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Abstract Tri-flo cyclone, as a dense-medium separation device, is one of the most typical environmentally friendly

industrial techniques in the coal washery plants. Surprisingly, no detailed investigation has been conducted to explore the

effectiveness of tri-flo cyclone operating parameters on their representative metallurgical responses (yield and recovery).

To fill this gap, this work for the first time in the coal processing sector is going to introduce a type of advanced intelligent

method (boosted-neural network ‘‘BNN’’) which is able to linearly and nonlinearly assess multivariable correlations among

all variables, rank them based on their effectiveness and model their produced responses. These assessments and modeling

were considered a new concept called ‘‘Conscious Laboratory (CL)’’. CL can markedly decrease the number of laboratory

experiments, reduce cost, save time, remove scaling up risks, expand maintaining processes, and significantly improve our

knowledge about the modeled system. In this study, a robust monitoring database from the Tabas coal plant was prepared

to cover various conditions for building a CL for coal tri-flo separators. Well-known machine learning methods, random

forest, and support vector regression were developed to validate BNN outcomes. The comparisons indicated the accuracy

and strength of BNN over the examined traditional modeling methods. In a sentence, generating a novel BNN within the

CL concept can apply in various energy and coal processing areas, fill gaps in our knowledge about possible interactions,

and open a new window for plants’ fully automotive process.
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1 Introduction

Gravity separation can be considered as the most cost-ef-

fective beneficiation method within coal processing plants.

This method is relatively simple when compared to other

separation processes and has a high potential for fully

automatic operation. The heavy medium as a gravity sepa-

ration process by far is the most efficient process for treating

coarse particles (mainly ? 0.5–50 mm). Heavy medium

separation has several advantages over other coal washing

methods. It can sharply separate run of mine materials with

close densities, has low capital and operating costs (for

coarse coal particle separation, no grinding is needed), and is

finally environmentally-friendly (Dodbiba and Fujita 2004;

Dehghan and Aghaei 2014; Noori and Dehghan 2020).
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Tri-flo, as a multi-stage dynamic heavy medium separa-

tor, has been applied satisfactorily for the pretreatment of

coal and magnetic ore, chromite, plastic and electronic

waste, etc. Tri-flo units, using centrifugal force, can effi-

ciently separate light particles from heavy ones (Mitra and

Rao 1992). Separation by tri-flo can be applied at a wide

density range where it consumes slight energy and water. A

tri-flo separator consists of a cylindrical structure, which

installs with a specific angle from the horizontal axial. By

axial orifices, the main cylindrical combines with multi

consecutive chambers (mainly two). These chambers have

involute media inlets and sink discharges. In general, for

producing the first sink, the feed was treated by a small

quantity of dense medium and entered the first chamber at

atmospheric pressure. For feeding the second sink, the first

stage float is feeding to the second chamber, which contains

a lower density medium (for two chambers tri-flo, it would

be called ‘‘middling’’) (Fig. 1). The same order for other

chambers continues until producing the final clean float

product (Belardi et al. 2014; Noori and Dehghan 2019).

During the operation of a tri-flo, different parameters such

as backpressure, throughput, pulp density, pump speed, tri-

flo density, etc., are monitored. However, there are no

reported investigations, which explored relationships

between these parameters and their representative metal-

lurgical responses (yield and recovery). Thus, there is con-

siderable potential for modeling a tri-flo circuit and

straightforwardly develop a system to automate its operation

fully. Extending this model based on a robust industrial

database and using a powerful artificial intelligent method

can build a ‘‘Conscious-Laboratory (CL)’’ model (Tohry

et al. 2021). CL has become standard practice in the control

and monitoring standpoint in different industries. Generat-

ing CL helps modern engineers understand direct and indi-

rect relationships between process variables and wise and

intelligent control processes. On the other hand, CL would

reduce demands for doing laboratory work because

generated models based on available monitored industrial

databases can provide an accurate vision by precise predic-

tions about non-examined operation conditions. Since these

areas seek sustainable development strategies, modeling and

forecasting the possible quality of products based on varia-

tions in the operating parameters has been recently started to

develop within the coal and fuel processing sector.

Several studies have been done to build accurate models

to predict metallurgical responses of various mineral bene-

ficiation techniques using different machine learning meth-

ods (Golshani et al. 2013; Jorjani et al. 2008a, b; Chehreh

Chelgani and Jorjani 2009; Chelgani et al. 2011a, b). McCoy

and Auret (2019) recently reviewed the potential of various

machine learning applications in minerals processing. A

typical problem in machine learning is the verification of

balance through the training dataset. Boosted neural network

(BNN) as a new soft computing method could overcome this

drawback by combining artificial intelligent models and

developing an ensemble of experts in an efficient way. BNN

can adaptively improve the probability of sampling data for

accurate training experts of predictionmodels. The Boosting

method trains a model based on a wide distribution of inputs

and reduces the prediction errors by considering various

experts’ prediction information (Hadavandi et al. 2015a, b).

By using these algorithms, BNN improves learning algo-

rithms’ performance (Golshani et al. 2018). Moreover, as an

irreplaceable method, BNN is able to explore multivariable

correlations among variables and rank them based on their

multivariable effectiveness (Golzadeh et al. 2018).

Although the application of BNN has been well devel-

oped in different disciplines, it was not implemented for

variable importance measurement and modeling within the

coal and energy processing sector. This study will fill these

gaps and address the issues mentioned above by exploring

the relationships between tri-flo operational parameters

(monitored in the Tabas coal processing plant for three

different tri-flos) and their representative metallurgical

responses by BNN for constructing a CL. For validation

and comparison purposes, typical models (random forest

(RF) and support vector regression (SVR)) also were

developed by the same databases, and their outcomes were

evaluated based on statistical factors.

2 Materials and methods

2.1 Database

For providing a demanding amount of coking coal from the

Esfahan Steel industry, the Parvadeh coalfield (Tabas, Iran)

developed a coal washery plant. The plant was designed

based on accepting three different size fractions

(? 6–50, ? 0.5–6, and - 0.5 mm). The - 0.5 mm size
Fig. 1 Simplified structure of a two chambers tri-flo (Belardi et al.

2014; Noori and Dehghan 2019)
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Fig. 2 Simplified tri-flo circuits in the Parvardeh coal processing plant
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fraction is subjected to processing by column flotation, and

coarser particles are fed to the tri-flo circuit (Fig. 2). For

treating ? 6–50 mm size fraction, a 700 mm tri-flo, and

for processing ? 0.5–6 mm size fraction, two parallel

500 mm tri-flo are used with different operating conditions

(Table 1). Feed rate, pump speeds, and medium density are

monitored variables (March 2016 until March 2017-84

records), which are applied for modeling (Table 2). In

detail, for the 500 mm tri-flo, variable frequency drive

‘‘VFD’’ pumps, i.e., pump-1000 and 1200, were used for

pumping the heavy media into the first and second cham-

ber, respectively. These two pumps were feeding the same

heavy media density called ‘‘Density-1000’’ to the tri-flos.

The density of slurries, which floated and sunk after each

chamber, were monitored and called ‘‘Density-Sink’’ and

‘‘Density-float’’, respectively. The same procedure can be

considered for the tri-flo 700 mm. Pearson correlation and

BNN were used for assessing the relationships between

operating variables and the prediction of process responses

(recovery and yield of tri-flos).

2.2 Modeling

2.2.1 Pearson correlation

Pearson correlation ‘‘r’’ was employed for determining the

linear relationships between variables. ‘‘r’’ can measure

single (one by one) inter-correlations among inputs and

output variables. ‘‘r’’ value varied from - 1 to ? 1, its

sign shows the magnitude of relationships. The absolute

values close to 1 represent the strength of correlations

between two variables (Benesty et al. 2009). Since ‘‘r’’ can

just assess a linear relationship between two parameters

and a substantial curvilinear correlation can result in a non-

significant r, a system that simultaneously can assess lin-

earity and nonlinearity of relationships would be demanded

to explore complex relationships.

2.2.2 Boosted neural network

Boosting is a method for the generalization of learning

algorithms. Schwenk and Bengio (2000) introduced the

boosting neural network as a combination of a simple

neural network with boosting techniques. To strengthening

weak basic learners (Neural Networks), the number of time

boosting trains them via reweighted samples from the

Table 1 General properties of the tri-flo in the Parvardeh coal pro-

cessing plant

Tri-flo 700 mm Tri-flo 500 mm

Item Size

(mm)

Item Size

(mm)

Cylinders diameter 700 Cylinders diameter 500

1st stage cylinder

length

1950 1st stage cylinder

length

1242

2nd stage cylinder

length

2300 2nd stage cylinder

length

1263

Feed pipe diameter 260 Feed pipe diameter 210

Feed pipe length 700 Feed pipe length 405

Medium inlet diameter 200 Medium inlet

diameter

150

Discharge outlet

diameter

200 Float pipe diameter 140–160

Dynafeed inlet

diameter

100 Float pipe length 275

Orifice diameter 210 Orifice diameter 140–160

Table 2 Descriptive information of monitored variables in the heavy

media circuit of the Tabas plan

Item Minimum Maximum Mean SD

Tri-flo 500 mm (A)

Feed rate 25.00 68.75 36.0 6.99

Pump speed-1000 77.00 86.00 83.43 1.67

Pump speed-1200 75.00 91.00 82.36 5.58

Density-1000 1.62 1.78 1.70 0.04

Density sink 1.80 2.13 1.99 0.06

Density float 1.21 1.58 1.34 0.09

Yield 17.10 78.39 46.59 14.75

Recovery (%) 29.8 88.8 67.6 12.01

Tri-flo 500 mm (B)

Feed rate 25.00 68.75 36.04 6.99

Pump speed-1000 77.00 86.00 83.51 1.52

Pump speed-1200 75.00 91.00 82.16 5.55

Density-1000 1.62 1.78 1.70 0.04

Density sink 1.80 2.14 1.99 0.07

Density float 1.21 1.57 1.32 0.09

Yield 25.97 79.58 47.15 14.62

Recovery (%) 43.76 89.94 67.51 11.75

Tri-flo 700 mm

Feed rate 75.00 185.00 143.35 31.37

Pump speed-1400 78.00 97.00 89.04 2.78

Pump speed-1600 77.00 96.00 86.18 6.58

Density-1400 1.65 1.89 1.79 0.04

Density-1600 1.50 1.68 1.59 0.04

Density sink 1 1.92 2.23 2.06 0.09

Density sink 2 1.59 2.03 1.89 0.09

Density float 1.19 1.67 1.31 0.11

Yield 2.56 68.49 28.22 17.49

Recovery (%) 8.24 84.21 48.81 17.65
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training set. For such a process, all samples in the training

set initially have equal weight. After that, the heavier

samples are predicted with a higher error rate by the last

weak learner. Boosted neural network (BNN) conducted

these steps to reduce the following objective function,

where N is the number of samples in the training dataset, y

is the target value and by is the predicted value by tth, basic

learner algorithm. a is the parameter, which is between 0

and 1. Wt is the weight vector of tth weak learner in

boosting neural network (Chehreh Chelgani et al. 2019):

Et ¼
X
N

i¼1

ðyi � bytiÞ
2 þ aWT

t Wt ð1Þ

As a unique capability, BBN models can also consider

for multivariable sensitivity analyses (MSA). MSA enables

the variation of one or more input features within a pre-

defined range to observe the effect of varying values on the

target feature in the prediction problem. The MSA analysis

can estimate how sensible the target feature is for the given

input features. MSA can assist in understanding the mul-

tivariate effects of input features on target features. To

multi-interactions and their effectiveness on the tri-flo

metallurgical responses, the MSA is done by using the

Marginal Model Plot of BBN (Fox and Weisberg 2018)

that displays a set of plots with a row for each input feature

and a column for the target feature. The features are

ordered according to the size of their overall total effect

importance indices (Carver 2019). For a given input and

target feature, the plot displays the target feature’s mean

response for each input feature value. That means it is

taken over all inputs to calculate importance indices (Liu

and Motoda 2007; Hadavandi et al. 2017). These BNN

model outputs can be used for variable importance mea-

surement (VIM). Calculating VIM is an essential step in

data mining, revealing the degree of relevance of a feature

to the target concept. As a result, a compelling feature’s

variation directly affects the model’s variability (Liu and

Motoda 2007).

2.2.3 Validation

Random forest (RF) and support vector regression (SVR),

as typical machine learning methods, have been recently

used to model and predict different fuel and energy pro-

cessing areas. For comparison purposes, these two methods

are also considered for the modeling of tri-flo metallurgical

responses. One of the most important advantages of these

three methods (BNN, RF, and SVR) is that they can suc-

cessfully be used for modeling based on small databases

(when a limited number of records are available (Hada-

vandi et al. 2017)).

2.2.3.1 Random forest (RF) Breiman (1996) suggested a

new approach to the decision tree base ensembles, which

manipulated the learning datasets for each tree by bagging.

Bagging decreases correlations between variables by

splitting random selection and further exploits the ensem-

ble benefits. This ensemble is called RF. For bagging

(Eq. (2)), different bootstrapped samples L (h) of size n

from the training set (L) of size N are adapted from the

learning dataset for each new tree. Each predictor tree TLðhÞ
is dependent on the random vector h that shows the bagged

samples from the original learning set L (Breiman and

Cutler 2003; Chehreh Chelgani et al. 2016a, b; Matin et al.

2016). y0g is the predicted response for sample Xg, where K

is the size of the ensemble. In other words, each tree

through RF modeling develops by various bootstrapped

training sets and randomly splits input variables at each

node (Matin and Chehreh Chelgani 2016).

y0g ¼ f Xg
� �

¼ 1

K

X
K

K¼1

TLðhkÞðXgÞK1
� �

ð2Þ

2.2.3.2 Support vector regression (SVR) SVR is an

intelligent modeling method is trained by various kernel-

based functions to minimize structural risk (MSR)

(Drucker et al. 1997). Radial basis function (RBF) is the

most popular kernel, capable of transferring the input

(x) data into a higher-dimensional space and computing

complicated nonlinear problems into linear forms

employed for SVR. Specified an input space with n inputs

(x1, x2,…, xn), SVR can determine the variable importance

(VIi) by calculating the variance of output error for the

testing dataset. This way can put out one input parameter

(xi) at a time and check the mean square error (MSEi) of the

trained sub-model for the prediction of the targets based on

the model performance for the rest of the training dataset

(Hadavandi et al. 2019). Classical SVR solves a quadratic

optimization problem in the training phase that is compu-

tationally extensive (Drucker et al. 1997). Consider a given

training dataset S:

S ¼ X1; Y1ð Þ; X2; Y2ð Þ; . . .; Xn; Ynð Þf g ð3Þ

where, S � <n �< Xi is the input vector with n dimensions

of ith sample and Yi is the target value corresponding to Xi.

A nonlinear mapping u : <n ! <nh is defined for mapping

input space into a new high-dimensional space. Then, there

is a linear function f (SVR function) in the high dimen-

sional space to formulate a nonlinear relationship between

Xi and Yi as Eq. (4).

f ðxÞ ¼ wuðxÞ þ b ð4Þ

f ðxÞ shows the predicted value and the two parameters

w 2 <nh and b 2 < must be adjusted. The formulation of

1440 M. Alidokht et al.
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SVR is based on minimizing structural risk and empirical

risk (Eq. (5)):

minReðw; f�; fÞ ¼
1

2
jwj2 þ C

X
n

i¼1

ðfþ f�Þ ð5Þ

with these constraints:

yi � wuðxiÞ � b� eþ fi i ¼ 1; 2; 3; . . .; n

� yi þ wuðxiÞ þ b� eþ f�i i ¼ 1; 2; 3; . . .; n

f�i � 0 i ¼ 1; 2; 3; . . .; n

fi � 0 i ¼ 1; 2; 3; . . .; n

ð6Þ

where, e is a precision parameter representing the radius of the

tube located around the regression function (e-insensitive loss
function used in standard SVR),f� and f are training errors

above e and training error below�e.C is a trade-off parameter

between two terms in the objective function (Drucker et al.

1997). Table 3 summarized some of the applications of these

models in various mineral processing methods.

3 Results and discussion

3.1 Correlation assessments

3.1.1 Tri-flo 500 mm

Pearson correlations between operational parameters and

their representative metallurgical responses (Fig. 3) indi-

cate these variables for both tri-flo 500 mm have similar

magnitudes with their representative metallurgical

responses. Within the variables, Density-1000 has the

highest positive single linear inter-correlation with the

metallurgical responses (r: 0.72). Linear Pearson assess-

ments show by increasing the Pump speed-1000, the met-

allurgical responses can be decreased (a negative

correlation). Other variables illustrate negligible single

linear correlations. Nonlinear multivariable correlation

assessments by BNN marginal curve (Fig. 4) also show

that increasing Density-1000 would increase the metallur-

gical responses while increasing the pump speed in the first

chamber has a negative effect on them. VIM results indi-

cate that Density-1000 is the most influential variable on

Table 3 Applications of different machine learning methods in

mineral processing

Database

type

Dependent variable AI model Reference

Laboratory Flotation responses SVR Chehreh Chelgani

et al. (2018)

Laboratory Flotation responses FANN Jorjani et al.

(2008a, b)

Laboratory Flotation responses RF Shahbazi et al.

(2017)

Industrial Ball mill powder

draw

RF Tohry et al.

(2020a, b)

Industrial Magnetic

separation

responses

RF Tohry et al.

(2020a, b)

Industrial Paste thickening RF Diaz et al. (2021)

Industrial HPGR power draw RF, SVR,

BNN

Tohry et al. (2021)

Fig. 3 Pearson correlation between operational parameters of tri-flo

500 m (a, b) and their representative metallurgical responses
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metallurgical responses, among other monitored opera-

tional parameters (Fig. 4). In general, there is a good

agreement between ‘‘r’’ and VIM assessment results. These

results release that for the processing of fine coal particles,

controlling the operational variables of tri-flo 500 mm in

the first chamber (density and pump speed) has a critical

effect on the process responses.

Fig. 4 BNN marginal curve for tri-flo 500 mm multivariable correlation assessments
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3.1.2 Tri-flo 700 mm

Single linear inter-correlation assessments ‘‘r’’ among the

variables for the coarse size fraction (Fig. 5) indicate that

the feed rate has a significant negative correlation with the

metallurgical responses. In other words, by increasing the

feed rate, the metallurgical responses extensively would be

decreased. Pump speed-1400, Density-1600, and Density

Float show moderate linear positive correlations with the

metallurgical responses. Exploring nonlinearity multivari-

able effectiveness assessments of each monitored variable

for predicting metallurgical responses by BNN marginal

curve indicates (Fig. 6) that Density-1600 and Density

Sink 2 have meaningful positive correlations with the

metallurgical responses. However, ranking VIM results

based on multivariable correlation demonstrate (Fig. 6)

that Density-1600 and Pump speed-1400 are the most

influential variables for the prediction of recovery and yield

prediction, respectively, in the tri-flo 700 m.

3.1.3 Prediction

From the entire databases related to each considered tri-flo,

90% of records are used for training steps, and the rest is

applied for the testing stages. A trial and error method is

used to obtain a suitable number of experts in the BNN

model. The optimum parameters with minimum general-

ization errors are provided (Table 4). The BNN model

experts are a one-layer perceptron neural network with four

hidden neurons and a ‘tanh’ activation function. Training

of experts is developed by using the back-propagation

learning algorithm (Asadi et al. 2012). BBN modeling

results (Table 5) indicate that this intelligent method can

accurately predict the metallurgical responses based on the

Fig. 5 Pearson correlation between operational parameters of tri-flo

700 mm and their representative metallurgical responses

Fig. 6 BNN variable importance measurement between operational parameters and metallurgical responses for tri-flo 700 mm
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operational variables for all the three examined tri-flos. For

comparison purposes, the same training and testing sets

from each database are employed for RF and SVR mod-

eling. Results show (Table 5) that BNN can present a

higher accuracy for different systems than traditional

machine learning (RF and SVR). Differences between

actual and predicted value in the testing stage supports

approved the provided results (Fig. 7). These results indi-

cated that BNN models could be considered as a CL for

controlling, maintaining, and predicting the effect of varied

operational conditions on the metallurgical responses of tri-

flo in the coal processing plants.

4 Conclusions

Conscious-Laboratory, potentially as a future trustable lab,

can be used for efficient data mining through energy and

processing sectors. For example, this investigation

explored such a possibility and showed the vast potential

for automating tri-flo circuits’ operation. Assessment of

single linear and multivariable nonlinear relationships

between tri-flo operational parameters and their represen-

tative metallurgical responses by a powerful new devel-

oped ensemble arterial neural net method ‘‘boosted neural

network’’ provided valuable information. For fine particles

(? 0.5–6 mm), the density of feeding heavy media and the

speed of pumping the media in the first chamber have the

highest effect on tri-flo 500 mm’ performance. For coarse

particles (? 6–50 mm), the density of heavy media in the

second chamber was the most effective parameter on the

yield. In contrast, the speed of pumping the heavy media in

the first chamber showed the highest importance for

modeling recovery. Apart from the particle size, increasing

Table 4 Parameter setting of BNN model

Parameter Number of experts

Recovery Yield

Tri-flo 700 mm 3 5

Tri-flo 500 mm (A) 5 5

Tri-flo 500 mm (B) 3 5

Table 5 Prediction results (R2) of metallurgical responses for dif-

ferent tri-flo by various machine learning methods

Model Fine (A) Fine (B) Coarse

Recovery Yield Recovery Yield Recovery Yield

BNN 0.94 0.98 0.87 0.97 0.93 0.98

RF 0.30 0.38 0.46 0.52 0.83 0.91

SVR 0.74 0.8 0.81 0.81 0.90 0.92

Fig. 7 Differences between actual and predicted value by different AI models in the testing stage
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the feeding rate of raw coal would decrease the metallur-

gical responses, and increasing the density of heavy media

could improve the metallurgical responses. BNN modeling

results in comparison with popular machine learning

methods indicated that the performance of tri-flo could be

modeled, and the circuit could be automated based on

operational factors quite accurately.
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