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Abstract
One factor that limits development of fundamental research on the influence of coke microstructure on its strength is the 
difficulty in quantifying the way that microstructure is both classified and distributed in three dimensions. To support such 
fundamental studies, this study evaluated a novel volumetric approach for classifying small (approx. 450 μm3) blocks of 
coke microstructure from 3D computed tomography scans. An automated process for classifying microstructure blocks was 
described. It is based on Landmark Multi-Dimensional Scaling and uses the Bhattacharyya metric and k-means clustering. The 
approach was evaluated using 27 coke samples across a range of coke with different properties and reliably identified 6 ordered 
class of coke microstructure based on the distribution of voxel intensities associated with structural density. The lower class 
(1–2) subblocks tend to be dominated by pores and thin walls. Typically, there is an increase in wall thickness and reduced pore 
sizes in the higher classes. Inert features are also likely to be seen in higher classes (5–6). In general, this approach provides 
an efficient automated means for identifying the 3D spatial distribution of microstructure in CT scans of coke.
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1  Introduction

Metallurgical coke plays a key role in the blast furnace 
ironmaking process – it must maintain the permeability of 
the furnace so liquid iron may be drained from the furnace 
and combustion air injected into the base of the furnace 
(Riley 2007; Tiwari et al. 2015). To maintain permeability 
the coke must maintain a good size distribution and shape 
while being subjected to mechanical loads, high tempera-
tures, attack by oxidising gases and dissolution in the blast 
furnace liquids. Important properties of the coke therefore 
include the strength of the coke to support the ferrous bur-
den and prevent collapse of the reactive zones to maintain 
permeability in the blast furnace, as well as the reactive 
behaviour of coke. Optimising the blast furnace ironmak-
ing process requires balancing the cost of making the coke 
with its performance in the blast furnace. Understanding 
how the microstructure of the coke affects its properties will 
significantly aid in this optimisation process.

Coke is primarily carbon and is formed when some coals 
are heated in the absence of air. Some of the organic mol-
ecules in coal fuse, release gas forming bubbles and on fur-
ther heating resolidify to bind the non-fusible inerts into a 
complex 3D structure. The final structure depends on both 
the coal blend used in coking and the coking conditions 
(particle size, bulk density, and heating rate). The predic-
tion of coke properties is difficult because of the complexity 
of coke microstructure, involving, pores, pore walls (from 
fused material), inerts and minerals, all of which may be 
distributed in different ways throughout the coke (Ghosh 
et al. 2018). Current prediction models based on empirical 
data often fail to work across the broad spectrum of coals 
found in different locations (North et al. 2018). Often heter-
ogenous, different 3D features can be found in different parts 
of the coke body (Zhang and Tao 2017). Fundamental under-
standing of the physical coke properties such as strength and 
chemical reactivity ultimately rely on better assessment of 
the way these 3D structures are distributed. The first step to 
studying the distribution of these features is an efficient way 
to automatically detect and classify the location and type of 
microstructure features in a 3D sample.

The use of 2D image analysis techniques have been used 
in the past to help analyse coke microstructure features 
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such as porosity, pore length, perimeter, breadth, round-
ness, thickness, and size distribution (Ghosh et al. 2018). 
These previous image-based approaches have typically 
studied optical 2D textures, imaged using reflected light 
microscopes with polished coke segments at various scales 
(Ghosh et al. 2018). While valuable, these approaches may 
miss critical 3D relationships that can help define important 
microstructure features related to coke quality. In terms of 
coke strength, these features of interest might include strong 
networks of pore wall connection, distributions of pore wall 
thickness, symmetric and non-symmetric pore properties, 
the presence of micro-fissures, large sized micro-textures 
and graphitic lamella, low numbers of contact points 
between inert and reactive maceral derived components 
(IMDC/RMDC) and regions of frothy, bubbly structures 
found within thin pore walls.

The broader range of factors related to coke quality and 
the formation of 3D carbon structure of coke have recently 
been reviewed, highlighting the need for more fundamental 
understanding of coke formation (Chen et al. 2020). Micro-
structure analysis on CT images is also useful in examining 
coke fracture using von Mises stress (Lomas et al. 2017). 
Our approach here is a first step towards developing analysis 
techniques without the need to calculate von Mises stress. 
There is a recent study in microstructure analysis and min-
eral phase transformation in blast furnace (Wu et al. 2022). 
We also point out a recent review paper focussing on the cur-
rent characterisation methods of the coke structure (Zheng 
et al. 2021). Earlier, Raman spectroscopy is also applied to 
predict the coke quality (Rantitsch et al. 2014).

While 3D classification of microstructure may be desir-
able, the first problem in moving to 3D classification 
approaches is the practical problem of obtaining sufficient 
3D volumes of coke microstructure, scanned at various 
scales across a range of cokes. In this research we use 27 
previously scanned samples that cover a range of 9 cokes 
with known properties. In general, 3D volume classifica-
tion has been found to be quite challenging and to require 
extensive training of classification models (Qi et al. 2016). 
Despite this, it has been successfully demonstrated for clas-
sifying small segments of structure made from sequential 
image segments (Zou et al. 2017; Kamnitsas et al. 2017) and 
automatic microstructures recognition using image segmen-
tation (Chen et al. 2014a, b). Thus, classifiers can be trained 
to classify small segments or blocks of structure based on 
inner characteristics. Where the classes can be well defined 
before training 3D convolutional networks are found to be 
applicable (Qi et al. 2016; Zou et al. 2017). However, coke 
volumes typically have an irregular distribution of complex 
3D structures. This can make it difficult to provide specific 
class samples for use in supervised classification and sug-
gests an unsupervised classification approach might be more 
appropriate for microstructure features. Another approach in 

3D classification is to use micro-finite element modelling, 
which is an effective approach to understand the relation-
ship between the microstructure and strength (Tsafnat et al. 
2008).

In this work we develop a tool that may assist in under-
standing the role of distributed microstructure compo-
nents to overall coke strength (Fig. 1). A novel volumetric 
approach for classifying small (approx. 450 μm3) blocks of 
coke microstructure from 3D computed tomography (CT) 
scans is described and evaluated. An automated process for 
classifying microstructure blocks in turn supports the study 
of their distribution in a 3D sample. The final intention for 
this approach is to try and develop an alternative method, 
that characterizes cokes directly using the distribution of dif-
ferent classes of microstructure found in CT images of coke. 
It is expected that such a tool could assist in understanding 
the link between the distribution of microstructure types, 
coke strength, reactivity, and the formation of the micro-
structure in the plastic layer.

In this research we have developed an unsupervised clas-
sification algorithm for 3D structural features that is based 
on the k-means clustering (Hartigan and Wong 1979) and 
Landmark Multi-Dimensional Scaling (LMDS, De Silva and 
Tenenbaum 2004), which are applied across a range of nine 
different coke samples that have previously been scanned. 
The derived classes are further examined by using first and 
second order image statistics. One benefit of this approach 
is that it readily lends itself to the study of microstructure 
distribution in three dimensions (Fig. 1).

Landmark-based dimensionality reduction has been 
shown to improved k-means clustering performance and 
classification accuracy (Magdalinos et al. 2011). LMDS 
is a non-linear, dimensionality reduction algorithm, which 
is itself based on isometric feature mapping (ISOMAP) 
(Tenenbaum et al. 2000). This approximates the classical 
Multidimensional Scaling (MDS) approach (Shepard 1980; 
Cox and Cox 1994; Kruskal and Wish 1978). Moreover, 
it is computationally more efficient for large datasets. Due 
to the improved clustering performance and computational 
efficiency with the large volumetric datasets used in this 
work, LMDS was selected to generate a lower dimensional 
space for clustering regions of microstructure (De Silva and 
Tenenbaum 2004). This leads to a novel automatic identi-
fication of different types of 3D coke microstructure using 
dimension reduction and clustering techniques. To the best 
of our knowledge, this is done for the first time. The aim is to 
support further study of the distribution of microstructures 
at this scale and how this distribution may be related to coke 
strength characteristics.

To classify blocks of coke we need to compare the simi-
larity of blocks. Therefore, as with other techniques that rely 
on similarity measures, an important consideration when 
using LMDS is the choice of distance metric (Shirkhorshidi 
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et al. 2015; Pandit and Gupta 2011). Typically, the Euclidean 
metric is selected as a default metric. However, we would 
not expect this to be an isotropic measure, so changing the 
orientation of a block of coke might change the measure-
ment outcome. To simplify this study, we would like blocks 
of microstructure to be classified the same regardless of the 
way they are orientated. We initially tested four alternative 
distance metrics (Chebyshev, Euclidean, Manhattan, Bhat-
tacharyya), but of these, only the Euclidean and Bhattacha-
ryya measures produced ordered classification results. The 
Bhattacharyya (Goudail et al. 2004; Chalup et al. 2007) dis-
tance metric was found to be the most reliable under rotation 
of coke volumes (isomorphic) and was therefore adopted as 
the metric for this study.

2 � Samples and classification methods

2.1 � Samples

The 3D volumes classified in this work were obtained from 
existing CT scans and include three samples from nine dif-
ferent cokes. These nine cokes were chosen as they cover a 
range of coal petrographic compositions and coke micro-
structure (Fig. 2, Tables 1, 2). The 27 sets of CT images were 
collected at the Imaging and Medical Beamline (IMBL) at 

the Australian Synchrotron. The data is stored as a stack of 
images slices, each slice being a 2D 8-bit TIFF image. This 
data is acquired in a regular pattern with a regular number 
of pixels in each image slice and regular spacing of image 
slices. This generates a regular grid of voxels, each of which 
represents a volume of 8.893 μm3. Each voxel contains a 
single scalar intensity value in the range of 0 (black) to 255 
(white). This intensity measure reflects the level of absorp-
tion, with darker areas in an image corresponding to pores 
and brighter areas to pore walls, maceral components and 
minerals.

While the original coke samples were irregular in shape, 
the volume that was analysed was constrained to a 5003 
block of voxels. This was automatically taken from the cen-
tre of the sample to ensure no irregular sample edges were 
included in the analysis (Fig. 3). In this study, our classi-
fication approach analyses 1000 subblocks, each subblock 
has 503 voxels. Since each voxel is approximately 9 μm in 
each dimension, each classified subblock of microstructure 
occupies a volume of approximately 4503 μm3.

2.2 � Classification methods

The first step in the classification process is Landmark 
Multi-Dimensional Scaling (LMDS). This process is 
designed to produce a 2D spatial map. With a suitable 

Fig. 1   An overview of the suggested process for characterising cokes based on the distribution of automatically classified blocks of microstruc-
ture. This study describes the classification step
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distance metric, LMDS is typically used to allow 2D visu-
alization of high-dimensional data objects. The intention is 
to reduce the number of dimensions that define each object 
so they can be plotted and compared on a two-dimensional 
spatial map. This is exactly the intention in this project, 

to organize the blocks of coke in a 2D space so that simi-
lar blocks are close together and dissimilar blocks are far 
apart. Blocks that are close together can then be grouped 
into the same class.

Fig. 2   Example 2D slices showing microstructure from the nine different cokes used in the study. Three samples of each coke were used

Table 1   Traditional Measures 
of coke quality properties 
(where available)

Coke No. ASTM stabil-
ity (%)

ASTM hard-
ness (%)

Irsid I20 (%) Irsid I10 (%) CRI (%) CSR (%)

1 65.6 68.1 80.6 18.2 22 71
2 66 68 81 18 22 71
3 57.3 60.6 77.4 21.3 13 72
4 65 68 78 20 24 67
5 67 71 80 18 24 69
6 62.3 65.0 77.0 22.3 40.6 51
7 n/a n/a n/a n/a n/a n/a
8 56.9 61.0 74.9 23.4 18 69
9 22.5 69.1 56.8 21.3 n/a n/a
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The next step is to calculate the block classes using a 
clustering algorithm. In this project a traditional k-means 
Nearest Neighbours (k-NN) clustering algorithm is used. 
The value of k was set to six and this therefore generates 
six classes of microstructure. As the name suggests, the 

blocks that are near neighbours in the 2D space defined by 
the LMDS process are allocated to the same class.

To further examine the classes, we calculated second 
order statistics on the volumes. We reduced each image 
slice in a subblock volume to 8 grey-levels and calculated 

Table 2   Typical microstructure properties and coal ranks for the analyzed cokes

Coke No. Type of coal Microstructure properties

1 Prime coking coal Good network of connections, good pore wall thickness, good pore properties
2 Prime coking coal Good network of connections, good pore wall thickness, good pore properties
3 Good coking coal Good network of connections with good pore and wall sizes
4 High rank coal Large sized micro-textures / graphitic lamella
5 High virtrinite coal Regions of frothy, bubbly structures with thin pore walls
6 High inerts coal Low numbers of contact between IMDC and RMDC
7 High inerts coal Low numbers of contact between IMDC and RMDC
8 High virtrinite coal Regions of frothy, bubbly structures with thin pore walls
9 Low rank (high shrinkage) coal High amount of microfissures

Fig. 3   Examples of how the 5003 voxel analysis blocks were automatically selected chosen from the centre of each sample

Fig. 4   Example of how subblocks of microstructure are generated for classification
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a grey-level co-occurrence matrix for all pixels separated 
by distance of one (Materka and Strzelecki 1998). The spa-
tial relationship of neighbouring pixels was calculated at 
the four angles of 0, 45, 90 and 135 degrees and results 
combined. However, as this only considered image slices in 
two dimensions (XY) we also reoriented the subblock and 
repeated the process to consider pixel relationships in the 
third dimension (XZ).

In summary, the overall approach (Figs. 3, 4) taken in 
this study was to

(1)	 Extract a central block (5003 voxels) from each coke 
sample, avoiding sample edges.

(2)	 Randomly select 100 subblocks (503 voxels) from anal-
ysis block to act as "landmarks".

(3)	 Use the randomly selected subblocks as landmarks for 
LMDS to generate a lower dimensional space for clus-
tering. This step uses the Bhattacharyya distance metric 
(Fig. 5).

(4)	 Perform k-means clustering analysis on all 1000 sub-
blocks (503 voxels) in the analysis block using the 
lower dimensional space generated by the LMDS to 
determine six different classes (clusters) of microstruc-
ture (Fig. 6).

(5)	 Use interactive 3D visualizations for expert review of 
the six generated classes (Fig. 7).

(6)	 Perform additional image analysis to review features of 
the six classes.

3 � Results

All 27 coke samples, three for each of the nine cokes, were 
classified using LMDS and k-means clustering. Six classes 
of microstructure were generated for the one thousand 503 
voxel subblocks in a standard way, by analysing a 5003 voxel 
block, automatically taken from the centre of the CT scans 
for each sample.

The average number of classified blocks per class and coke 
are shown in Table 3. There was significant variation found in 
the way classes were distributed across samples. This varia-
tion was also evident in samples of the same coke. The het-
erogenous nature of coke is well described and suggests that 
more samples are required to provide significant statistical 
evidence of variations that occur in different cokes.

We analysed 3 samples of each coke, but 30 or more sam-
ples would provide better evidence. The size of our analysis 
block was 5003 voxels. A larger block size may also help pro-
vide more data points. We were restricted in this study because 
some of our samples were too small to provide larger blocks.

In general, most of the classified subblocks (503 voxels) were 
found to belong to class 3 (43%), and the fewest blocks were 
found in class 1 (3%) and class 6 (1%) (Table 5). Both class 2 
(21%) and class 4 (24%) contained similar numbers of sub-
blocks, while class 5 made up 8% of the classified subblocks.

The general features of blocks found in each class were 
examined by experts in the domain using Drishti. Drishti 
is an interactive 3D visualization tool (Limaye 2012) that 

Fig. 5   An overview of the unsupervised classification approach of coke structure



Classifying coke using CT scans and landmark multidimensional scaling﻿	

1 3

Page 7 of 13      7 

Fig. 6   Two-step algorithm for landmark multidimensional scaling (De Silva and Tenenbaum 2004)

Fig. 7   K-means clustering algorithm
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supports visualization of volumetric data. Due to the large 
number of subblocks generated, one thousand per sample, 
it is not possible to manually consider each block in detail. 
Rather a random selection of ten classified 503 voxel sub-
blocks from each class, and for each sample, were examined 
by domain experts.

We used 8-bit greyscale CT images, with 255 represent-
ing white, and an intensity of 0 corresponding to black. 
Image intensities in the CT scans correspond to the density 
of structure so white regions correspond to dense artefacts, 
while blacker regions represent pores. Examples of typi-
cal subblock structure for classes 1–6 are shown in Figs. 8, 

9, 10, 11, 12, 13. Note that there is an ordering of classes 
based on the distribution of voxel intensities and that lower 
class (1–2) subblocks tend to be dominated by pores. Typi-
cally, there is an increase in wall thickness and reduced pore 
sizes in the higher classes. Inert features are also likely to 
be seen in higher classes (5–6). The size of these inert fea-
tures means that they are often large enough to dominate a 
subblock.

To further examine the distinguishing features of each of 
the six classes further analysis was carried out in the sub-
blocks by calculating various first and second order statistics 
for each of the six classes. These approaches are typically used 

Table 3   Percentage of features 
in each cluster for the nine 
cokes analysed

Coke No. Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

1 0.8 4.6 29.9 49.5 12.7 2.5
2 0.5 22.9 42.2 21.5 10.8 2.1
3 1.8 27.2 49.0 19.2 2.7 0.1
4 2.9 22.7 37.8 25.5 9.7 1.4
5 4.4 18.4 60.3 13.9 2.7 0.3
6 2.2 28.5 44.1 14.5 8.9 1.7
7 4.4 25.1 36.7 22.7 10.0 1.1
8 0.4 5.6 48.1 33.7 11.1 1.1
9 8.0 32.7 37.3 16.6 4.5 0.9
Mean 2.8 20.9 42.8 24.1 8.1 1.2

Fig. 8   Examples of class 1 subblocks Fig. 9   Examples of class 2 subblocks
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for image texture analysis (Materka and Strzelecki 1998; Mail-
lard 2003; Bharati et al. 2004). The combined first order results 
for all 27 samples are shown in Table 4 and Fig. 14.

The results for all slices in both orientations, were com-
bined for each subblock volume and the average scores for 
each class are shown in Tables 4, 5 and Fig. 14.

4 � Discussion

This project successfully used LMDS with the Bhattachar-
yya distance metric and k-means clustering to classify 503 
voxel subblocks of CT images of coke. This approach pro-
duced a well-ordered group of classes, with lower classes 

Fig. 10   Examples of class 3 subblocks

Fig. 11   Examples of class 4 subblocks

Fig. 12   Examples of class 5 subblocks

Fig. 13   Examples of class 6 subblocks
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dominated by porous areas and thin walls. In general, pore 
size and wall thickness increased from class 1 to class 
6. Class 5 and class 6 microstructure tended to be domi-
nated by thick pore walls and inert components. As seen 
in Fig. 14, the Bhattacharyya metric is also reflected in the 
final clustering with each class showing different patterns 
of intensity distribution.

In this project we employed interactive volumetric tools, 
using 3D visualization to help check the final classification 
of subblocks. Heuristically, the approach was found to pro-
duce an ordered although uneven classification of the sub-
blocks. Class 3 microstructure was the most generic across 
samples, with 43% of blocks classified in this way. This 
suggests that this type of microstructure may be a common 

Table 4   First order statistics for 
combined subblocks from each 
class

Measure Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Mean intensity
� =

G−1
∑

i=0

ip(i)
23 39 67 76 96 116

Energy
E =

G−1
∑

i=0

�

p(i)
�2 0.041 0.026 0.017 0.009 0.010 0.007

Fig. 14   Probability distribution of voxel intensities for each class of subblocks

Table 5   Second order statistics for combined subblocks from each class. Results were calculated by considering each 2D slice in the subblock 
volume in two orientations and were required using 8 grey levels

Measure Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Inertia (contrast) (8 grey levels) G−1
∑

i=0

G−1
∑

j=0

(i − j)2p(i, j)
0.07 0.15 0.23 0.17 0.19 0.18

Energy (8 grey levels) G−1
∑

i=0

G−1
∑

j=0

�

p(i, j)
�2 0.61 0.32 0.16 0.16 0.18 0.15
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feature of the cokes analysed. Both class 2 (21%) and class 
4 (24%) were also common to most of the cokes, although 
variations were found across samples. Class 1 (3%), along 
with class 5 (8.1%) and class 6 (1.2%) were less common 
than other classes but may also be more important for differ-
entiating coke quality as class 1 are associated with thin pore 
walls and large pores, and class 5 and class 6 which tend to 
include thick pore walls and large inert elements. The distri-
bution of the less common classes of features may for exam-
ple indicate locations of structural strength or weakness.

It is tempting to consider the distribution of these classes 
across the nine cokes to see if they provide some indication 
of differences in the coke performance (Fig. 14). For exam-
ple, it might be expected that knowing the number of low-
density structural points is enough to differentiate one factor 
of coke strength. Although given the heterogenous nature of 
coke we might also expect that the number of points in each 
class would vary between samples, even of the same coke. In 
fact, the variability across all cokes was found to be statisti-
cally significant. Thus, even when comparing samples of the 
same coke there was a significant difference in the frequency 
with which different structural features (classes 1–6) occur.

This variability highlights the need to repeat the clas-
sification process across many more samples and to 
potentially increase the size of the sample block. In this 
work we selected a 5003 voxel block for analysis as we 
could automatically extract such a block from the cen-
tre of a previously scanned samples. This helped avoid 
edge effects from the irregularly shaped samples. It might 
be ideal to consider this when initially scanning samples 
and allow for a 10003 or 20003 voxel block for analysis. 
Although it should also be noted that larger samples may 
introduce concerns over the processing power required for 
approaches such as LMDS.

Regardless of the number of classes found for each coke, 
characterizing coke qualities such as strength may not just 
be indicated by the presence of weak or strong components. 
Rather, the way such features are distributed in 3D may be 
of equal importance. For example, if weak components 
tend to align they might provide a line or plane of weakness 
that fails under compressive load. The general approach 
used in this project is well suited to producing 3D points, 
each associated with one of the microstructure classes and 
thus allowing for further study of their 3D distribution 
patterns.

Since the classes identified in this approach are ordinal 
in nature, one further benefit of the LMDS approach is that 
once the landmarks are calculated the class membership of a 
smaller subblock, at any location in the coke volume, can be 
estimated by averaging the membership of that smaller block 
in all overlapping subblocks of the original size.

As described previously, an important element of classifi-
cation is the ability to group similar blocks of microstructure 

by comparing them against one another. In this work the 
LMDS algorithm relies on a distance metric that calculates 
the similarity or difference between 503 voxel subblocks of 
coke. Each subblock of coke is reduced to a single vector of 
length 125,000 (503) containing the image intensity at each 
voxel in the subblock. The distance metric is then used to 
measure the distance between two such vectors. In this pro-
ject we used the Bhattacharyya distance metric. Since this 
metric calculates similarity based on the way image intensi-
ties are distributed it provides an isomorphic measure. That 
is, the sample orientation was found to have limited impact 
when comparing subblocks of coke.

The decision to adopt an isomorphic measure for 
microstructure helps to simplify the analysis. However, 
as microstructure is not necessarily isomorphic an alter-
native approach might be to consider a different distance 
metric and repeat the classification using various orienta-
tions of the block of coke. At the start of this project, we 
trialled the Euclidean, Manhattan and Chebyshev metrics 
but found the Bhattacharyya metrics was the most reliable 
for classification.

One issue with the LMDS approach in general is that by 
reducing the spatial dimension, important 3D spatial rela-
tionships in the subblocks may be difficult to interpret or 
even not considered during classification. The 3D shape of 
microstructure may be quite important. For example, sym-
metric and regular (isotropic) microtextures react more 
readily in the presence of carbon dioxide, while flow type, 
non-symmetric (anisotropic) structures along with coarse 
mosaic structures show strong resistance to gaseous attack.

An alternative to the LMDS (De Silva and Tenenbaum 
2004) approach used in this project is to replace this step 
with a convolutional autoencoder (Wang et al. 2016). A 3D 
convolutional autoencoder can be configured to preserve 3D 
structural cues for use in the classification. Autoencoders 
have previously been employed for nonlinear dimensional-
ity reduction in several fields where high dimensional data 
processing and pattern learning are required (Sakurada and 
Yairi 2014; Betechuoh et al. 2006; Finn et al. 2016).

One further factor that might need to be considered care-
fully for classification is the scale at which structural prop-
erties impact on coke quality. For example, it may be that 
thin-walled pore structures are best classified at the scale 
we have used in this work, by classifying 4503 μm3 blocks. 
However, the role of larger structures such as inerts may be 
better characterized at much larger scales. Conversely, the 
actual binding of inerts into the overall structure may need 
to be analysed at a much finer scale.

This work does not consider structure formation mecha-
nisms, so no attempt was made to relate physical structure 
back to chemical mechanisms. The size of the graphitic 
domains, represented by the microtextural characteristics, 
is important particularly for reactivity. These are usually 



	 K. Nesbitt et al.

1 3

    7   Page 12 of 13

measured by recording the size and extent of the optical 
anisotropy measured using polarized visible light, however, 
we can’t identify these in the X-ray CT images used in this 
project. Although these properties are important for coke, 
our focus is on mechanical properties. Youngs modulus in 
particular has been shown not to vary greatly for the differ-
ent fused carbon phases (Andriopoulos et al. 2003). There-
fore, in this early work we treat the solid phase as having a 
single set of properties and then it is the balance between 
pores and wall thickness that is key. We also note that inerts 
do have some different physical properties from the fused 
phases and this needs to be addressed in follow up work.

In terms of first order statistics (Tables 3, 4, 5) we see 
an increase in mean intensity from class 1 to class 6. This 
might be expected with the Bhattacharyya metric which 
itself relies on mean image intensity and variance when 
comparing subblocks of coke. First order energy is a meas-
ure the localized change in an image and as we might 
expect the higher number of thin walls in class 1 results 
in a higher energy measure. This reduces for class 2 and 
class 3 and becomes consistently low for classes 3, 4 and 
5 where the subblocks are more consistent in structure. 
These results suggest both the mean intensity of a sub-
block, and the energy may help distinguish some classes 
of subblocks.

In terms of second order image statistics (Tables 3, 4, 5) 
both second order energy and contrast measures also seem 
to reflect the presence of more convoluted edges associated 
with pore walls in class 1 and class 2. Some caution needs to 
be applied here as we have reduced the number of grey levels 
in these images to calculate the second order statistics. This 
may remove some of the more subtle intensity variations 
associated with class 6 structure such as inerts.

5 � Conclusions

Motivated by the need to help develop further fundamental 
understanding of the processes that underpin the way coke 
properties are derived from parent coals, this study investi-
gated a novel approach for automatically classifying small 
4503 μm3 subblocks of coke microstructure taken from 3D 
CT images.

The key outcomes of the work were:

(1)	 The dimensional reduction approach known on LMDS 
using the Bhattacharyya distance metric and k-means clus-
tering was able to classify six different classes of micro-
structure automatically and reliably in 27 coke samples.

(2)	 The approach produced well-distributed, well-ordered 
clusters of microstructures and this classification was 
preserved under changes in block orientation. Class 1 

subblocks tend to be dominated by pores and thin wall 
structure. Class 2 blocks have less pores and slighter 
thicker walls. The amount of wall structure continues 
to increase through classes 4–6, with thicker walls and 
smaller pores identified. Inerts begin to be present in 
class 4 and increase in frequency through class 5 and 
class 6 and often dominate the class 6 subblocks.

(3)	 All 27 coke samples and the 9 different cokes showed 
heterogenous distributions of microstructure, suggested 
further samples need to be analysed to draw precise 
conclusions. Availability of 3D CT scans may be a lim-
iting factor in this analysis.

(4)	 All cokes showed the dominant presence of class 3 fea-
tures (43%) suggested a common base to the cokes. In 
general, it may be that less commonly identified micro-
structure such as class 1 (3%), along with class 5 (8.1%) 
and class 6 (1.2%) are important for differentiating coke 
quality as class 1 are associated with thin pore walls 
and large pores, and class 5 and class 6 show thick pore 
walls and often contain large inert elements.

(5)	 A key benefit of the approach used in this work is that it 
allows for automatic identification of types of microstruc-
tures at 3D locations that naturally allow for the study of 
the way these features are distributed in 3D. However, it 
should be emphasized that physical properties at different 
scales may need to be considered. For example, the bind-
ing of inerts cannot be determined from the resolution of 
scans in this work. It is also not possible to identify 3D 
carbon structures associated with the identified classes.

(6)	 Some of the processes used in this project might be 
further improved to increase the validity of results. This 
includes extending the number of samples used in the 
characterization to counter the natural variations found 
in samples. It also suggests the evaluation of alterna-
tive techniques, such as autoencoding, that more trans-
parently identify 3D structure for use in classification. 
Although the LMDS algorithm used in this project 
classifies 3D blocks of microstructure, these blocks 
need to be reduced to a single dimension for clustering 
and this introduces a level of abstraction that potentially 
hinders interpretation of outcomes.
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