1

[
ẑ
(
xi
)
− z

(
xi
)]2

The descriptive statistics of the SOC content are shown in 
Table 2. The SOC content within the 0–20 cm soil layer in 
the study area ranges from 0.64 to 23.30 g/kg, with an aver-
age value of 10.64 g/kg and a coefficient of variation of 0.39, 
indicating moderate variation. The skewness is 0.13 and kur-
tosis is 0.14. While the SOC content within the 20–40 cm 
soil layer in the study area ranges from 0.25 to 19.97 g/kg, 
with an average value of 9.34 g/kg and a coefficient of vari-
ation of 0.43, indicating moderate variation. The skewness 
is 0.23 and kurtosis is 0.23. Indicating that the data conform 
to the normal distribution and belong to the positive skew-
ness distribution. Normal distribution is the premise for the 
kriging interpolation of data (Liu et al. 2015). Therefore, 
Table 2 further proves that the kriging interpolation of the 
SOC content and the residual in this study is reasonable and 
effective.

3.2  Geostatistical analysis on the spatial variability 
of SOC in the mining subsidence area

According to kriging interpolation theory, C0 is the nugget 
variance and the mean random error is the variation jointly 
caused by experimental error, fertilization, crop variation, 
management level, and other random factors on a small sam-
pling scale (Sreenivas et al. 2016; Chiles et al. 2009). The 
large nugget variance indicates that processes on a small 
scale cannot be ignored. In Changhe River Basin, the nugget 
values (C0) for the SOC content were small (Table 3), which 
indicates that the spatial variations in the SOC caused by 
experimental error, fertilization, crop variation, management 
level, and other random factors on a small sampling scale 
were minimal at a regional scale.

C represents the structural variance and the mean system 
attribute or maximum spatial variation of a regional variable, 

Table 2  Descriptive statistics of 
the SOC content

Soil properties Max (g/kg) Min (g/kg) Mean(g/kg) Standard 
deviation(g/
kg)

Variation 
coefficient

Skewness Kurtosis

SOC(0–20 cm) 23.30 0.64 10.64 4.22 0.39 0.13 0.14
SOC(20–40 cm) 19.97 0.25 9.34 4.07 0.43 0.23 0.23

Table 3  Semi-variance analysis 
of the SOC content and residual

Parameter Soil layer 
thickness 
(cm)

Model Nugget C0 Sill C0 + C C /(C0 + C) Range Coefficient of 
determination R2

SOC 0–20 Exponential 1.60 18.00 0.91 1920 0.74
20–40 Exponential 8.41 23.40 0.64 5880 0.80

Residual 0–20 Exponential 9.66 19.33 0.50 4680 0.71
20–40 Exponential 1.67 16.74 0.90 6324 0.54
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where this variation is caused by the soil parent material, 
terrain, climate, and other structural factors (Sreenivas et al. 
2016; Chiles et al. 2009). The climate in the subsidence area 
remained unchanged before and after coal mining, so the 
spatial variability in the SOC content was basically caused 
by mining subsidence and other structural factors due to coal 
mining. C + C0 is the sill variance (the stationary value of the 
semivariance function after the interval increases progres-
sively to a certain degree) and it represents the total variation 
in the system. C/(C0 + C) represents the degree of spatial 
correlation (the proportion of spatial variation caused by 
structural factors in the total system variation). The spatial 
correlation is poor when the specific value is less than 0.25, 
moderate when the specific value is between 0.25 and 0.75, 
and good when the specific value is greater than 0.75.

In the study area, the C/(C0 + C) values of the SOC con-
tent (0–20 cm) and 20–40 cm are 0.91 and 0.64, respectively, 
where C/(C0 + C) values of the SOC content (0–20 cm) were 
greater than 0.75 (Table 3), which indicates that the spatial 
correlation in the SOC (0–20 cm) is mainly caused by struc-
tural factors such as mining, surface subsidence and other 
structural factors due to coal mining at a regional scale. This 
is mainly due to the subsidence of the surface, the destruc-
tion of the original topography and surface vegetation, and 
soil erosion caused by large-scale coal mining. Changes in 
the physical, chemical and biological properties of soil in 
mining areas will result in the destruction of soil aggregates, 
nutrient loss, reduced microbial activity, and decreased SOC 
content.

3.3  Spatial distribution of SOC content

The spatial distribution of the SOC content obtained by the 
two methods is shown in Fig. 3. The spatial distribution of 
the SOC content obtained by the two methods is in general 
consistent. On the whole, the SOC content is relatively low 
in certain areas west of the Changhe River and the highest 
content is concentrated southeast of the river. In the study 
region, the mining area is mainly located in the western 
part of the river basin. Large-scale coal mining activities 
have caused varying degrees of ground subsidence, soil ero-
sion, and vegetation damage. The land in the mining area 
has been severely damaged, soil fertility has declined and 
organic carbon has been destroyed. Therefore, the average 
SOC content in the western of the study area is lower than 
the eastern, which is more obvious within the 20–40 cm soil 
layer. This may be due to the fact that SOC is mainly derived 
from the biomass that enters the soil, and the activities in 
the mining area destroy the soil structure, reduce the soil 
quality, and reduce the productivity, so less biomass was 
input to soil than in the unmined area. Secondly, the bio-
mass of input soil is mainly concentrated in the topsoil and 
decreased with the increase of soil depth, resulting the SOC 

content of 20–40 cm in the western region is lower than in 
the eastern region.

The SOC content in surface soil is relatively high along the 
long river in the middle of the region (Fig. 3a), which is due to 
better soil moisture conditions along the river. Previous research 
has shown a positive correlation between soil moisture content 
and SOC content, the high influence of soil permeability, and 
soil moisture content in organic carbon mineralization. There-
fore, exogenous organic residues in the water under the action of 
rot have easily degraded into small molecular organic substances 
and have been preserved in the soil, which helps improve the 
SOC content. Compared with the soil along the river banks, the 
surrounding soil has low water content, good soil permeability, 
high porosity, and easy mineralization and decomposition of 
organic carbon, which is not conducive to the accumulation of 
SOC. Therefore, the SOC content is relatively low.

Based on the prediction results, the SOC content ranges 
in the study area predicted by the RBF neural network 
are 0.58–23.75 g/kg (within the 0–20 cm soil layer), and 
0.55–20.37 g/kg (within the 20–40 cm soil layer), respec-
tively. The SOC content ranges in the study area obtained 
by the direct kriging method are 1.34–22.13 g/kg (within 
the 0–20 cm soil layer), and 0.65–19.65 g/kg (within the 
20–40 cm soil layer), respectively. It can be concluded that 
the SOC content within the 0–20 cm soil layer is slightly 
higher than that within the 20–40 cm soil layer. This is 
because the surface soil, with its rich hydrothermal resources 
and animal and plant remains, promotes the decomposition 
of microorganisms, which is more conducive to the accu-
mulation of organic carbon. Combined with the prediction 
results, the predicted results of the RBF neural network 
showed more information than the direct kriging interpola-
tion method, and the changes in the local areas are more 
obvious. This is because the RBF neural network compre-
hensively considers different geographical factors, especially 
the changes in topographic factors caused by coal mining 
disturbances and the spatial correlation of variables on SOC. 
In general, the strong spatial dependence of SOC is deter-
mined by the intrinsic changes in SOC, while the external 
variation table controls the variability of the less spatially 
dependent parameters (Cambardella et al. 1994). Further-
more, because of the influence of coal mining activities in 
the study area, the terrain change is more severe and had a 
greater influence on the spatial distribution of SOC con-
tent. Therefore, the RBF neural network comprehensively 
considers the effects of various environmental factors on 
SOC, taking into account the spatial structure of SOC. At 
the same time, the calculation of residuals by the ordinary 
kriging method takes into account the spatial variation of 
sample point randomness. Compared with the ordinary krig-
ing method, combining kriging with the RBF neural network 
takes both internal and external factors into consideration to 
improve the accuracy of SOC spatial distribution prediction.
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Comparing the prediction results of the two methods in 
Fig. 3 shows that the predicted results of the RBF neural 
network revealed more detail than the ordinary kriging, 
which only considers the spatial correlation of SOC, which 
makes the prediction effect unsatisfactory. The range of 
variability in the SOC content and the residual is large, 
indicating that the variables are influenced by other fac-
tors within a wide range of regions (Table 3) (Hengl et al. 
2004; Takata et al. 2007). Therefore, the spatial distribu-
tion of the SOC content using direct kriging is not very 
accurate, while the RBF neural network that combines 

environmental factors is more consistent with the actual 
state of the study area and is more scientific.

3.4  Accuracy assessment of the prediction methods

The fit of the predicted and measured values (Fig. 4) shows 
that the determination coefficient R2 obtained by the RBF 
neural network are 0.81 and 0.70, respectively, which is 
much higher than the 0.44 and 0.36 obtained by direct krig-
ing. The determination coefficient R2 indicates the fitting 
accuracy of the predicted and measured values. The closer 

Fig. 3  The spatial distribution of SOC. a 0–20 cm, Direct kriging; b 0–20 cm, RBF Neural Network; c 20–40 cm, Direct kriging; d 20–40 cm, 
RBF Neural Network
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R2 is to 1, the higher the fitting accuracy, indicating the bet-
ter prediction effect of the model (Nakagawa et al. 2013). 
In conclusion, compared with the ordinary kriging method, 
the spatial prediction accuracy of the RBF neural network 
combined with the kriging method for the SOC content in 
the mining area is higher, and this result has been confirmed 
by previous studies.

The prediction accuracy indicators of the two methods 
are shown in Table 4. In terms of prediction accuracy, the 
ME, MAE and RMSE obtained by direct kriging are 0.12, 
0.89, 1.02 (within the 0–20 cm soil layer), and 0.89, 1.45, 
1.89 (within the 20–40 cm soil layer), respectively, which are 
all higher than the 0.03, 0.51, 0.59 (within the 0–20 cm soil 
layer), and 0.58, 0.76, 1.27 (within the 20–40 cm soil layer) 
obtained by the RBF neural network (Table 4). Among them, 

ME represents the average deviation of the prediction, indi-
cating that the average level of the RBF neural network pre-
diction is higher. MAE represents the actual prediction error, 
indicating that the prediction of the RBF neural network is 

Fig. 4  The scatter plot of predicted and measured values

Table 4  Prediction accuracy indicators for the two methods

Notes: ME Mean error; MAE Mean absolute error; RMSE Root mean 
square error

Method ME MAE RMSE

Direct Kriging 0–20 cm 0.12 0.89 1.02
20–40 cm 0.89 1.45 1.89

RBF neural network 0–20 cm 0.03 0.51 0.59
20–40 cm 0.58 0.76 1.27
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more consistent with the actual SOC spatial distribution. 
Furthermore, the RMSE values from both methods are larger 
than MAE, indicating that the error has strong spatial vari-
ability (Dai et al. 2014). The prediction accuracy of the RBF 
neural network is higher for the spatial distribution of SOC 
in the study area (Table 4).

4  Conclusions

In this paper, the SOC content of a mining area was ana-
lyzed. We also propose a new method to predict the spatial 
distribution of SOC content in the mining area using the 
RBF neural network method combined with the ordinary 
kriging method. First, the RBF neural network is used to 
construct the nonlinear mapping relationship between the 
environmental variables of the mining area and the SOC 
content to calculate the predicted value of SOC content.

Then, the residuals are calculated and spatialized with 
the ordinary kriging method. Finally, the spatial residuals 
are added to the results of the RBF neural network, and the 
predicted value of SOC space in the study area is obtained.

Compared with the ordinary kriging method, this method 
is scientific and feasible. The conclusions of this study are 
as follows:

(1)  Coal mining activities have caused great disturbance 
to the soil in the mining area that has reduced the SOC 
content in the area, resulting in the loss of soil nutri-
ents. As coal mining will cause land subsidence, soil 
erosion and vegetation destruction, the main influenc-
ing factors of soil property distribution in the mining 
area are topography and vegetation factors, such as 
slope, elevation, topographic wetness index and the 
normalized difference vegetation index. The most 
important variable for prediction of SOC is slope. 
Therefore, when estimating the spatial distribution of 
SOC in a mining area, these topographical and vegeta-
tion factors should be taken into account to improve 
estimation accuracy.

(2) Compared with direct kriging interpolation, the RBF 
neural network combined with kriging has a smaller 
average error, mean absolute error and root mean 
square error than ordinary kriging in terms of predic-
tion accuracy. Furthermore, the accuracy R2 of the 
predicted point and the measured point is higher than 
that of the ordinary kriging. Therefore, the radial basis 
neural network combined with environ- mental factors 
is more suitable for predicting SOC content in min-
ing areas that have been severely disturbed by human 
activities. As a result, it can provide a reference for 
spatial prediction of soil properties in a mining area, 

and thus provide a scientific and reasonable basis for 
land reclamation and land resource management.
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