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Abstract
The critical issue in developing mature Oxy-Coal Combustion Steam System technology could be the reactivity of deminer-
alized coal which, is closely related to its chemical structure. The chemical structures of Liupanshui raw coal (LPS-R) and 
Liupanshui demineralized coal (LPS-D) were analyzed by FTIR and solid-state 13C-NMR. The pyrolysis experiments were 
carried out by TG, and the pyrolysis kinetics was analyzed by three iso-conversional methods. FTIR and 13C-NMR results 
suggested that the carbon structure of LPS coal was not altered greatly, while demineralization promoted the maturity of coal 
and the condensation degree of the aromatic ring, making the chemical structure of coal more stable. The oxygen-containing 
functional groups with low bond energy were reduced, and the ratio of aromatic carbon with high bond energy was increased, 
decreasing the pyrolysis reactivity. DTG curve-fitting results revealed that the thermal weight loss of LPS coal mainly came 
from the cleavage of aliphatic covalent bonds. By pyrolysis kinetics analysis of LPS-R and LPS-D, the apparent activation 
energies were 76 ± 4 to 463 ± 5 kJ/mol and 84 ± 2 to 758 ± 12 kJ/mol, respectively, under different conversion rates. The 
reactivity of the demineralized coal was inhibited to some extent, as the apparent activation energy of pyrolysis for LPS-D 
increased by acid treatment.
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1  Introduction

As a major climate forcing factor, CO2 mainly generated 
from fossil fuel combustion and coal-fired power stations are 
the largest source of CO2 emissions (Cui et al. 2021; Leng 
et al. 2021; Liu et al. 2021). At present, controlling the emis-
sion of CO2 is a key challenge for China to achieve the peak 
carbon in 2030. Oxy-fuel combustion technology, which can 
capture CO2 from power plants, has become a hot topic in 
recent years (Zhang et al. 2021; Yang et al. 2021). Sun et al. 
(2012) proposed a system of Oxy-Coal Combustion Steam 
System (OCCSS) of near-zero emissions, which has high 
net power generation efficiency and near zero CO 2 emis-
sion. In OCCSS system, the fuel (ash-less coal) consumed 

by reacting with O2 and steam in high pressure has to be 
pre-processed through demineralization. However, after 
demineralization treatment, the organic matter and chemical 
structure of demineralized coal will be altered to a certain 
extent, making the reactivity of which are quite different 
from that of the raw coal.

Pyrolysis is the first step in coal conversion and utilization, 
to what extent the pyrolysis proceeds depend on the chemi-
cal structure of the coal and the reaction conditions. Raman, 
FTIR, XRD, XPS etc. were commonly applied to investigate 
chemical structural characteristics of coal before and after 
acid treatment (Lin et al. 2017; Shi et al. 2013; Song et al. 
2016; Ahmed et al. 2003; Li et al. 2019; Sonibare et al. 2010; 
Gómez-Serrano et al. 2003). Li et al. (2019) reported that the 
content of oxygen-containing functional groups in raw coal 
reduced through acid treatment by Raman. Lin et al. (2017) 
found that by HF-HCl combined acid treatment, the long ali-
phatic chain in coal was destroyed, the content of carboxyl 
group and phenolic hydroxyl group increased, the content of 
aliphatic and aromatic hydrogen decreased by FTIR. In order 
to study reactivity of coal before and after demineralization, a 
large number of pyrolysis experiments by thermogravimetric 
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have been carried out (Slyusarskiy et al. 2017; Mandapati and 
Ghodke 2021). Cheng et al. (2020) found acid treatment did 
not dramatically alter the main devolatilization behavior of 
coals in a system that coupled DSC with a thermal gravimetric 
analyzer and a mass spectrometer. Zhu et al. (2019) reported 
that acid pretreatment increased the weight loss of lower rank 
coal with a thermogravimetric analysis. Liu et al. (2017a, b) 
found that acid treatment increased the pyrolysis reactivity of 
demineralized coal by both TGA and fixed bed experiments. 
However, Song et al. (2020) found that the pyrolysis reactivity 
of demineralized coal decreased on the contrary. In addition, 
some studies (Song et al. 2016; Cheng et al. 2019) indicated 
that the existence of minerals in ash is the main reason for 
the high reactivity of coal without demineralization, while 
the transformation and effect of inherent minerals in coal are 
relatively complex and still controversial (Li et al. 2017). Liu 
(2004) investigated that inherent minerals in coal did not have 
significant effect on the pyrolysis characteristics of coal. Qiu 
et al. (2014) found that the presence of alkaline earth metals 
reduced the pyrolysis reactivity of raw coal instead.

Based on previous studies, this paper focuses on the chemi-
cal structure of LPS-R and LPS-D (especially the functional 
groups and carbon structure), their pyrolysis characteristics 
and kinetic mechanism of pyrolysis, intended to describe the 
association between them, to better understand the effect of 
demineralization on coal pyrolysis reactivity. The influence 
of acid treatment on functional groups and carbon structure of 
LPS coal was discussed in this paper by FTIR and 13C-NMR. 
Thermogravimetric analysis was used to study the pyrolysis 
of coal before and after demineralization at three heating rates 
of 20, 40 and 60 °C/min, respectively. To evaluate the role of 
acid treatment on coals’ structure and reactivity, the pyrolysis 
kinetics was analyzed by iso-conversional methods like Star-
ink, FWO and DAEM.

2 � Material and methods

2.1 � Samples preparation

LPS-D was obtained from LPS-R through HCl-HF-HCl three-
stage acid treatment. The detailed description of specific acid 
treatment procedure was given elsewhere (Zhao et al. 2018). 
Both LPS-R and LPS-D pulverized, grounded and sieved to 
a particle size smaller than 75 μm were dried in a thermostat 
at 105 °C for 6 h. Table 1 showed the proximate and ultimate 
analysis of LPS-R and LPS-D, from which it can be seen that 

the ash content (dry basis) was significantly reduced from 
15.62% (LPS-R) to 2.46% (LPS-D) after acid treatment. The 
mass fractions of H, N, and S (dry ash free basis) were nearly 
unchanged and the mass fraction of C (dry ash free basis) 
increased greatly after acid pretreatment.

2.2 � FTIR and solid‑state 13C‑NMR

The functional groups in samples were characterized by a 
German Bruker VERTEX 80 V Fourier transform infrared 
spectrometer, with a scanning range of 350–4000 cm−1 and 
a scanning number of 32. In sample preparation, firstly tak-
ing 2 mg pulverized coal and KBr to mix at a mass ratio of 
1:100, and then grinding the mixed sample to powder form.

The solid-state 13C-NMR detection were performed by 
AVANCE III-600 MHz NMR fully digital superconduct-
ing NMR instrument from Bruker, Germany. The experi-
ment was performed by using a 4 mm MAS probe with a 
magic angle rotation of 14 kHz and a resonant frequency of 
150.9 MHz. The cross-polarization contact time was 2 ms 
and the cycle delay time was 6 s.

Peak Fit version 4.12 software was used to divide the 
absorption peaks obtained by both FTIR and 13C-NMR. 
By analyzing the second derivative of spectral data, the 
approximation of the position and number of fitting peaks 
was obtained. The residual sum of squares between the 
original spectrum and the fitting spectrum was considered 
as the minimum objective function for fitting, and the fit-
ting spectrum was continuously optimized by adjusting the 
parameters of the fitting peaks.

2.3 � TGA experiments

Pyrolysis of the coals was conducted on a TGA/SDTA851e 
thermogravimetric analyzer. The pyrolysis process was 
carried out in 99.999% high purity Ar atmosphere with a 
flow rate of 80 mL/min. The coal samples were heated from 
25 °C to 1000 °C at 20, 40 and 60 °C/min, respectively, and 
the weight of the coals used in each experiment was about 
26 mg. When 1000 °C is reached, a cooling ramp was initi-
ated at 20 °C/min in the program to restore the system to 
room temperature. A group of empty crucible control experi-
ments were carried out in each group of working conditions. 
Do at least two parallel experiments.

Table 1   Proximate and ultimate 
analyses of coal

Sample Proximate analysis (wt%) Ultimate analysis (wt%)

A V FC C H N S O

LPS-R 15.62 38.90 45.48 62.81 4.57 1.11 3.28 28.23
LPS-D 2.46 42.09 55.45 73.28 5.22 1.00 3.79 16.71
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3 � Results and discussion

3.1 � FTIR analysis

Figure 1 shows the infrared spectra of LPS-R and LPS-D 
by FTIR, from which it shows that the kaolin absorption 
peak located at 3700–3600 cm−1 (Fig. 1a) in LPS-R almost 
disappeared after acid treatment and the absorption peak 
intensity caused by minerals of 600–400 cm−1 (Fig. 1f) was 
notably reduced, indicating that acid treatment can remove 
a large number of ash such as clay and silicate in the coal. 
In addition, to distinguish the difference between LPS-R and 
LPS-D spectra, curve fitting method was adopted for analy-
sis, and the spectrum was divided into four parts: aliphatic 
functional groups of 3000–2800cm−1 (Fig. 1b), oxygen-con-
taining functional groups of 1750–1390 cm−1 (Fig. 1c) and 
1390–960 cm−1 (Fig. 1d), and aromatic functional groups of 
920–720 cm−1 (Fig. 1e). The curve-fitted results of the infra-
red spectra of LPS-R and LPS-D are shown in Fig. 2, where 
the correlation coefficient R2 of each region are > 0.995. The 
functional group distribution and corresponding content of 
the two coals are shown in Table 2.

According to the relative contents of aliphatic structure 
fitting by peaks in Table 2, absorption peaks caused by 
CH2 stretching vibration in LPS-R and LPS-D accounted 
for 80.34% and 78.85%, respectively, suggesting that the 
lipids in LPS-R and LPS-D were mainly in the form of long 
chains, with relatively few branched and side chains. After 
acid treatment, the proportion of symmetrical and asym-
metric stretching vibration of –CH2 in LPS-D decreased by 
1.49%, indicating that the long aliphatic chain was destroyed 

and shortened slightly. The peak at around 1695 cm−1 was 
attributed to the stretching vibration of carboxylic acid, 
and the absorption strength increased by 13.04% after acid 
treatment, revealing that the alkali metal elements linked 
to COO– could be removed, forming COOH group. The 
peaks near 1600, 1565 and 1500 cm−1 were attributed to 
the conjugated extension vibration of aromatic C=C. The 
relative content of aromatic C=C reduced by 0.01% merely, 
indicating that the aromatic C = C skeleton was stable 
enough which was not damaged easily by acid treatment. 
At 1100–1350 cm−1, the absorption vibration peaks were 
mainly caused by C–O and C–OH stretching vibration of 
ether oxygen and phenolic hydroxyl. The corresponding con-
tents of hydroxyl increased from 22.28% to 55.93% and the 
contents of ether oxygen increased from 25.5% to 42.01%, 
due to the removal of a large number of alkali and alkaline 
earth metal associated with oxygen and hydroxyl groups by 
acid treatment. Additionally, the absorption peaks of silica-
alumina minerals at 1010 and 1038 cm−1 almost disappeared 
after acid treatment. In LPS-R, benzene ring 3 substitution 
(accounting for 73.16%) was the dominant type of aromatic 
hydrocarbons, while benzene ring 4 substitution (accounting 
for 73.42%) was dominant in LPS-D after acid treatment, 
suggesting that the structure of aromatic hydrocarbons was 
altered by substitution reaction to a certain extent during 
acid treatment.

In order to better understand the chemical structure of 
LPS coal before and after acid treatment, the infrared struc-
tural parameters in Table 3 were analyzed to characterize the 
carbon skeleton structure of coal according to the intensity 
of fitting peaks. The aromatic carbon ratio fa is calculated 
as follows:

In Eq. (1), Cal/C is the ratio of aliphatic carbon to total 
carbon, Hal/H is calculated by Eq. (2), which refers to the 
ratio of aliphatic hydrogen to total hydrogen content, H/C 
atomic ratio is calculated by ultimate analysis, and Hal/Cal 
takes the empirical value of 1.8.

Table 4 shows the infrared structural parameters of 
LPS-R and LPS-D referred in Table  3. The aliphatic 
hydrogen content I1 of LPS-D decreased by 18.1%, while 
the structurally stable aromatic hydrogen content I2 
increased by 74% compared to that of LPS-R; The ali-
phatic hydrocarbon branch chain ratio (CH3/CH2) of LPS 
coal has little difference before and after demineraliza-
tion, indicating that acid treatment has weak effect on the 
aliphatic side chain; C’ and Doc increased by 62% and 
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Fig. 2   (continued)

Table 2   Assignments for peaks 
in FTIR absorption wavenumber 
and corresponding content

Peak Assignment LPS-R LPS-D

Center (cm−1) Area (%) Center (cm−1) Area (%)

1 Asym.RCH3 2955.4 10.14 2954.4 9.46
2 Asym.R2CH2 2919.0 48.41 2918.1 46.63
3 –R3CH 2891.1 7.81 2891.5 9.90
4 Sym.RCH3 2877.9 1.71 2878.4 1.89
5 Sym.R2CH2 2852.0 31.93 2850.3 32.22
6 Conjugated C=O 1720.8 1.83 1716.2 6.22
7 Carboxyl acids 1698.6 1.43 1692.1 14.47
8 Conjugated C=O 1661.1 0.53 1664.4 1.63
9 Aromatic C=C 1600.1 19.92 1599.5 5.56
10 Aromatic C=C 1567.9 38.04 1566.2 51.43
11 Aromatic C=C 1493.3 1.28 1497.4 2.24
12 Asym.CH3–, CH2– 1439.5 30.98 1438.4 18.45
13 CH3-Ar, R 1371.0 0.44 1371.0 0.55
14 C–OH in phenols 1338.9 2.02 1338.9 5.38
15 C–O in cyclic ethers 1298.3 0.74 1298.7 1.17
16 C–O–C in cyclic ethers – – 1272.6 32.43
17 C–OH in phenols 1258.7 9.43 – -
18 C–O in phenols 1207.8 6.82 – –
19 C–OH in phenols – – 1192.3 44.76
20 C–O in phenols 1174.4 2.89 – –
21 C–O in phenols 1153.9 1.12 1149.1 5.79
22 C–O in alcohols and ethers 1090.0 24.76 1089.5 8.41
23 Si–O 1038.3 22.88 – –
24 Si–O 1010.7 28.90 1012.4 1.51
25 Five adjacent H deformation – – 882.9 0.32
26 Four adjacent H deformations 860–810 4.25 860–810 73.42
27 Three adjacent H deformations 810–750 73.16 810–750 3.60
28 Two adjacent H deformations 750–720 22.59 750–720 22.66
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34% respectively, which suggests that the maturity of coal 
quality and the degree of aromatic ring polycondensation 
were promoted after acid treatment; The fa increased by 
11.5%, revealing that the aromatic structure increased; 
The oxygen enrichment degree (C=O/C–O) of LPS coal 
increased from 0.088 to 0.228, suggesting the C–O bond 
decreased and the C=O bond increased relatively; The 
Aar/Aal of demineralized coal increased by 58%, revealing 
that acid washing treatment may lead to the formation of 
aromatic hydrocarbons, which were more stable. In gen-
eral, the structural stability of LPS coal was enhanced to 
a certain extent after acid treatment on the basis of the 
infrared parameters.

3.2 � 13C‑NMR analysis

Different carbon skeleton structures were investigated by 
solid state 13C-NMR studies (Qian et al. 2014; Jing et al. 
2019; Kawashima et al. 2000). According to the 13C-NMR 
spectra of LPS-R and LPS-D in Fig. 3, both of them contain 
two main peak clusters, namely, which represent aliphatic 
carbon (0–90 ppm) and aromatic carbon (90–165 ppm). 
Meanwhile, they also contain a small amount of carbonyl 
carbon with chemical shift of 165–220 ppm. To clearly fig-
ure out the influence of demineralization on carbon skel-
eton structure, 13C-NMR spectra were decoupled by peaks 
to analyze the structural parameters of LPS-R and LPS-D, 

Table 3   Infrared structural parameters

 Item Parameter Formula Definition

Aliphatic structure I1 A3000-2800/cm/A1-28 The ratios of aliphatic hydrogen to all functional groups
CH3/CH2 A2955/cm/A2920/cm Length and branching degree of aliphatic chain in coal

Oxygen-containing 
functional group 
structure

C’ A1800-1650/cm/A1600/cm + A1800-1650/cm Maturity of coal
C = O/C–O A1800-1650/cm/A1260–1040/cm The oxygen content of coal

Aromatic structure I2 A900–700/cm/A1–28 The ratios of aromatic hydrogen to all functional groups
Aar/Aal A1600–1500/cm/A3000-2800/cm The ratios of aromatic hydro- carbons to aliphatic hydrocarbons
fa 1−Cal/C Aromatic carbon as a percentage of total carbon
Doc A900–700 /cm/A1600/cm Degree of condensation of aromatic rings

Table 4   Parameters of LPS-R 
and LPS-D samples calculated 
from FTIR spectra

Coal sample I1 CH3/CH2 C’ C = O/C–O I2 Aar/Aal fa Doc

LPS-R 0.149 0.147 0.330 0.088 0.027 0.944 0.590 0.576
LPS-D 0.122 0.144 0.535 0.228 0.047 1.493 0.658 0.772
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Fig. 3.   13C-NMR spectra and the de-convoluted curves
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which was shown in Table 5. LPS-R is mainly composed of 
aliphatic carbon and aromatic carbon, accounting for 38.72% 
and 55.84% respectively, the same as that of LPS-D, with the 
content of aliphatic carbon and aromatic carbon of LPS-D 
changed little by 1.18% and 1.47% respectively after acid 
treatment, suggesting that the macromolecular structure 
of LPS coal was not altered greatly. The total content of 
oxygen-containing functional group structures in LPS-R 
mainly consisted of oxy-aliphatic carbon fal

O = 3.39%, oxy-
aromatic carbon faP = 5.76%, carboxyl and carbonyl carbon 
faC = 6.72%, which decreased from 15.87% to 8.60% due to 
the protonation of oxygen-containing functional groups by 
acid treatment process. Based on the curve-fitted 13C-NMR 
spectra results in Table 5, six lattice parameters were calcu-
lated and the results were summarized in Table 6. Seen from 
it, the average ratio of bridge carbon to peripheral carbon of 
aromatic compounds XBP, which reflects the polycondensa-
tion degree of aromatic compounds, that is, the size of aro-
matic core, increased from 0.22 to 0.31 after acid treatment, 
indicating that demineralization process made the aromatic 
carbon condense to a greater extent, so as to increase the 
size of aromatic clusters. The number of Ca, Cal, Ccl and Cp 
increased by 45.6%, 37.6%, 41.9% and 27.4%, indicating 
that the LPS-D has larger cluster structures than LPS-R to 
a certain extent.

3.3 � Thermogravimetric analysis.

Figure 4 shows the TG-DTG curves of LPS-R and LPS-D 
pyrolysis experiment by TG at three different heating 
rates. The characteristic temperature of coal pyrolysis are 
defined as follows: the initial pyrolysis temperature T0 is 
defined at the intersection point of X axis and the line of 
sample conversion of 0.05 and 0.50 on the TG curve(Yan 
et al. 2019; Wang et al. 2016), and the peak temperature 
corresponding to (dw/dt)max is defined as Tp. The pyrolysis 

characteristic parameters of LPS-R and LPS-D are shown in 
Table 7. With the increase of heating rate, Tp of LPS-R coal 
shifted from 457.15 °C (20 °C/min) to 482.75 °C (60 °C/
min), resulting in thermal hysteresis (Wang et al. 2022) in 
DTG curve. Based on Fig. 4 combined with Table 7, the TG 
curve decreases along with the increasing of temperature, 
and at 1000 °C, the mass weight loss of LPS-R or LPS-D 
at different heating rates are both close to the contents of 
their respective volatiles in Table 1 proximate analysis (LPS-
RAW: 38.9%, LPS-D: 42.09%).

Taking the heating rate of 40 °C/min as an example, as 
can be seen from Table 7: the (dw/dt)max of LPS-R is 2.68%/
min, and the (dw/dt)max of LPS-D is 2.54%/min. Accord-
ing to FTIR and 13C-NMR analysis, the aliphatic hydrogen 
content I1 and the content of aliphatic carbon of LPS-R are 
0.149 and 38.72%, higher than that of LPS-D respectively. 
Therefore, the covalent bond breaking between aliphatic car-
bon in LPS-R can generate more small molecular tar frag-
ments quickly at Tp, contributing to the result that the (dw/
dt)max of LPS-R is 0.14%/min higher than that of LPS-D. 
The TP of LPS-R and LPS-D are 471.89 °C and 473.79 °C 

Table 5   Solid state13C-NMR 
peak-fitting results of LPS-R 
and LPS-D

Chemical shift(ppm) Structural fragments Symbol Relative area (%)

LPS-R LPS-D

90–230 Aromatic carbon fa 61.28 62.46
90–165 Aromatic nucleus carbons fa′ 55.84 57.31
165–230 Carbonyl and carboxyl carbon faC 6.72 5.16
100–129 Protonated aromatic carbons faH 24.57 30.44
129–165 Nonprotonated aromatic carbons faN 24.57 26.32
148–165 Oxy-aromatic carbon faP 5.76 2.60
137–148 Alkylated aromatic carbon faS 13.36 6.17
129–137 Aromatic bridgehead carbons faB 12.15 17.55
0–90 Aliphatic carbon fal 38.72 37.54
22–55 CH and CH2 fal

H 30.79 31.24
0–22 CH3 fal* 4.54 5.46
55–90 Oxy-aliphatic carbon fal

O 3.39 0.84

Table 6   Lattice parameters of LPS-R and LPS-D

XBP= ratio of bridge carbon to peripheral carbon;  Ccl = total number 
of carbons per cluster;  Ca = number of aromatic carbons per clus-
ter;  Cal = number of aliphatic carbons per cluster;  Cp = number of 
peripheral carbons per cluster; Ra = aromatic rings

Lattice 
parameters

Formula LPS-R LPS-D

XBP XBP = faB / fa′ 0.22 0.31
Ccl Ccl = Ca / fa′ × 0.01 19.03 27.01
Ca Ca = 3 / (0.5—XBP) 10.63 15.48
Cal Cal = Ccl × fal × 0.01 7.37 10.14
Cp Cp = Ccl × (faH + faP + faS) × 0.01 8.31 10.59
Ra Ra = 0.5 × (Ca—Cp) + 1 2.16 3.44
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respectively. Compared with LPS-D, LPS-R contains more 
oxygen-containing functional groups (15.87%) with lower 
bond energy and less aromatic carbon (55.84%) with higher 
bond energy, which is easy to decompose, so the Tp is about 
2 °C lower than that of LPS-D. Furthermore, as a pyrolysis 
reactivity parameter (Yan et al. 2020), Tp reflects the aver-
age stability of the macromolecular structure of coal (Han 
et al. 2013a, b), which indicates that LPS-R is more likely to 
fracture in the pyrolysis process, and the pyrolysis reactivity 
of LPS-R is higher.

As shown in Fig. 5, the pyrolysis process of LPS-R and 
LPS-D at the heating rate of 40 °C/min is divided into 
three stages according to the second derivative method 
(Wang et al.2016), among which the division of stage 1 
and stage 2 is where the slope of TG curve changes obvi-
ously and the division of stage 2 and stage 3 is where the 
d2m/dT2 changed slightly. The first stage is related to water 
evaporation and gas desorption in coal pores, 25–222 °C 
for LPS-R and 25–205 °C for LPS-D. During this stage, 

the slope of TG curve drops little, and both DTG curve 
have a small water loss peak near 100 °C, contributed 
by the evaporation of crystal water in coal. The second 
stage is regarded as the main pyrolysis stage (LPS-R: 
222–693 °C; LPS-D: 296–707 °C), TG curve slope gradu-
ally increases, DDTG curve is roughly sinusoidal, during 
this main pyrolysis stage, part of bridge bonds and side 
chains with weaker binding energy, oxygen-containing 
functional groups and macromolecular side chains undergo 
decomposition reaction successively making a great 
weight loss peak appeared in DTG curve. The third stage 
is related to the semi-coke condensation stage (LPS-R: 
693–1000 °C; LPS-D: 707–1000 °C), in which pyrolytic 
coke is formed by polycondensation reaction. On the DTG 
curve of LPS-R at 780 °C, there is an obvious weight loss 
peak caused by the decomposition of minerals in ash such 
as carbonate (Cheng et al. 2019; Shi et al. 2013; Zhu et al. 
2018), which almost disappeared on that of LPS-D after 
acid treatment.

The DTG curve is mainly caused by the cleavage of dif-
ferent covalent bonds in coal (Li et al. 2015). However, since 
pyrolysis is a process where overlapping reactions take place 
in series or in parallel, it is necessary to decouple the DTG 
curve to further intuitively analyze the effect of deminerali-
zation on pyrolysis behavior. To correlate the bond cleavage 
behavior with the coal pyrolysis, the generalized reduction 
gradient method (GRG) is used to resolve multiple subpeaks 
of DTG curve (Shi et al. 2013). The peak temperature of 
each subpeak is regarded as the average reaction tempera-
ture of chemical bond breaking, and the peak intensity is a 
measure of the corresponding mass loss. Figure 6 shows the 
curve-fitted DTG results and specific parameters are shown 
in Table 8.

Fig. 4   Pyrolysis characteristic curve of LPS-R and LPS-D

Table 7   Pyrolysis characteristic parameters of LPS-R and LPS-D

Sample Parameter Heating rate (°C/min)

20 40 60

LPS-R weight loss (%) 38.93 39.23 39.24
(dw/dt)max (%/min) 1.31 2.68 4.11
T0 (°C) 273.18 301.20 316.91
TP (°C) 457.15 471.89 482.72

LPS-D weight loss (%) 40.59 41.36 41.75
(dw/dt)max (%/min) 1.18 2.54 3.95
T0 (°C) 215.61 234.44 247.01
TP (°C) 459.07 473.79 485.36
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In Fig. 6, DTG curve of LPS-R and LPS-D were decou-
pled into six and five subpeaks according to GRG method 
(Shi et al. 2013) respectively, among which peak 1 was con-
sidered as the release of bound water and decomposition of 
carboxylic acid (Eskay et al. 1997), and a distinct weight 
loss peak appeared in DTG curve for both LPS-R and LPS-D 
at 250 °C. According to FTIR analysis, the proportion of 
carboxylic acid increased by 13.04% after acid treatment, 
thus the area of peak 1 for LPS-D was increased by 4.56% 
in Table 8. Peak 2 was related to the cleavage of covalent 
bonds formed by aliphatic carbon and heteroatoms on the 
side chain of aromatic structure, including Cal-O/N/S (Shi 
et al. 2013; Liu et al. 2008); peaks 3 and 4 were considered 
for the cleavage of chemical bonds centered on aliphatic 
carbon and aromatic carbon respectively, including Cal-O, 

Cal-Cal (Heek and Hodek 1994) and Car-O (Hodek et al. 
1991); All peaks 2, 3 and 4 were the main organic devola-
tilization peaks, among which peak 3 for LPS-R and LPS-D 
occupied 65.43% and 65.59%, respectively, indicating that 
the cleavage of chemical bond in aliphatic carbon was the 
main cause for the weight loss of coal pyrolysis; Peak 5 was 
mainly caused by carbonate decomposition(Li et al. 2015), 
which was disappeared in LPS-D after acid treatment; Peak 
6 was related to the polycondensation of aromatic rings (He 
et al. 2015). The evolution temperature of peak 6 for LPS-D 
was about 100 °C lower than that of LPS-R, and the area was 
3.33% larger than that of LPS-R. This was mainly because 
acid treatment promoted the condensation of the aromatic 
structure, leading to the early release of volatiles, and similar 
conclusions were found in the study of Cheng et al (2019).

Fig. 5   TG, DTG and DDTG 
curves of LPS-R and LPS-D at 
heating rate of 40 °C/min
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3.4 � Kinetic analysis

The contents of various functional groups of LPS-R and 
LPS-D vary to some extent on the basis of the former 
analysis by FTIR and 13C-NMR, and the reactivity of coal 
pyrolysis related to the thermal stability of functional groups 
can be reflected in the pyrolysis kinetics. According to the 
recommendations of Kinetics Committee of the Interna-
tional Confederation for Thermal Analysis and Calorimetry 
(Vyazovkin et al. 2011), as the crucial composition of coal 
pyrolysis, pyrolysis kinetics of iso-conversional method not 
only avoid the error brought by the mechanism function 
selection, making the calculated kinetic parameters more 
reliable, but also reveal the complex nature of the solid state 
reaction. Therefore, three iso-conversional methods, Starink 
(Khan et al. 2015), Flinn-Wall-Ozawa (FWO) (Flynn and 
Wall 1996; Ozawa 1965; Han et al. 2013a, b) and Distri-
bution Activation Energy model (DAEM)(Miura and Maki 
1998) were adopted in this study. The specific formulas are 
listed in Table 9 and the Arrhenius plots of the left side 
of the equations versus 1/T under different heating rates at 
specific conversion were presented in Fig. 7.

Figure  8 shows the pyrolysis conversion curves of 
LPS-R and LPS-D with temperature under different 
heating rates. It can be seen that when the tempera-
ture > 700 °C (corresponding to α ≥ 0.7), the coal pyrolysis 

is in the stage of semi-coke condensation. As the clusters 
of aromatic ring structure in coal char gradually become 
larger, the difficulty of polycondensation reaction also 
increases, so that the weight loss rate monotonically 
decreases, resulting in the curve of α-T gradually overlaps 
and finally shifts to low temperature with the increase of 
heating rate. At this stage, the linear correlation between 
ln (β/T1.92), ln β, ln (β/T2) and 1/T becomes poor due to the 
overlap of α-T curve, and the description of experimental 
data by kinetic fitting is likely to have a great deviation. 
Therefore, the specific parameters of apparent activation 
energy of LPS-R and LPS-D obtained by the three iso-
conversional models at selected conversion from 0.05 
to 0.65 are shown in Tables 10 and 11 and the apparent 

Fig. 6   DTG curve of LPS-R and LPS-D fitted by subcurves

Table 8   Fitting results of DTG 
curve

Peak 1 2 3 4 5 6

LPS-R T (°C) 244.35 346.62 456.14 572.59 727.21 849.41
Area (%) 1.49 4.19 65.43 15.26 12.75 0.88

LPS-D T (°C) 251.62 340.34 458.30 591.55 – 749.75
Area (%) 6.05 6.53 65.59 17.62 – 4.21

Table 9   The isoconversional methods used in this study

Note: β, heating rate; A, pre-exponential factor; E, activation energy; 
R, universal gas constant (8.314  J/mol K); T, absolute 
temperature(K); G(α) = ∫ T

0

A

�
exp

−E

RT
dT

Methods Equation

Starink ln
�

T1.92
= −1.0008

E

RT
+ ln

AR
0.92

G(�)E0.92
− 0.312

FWO ln � = ln
(

AR

G(α)E

)

− 5.331 − 1.052
E

RT

DAEM ln
�

T2
= ln

(

AR

E

)

+ 0.6075 −
E

RT
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Fig. 7   Arrhenius plots of LPS-R and LPS-D with Starink, FWO and DAEM method
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activation energy of LPS-R and LPS-D pyrolysis under 
different conversion is shown in Fig. 9.

As seen in Fig. 9, when α < 0.3, since the aliphatic group 
of LPS-D contains more methyl carbon and methylene car-
bon, the chemical bonds with lower bond energy are easy 
to decompose at low temperature, the apparent activation 
energy of LPS-D is low, which indicates that acid treatment 
is conducive to promoting the pyrolysis reactivity of demin-
eralized coal, resulting to the initial pyrolysis temperature T0 
of LPS-D lower than that of LPS-R (in Table 7, T0 of LPS-D 
at different heating rates is 60–70 °C lower than that of 
LPS-R); When 0.3 ≤ α ≤ 0.4, the apparent activation energy 
of LPS coal before and after demineralization is the same; 
When α > 0.4, it is in the main pyrolysis stage. The analysis 

of pyrolysis experiment shows that the stability of LPS coal 
increases after acid treatment, and a higher apparent activa-
tion energy is required for the cleavage of chemical bonds 
during LPS-D pyrolysis; When α = 0.65, the activation ener-
gies of LPS-R and LPS-D increased significantly, indicating 
that stable structures such as aromatic bridgehead carbon (faB) 
and protonated aromatic carbons (faH) with high bond energy 
begin to destroy at high temperature. Since the content of faB 
and faH increased by 5.40% and 5.87% after acid treatment, 
the apparent activation energy of LPS-D is about 300 kJ/mol 
higher than that of LPS-R. The arithmetic mean activation 
energy values of LPS-R and LPS-D are 76 ± 4–463 ± 5 kJ/
mol and 84 ± 2–758 ± 12 kJ/mol, respectively.

Fig. 8   Pyrolysis conversion curve of LPS-R and LPS-D with temperature at different heating rates

Table 10   Apparent activation 
energy of LPS-R pyrolysis 
determined by Starink, FWO 
and DAEM method

α DAEM FWO Starink

E (kJ/mol) R2 E (kJ/mol) R2 E (kJ/mol) R2

0.05 73.66 0.99988 79.43 0.99992 74.00 0.99988
0.1 129.65 0.99116 133.89 0.99243 130.00 0.99121
0.15 161.81 0.98616 164.85 0.98800 162.14 0.98624
0.2 175.76 0.99179 178.33 0.99284 176.10 0.99184
0.25 183.65 0.99056 185.98 0.99172 183.98 0.99061
0.3 182.81 0.99057 185.32 0.99176 183.15 0.99063
0.35 194.76 0.99537 196.80 0.99594 195.10 0.99539
0.4 204.33 0.99575 206.01 0.99625 204.66 0.99577
0.45 208.10 0.99032 209.73 0.99142 208.44 0.99036
0.5 221.71 0.98499 222.80 0.98660 222.04 0.98506
0.55 253.71 0.98329 253.38 0.98488 254.02 0.98335
0.6 325.20 0.97068 321.57 0.97288 325.47 0.97077
0.65 468.96 0.95633 458.55 0.95865 469.12 0.95643
Average 214.16 215.13 214.48
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4 � Conclusions

The fundamental understanding of the pyrolysis charac-
teristics of demineralized coal is considerable for the sta-
ble and efficient operation of the Oxy-Coal Combustion 
Steam System (OCCSS). In present study, the impact of 
acid treatment on pyrolysis characteristics of coal depend-
ent on its chemical structure were investigated. FTIR 
and 13C-NMR were used to characterize the chemical 
structure of LPS-R and LPS-D and the pyrolysis experi-
ments were carried out by temperatures-programmed TG 
pyrolysis. The pyrolysis kinetics of LPS-R and LPS-D 

were analyzed by using three iso-conversional models. 
The main conclusions are as follows:

(1)	 FTIR shows that demineralization reduces the content 
of aliphatic hydrogen and C–O, increases the content of 
aromatic hydrogen and C=O, and improves the matu-
rity of coal, making the chemical structure more stable.

(2)	 13C-NMR analysis shows that acid treatment has little 
effect on the proportion and distribution of aliphatic 
carbon and aromatic carbon, while LPS-D has a larger 
cluster structure and polycondensation degree of aro-
matic compounds due to the demineralization.

(3)	 TGA experiments indicate that the weight loss, which 
is mainly caused by the cleavage of aliphatic covalent 
bonds and the formation of small molecular fragments 
according to the curve-fitted DTG results, of LPS-D 
increased slightly by demineralization treatment, but 
the pyrolytic reaction at the (dw/dt)max decreased and 
the pyrolysis reactivity of LPS-R is higher.

(4)	 Kinetic analysis shows that acid treatment is condu-
cive to promoting the pyrolysis reaction when α < 0.3, 
whereas higher apparent activation energy is required 
for LPS-D in the semicoke polycondensation stages 
owing to the more stable chemical structure.
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