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Abstract Prediction of the height of a water-flowing fracture zone (WFFZ) is the foundation for evaluating water bursting

conditions on roof coal. By taking the Binchang mining area as the study area and conducting an in-depth study of the

influence of coal seam thickness, burial depth, working face length, and roof category on the height of a WFFZ, we

proposed that the proportion of hard rock in different roof ranges should be used to characterise the influence of roof

category on WFFZ height. Based on data of WFFZ height and its influence index obtained from field observations, a

prediction model is established for WFFZ height using a combination of a genetic algorithm and a support-vector machine.

The reliability and superiority of the prediction model were verified by a comparative study and an engineering application.

The results show that the main factors affecting WFFZ height in the study area are coal seam thickness, burial depth,

working face length, and roof category. Compared with multiple-linear-regression and back-propagation neural-network

approaches, the height-prediction model of the WFFZ based on a genetic-algorithm support-vector-machine method has

higher training and prediction accuracy and is more suitable for WFFZ prediction in the mining area.

Keywords Water-flowing fracture zone � Roof category � Proportion of hard rock � Genetic algorithm � Support-vector
machine

1 Introduction

When mining a coal seam, the roof rock will move,

forming a fracture zone (Gao 1996). Fractures in this zone

may provide a channel for accumulated water in the

overlying aquifer, not only destroying groundwater

resources in the aquifer but also causing groundwater to

flow into the mine along the water-flowing fracture zone

(WFFZ), threatening mine safety and production (Wu et al.

2000, 2016; Li and Li 2012; Garritty 1983; Zhang and

Yang 2018; Peng and Zhang 2007). Therefore, coal sci-

entists should pay attention not only to the prediction of

water abundance in roof aquifers but also to the prediction

of WFFZ height.

To date, many important results have been obtained

through similar-material simulations (Lin et al. 2010; Gao

and Wu 2011; Zhao et al. 2011; Sui et al. 2015; Dong et al.

2015; Zhang et al. 2018, 2017), numerical simulation

experiments (Liu et al. 2018a; Wu et al. 2014; Liu et al.

2018b; Zhang et al. 2018; Meng et al. 2018; Zhu et al.

2018; Yin et al. 2016; Wu et al. 2015), theoretical analysis

(Xu and Sun 2008; Shi et al. 2012; Liu et al. 2018b; Qiao

et al. 2017; Yin et al. 2016), physical exploration (Yang

et al. 2018), and drilling tests (Luan et al. 2010; Sui et al.

2015; Dong et al. 2015; Zhang and Peng 2005; Yin et al.

2016) for the study of WFFZ height in the roof after coal

mining. However, these methods mainly study height

prediction of the WFFZ under specific geological and

mining conditions, and it is difficult to conduct such studies

under complex and variable geological and mining condi-

tions (Wang 2006).
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In recent years, many scholars have proposed multi-

factor-analysis methods for WFFZ height prediction under

complex and variable geological conditions. In terms of the

main factors that affect WFFZ height, Liu first considered

two control factors: the roof category and the coal seam

thickness (Liu 1995). Afterwards, some scholars found that

the height of the roof WFFZ in coal mining is also con-

trolled by the length of the coal face, the coal seam pitch,

and the burial depth of the coal seam (Hu et al. 2012; Liu

2010; Du and Weng 1997). Using multi-factor analysis,

early scholars described the relationship between WFFZ

height and the main control factors by using linear models,

such as multiple linear regression (MLR) and the entropy

method (Hu et al. 2012; Wang et al. 2018; Xu and Sui

2013). With the development of system theory and com-

puter technology, a nonlinear method using back-propa-

gation neural-networks (BPNNs) was applied (Chen et al.

2005). Height prediction of WFFZs has been extensively

studied using multi-factor analysis. The main factors

affecting WFFZ height have been revealed, and various

advanced methods have been applied for its prediction.

Among these factors, the roof category is divided into three

types: weak, medium-hard, and hard. In fact, the influence

of roof category on WFFZ height is relatively complicated.

Thus, it is necessary to characterise roof classification

quantitively to predict WFFZ height accurately, and

determining a reasonable index to characterise roof clas-

sification is essential. In addition, many nonlinear methods,

such as BPNNs, overcome the limitations of linear analy-

sis, but the use of these methods requires large amounts of

observational data. Therefore, a new method is urgently

needed to establish a prediction model for WFFZ height

based on small amounts of observational data.

In this study, we used single-factor analysis to study the

influence of coal seam thickness, burial depth, working

face length, and roof category on WFFZ height and created

an index to characterise the roof category. Using measured

values of WFFZ height and its influence indexes, we

established a prediction model for this height based on a

genetic algorithm (GA) and a support-vector machine

(SVM) to obtain better predictions when using small

amounts of observational data and to provide the theoret-

ical basis for the prediction and prevention of roof-gushing

(inrush) water disasters in coal mining in the future.

2 Descriptions of study area

The Binchang mining area covers an area of about

670 km2, located in the middle of the Huanglong Jurassic

Coalfield in Shaanxi Province, and is one of the most

important coal-industry bases in China (Fig. 1). The land-

form consists of the Loess gully and hilly areas, and the

terrain is high in the northwest and low in the southeast.

The Yan’an Group of Jurassic strata is a coal-bearing

stratum with a total of eight coal seams, among which coal

seam number 4 is the current main coal seam with an

average coal thickness of about 10 m.

Jing River, Hei River, and Hongya River constitute the

main river system in the study area. The Jing River flows

through the study area from northwest to southeast. The

Hei River flows into the study area from the west and

merges into the Jing River. The Hongya River flows into

the study area from the east and merges into the Jing River.

The groundwater in the study area can be divided into

loose-pore unconfined aquifers and bedrock pore-fracture

confined aquifers. The bedrock-fracture aquifer of the

Cretaceous Luohe Group is the most important and is the

main source of domestic and industrial water in the study

area, as well as an inrush source that affects the safety of

mine production.

3 Data preparation

3.1 In situ observation of WFFZ height

In coal mining, the overburden rock collapses under

gravity, causing the stress of surrounding rock to be

redistributed, resulting in tensile failure above the mined-

out area and shear failure above the coal wall, forming a

WFFZ. Therefore, the rock-mass fractures in a WFFZ are

more developed than those in normal rock mass. When an

exploration hole is drilled into a WFFZ, the consumption

of flushing fluid in the borehole will increase markedly, and

the water level will continue to decrease. Therefore, WFFZ

height can be determined from the consumption of flushing

fluid and the variation characteristics of the water level in

Fig. 1 Location of the study area and distribution of the WFFZ

height observation points
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the borehole. A total of 28 boreholes were arranged in the

study area to observe WFFZ height (Fig. 1). The obser-

vational results in Table 1 show that WFFZ height in the

study area is mainly between 100 and 240 m.

3.2 Factors of WFFZ height

It is necessary to analyse the factors affecting WFFZ height

before predicting it. Based on previous research results and

practical experience, the height of the WFFZ roof after coal

mining is mainly controlled by coal seam thickness,

working face length, coal seam burial depth, and roof

category (Table 1). The data show that the stratum in the

study area is inclined to the north, the pitch changes little,

and the influence of pitch on WFFZ height is small. The

influence of other factors on WFFZ height is showed as

follows.

3.2.1 Coal seam thickness

After coal mining, the influence range of roof displacement

and failure is directly controlled by coal seam thickness.

With similar conditions of working face length, represen-

tative data are selected from Table 1 to analyse the rela-

tionship between WFFZ height and coal seam thickness

(Fig. 2a). The results show that the height of the WFFZ

roof increases significantly with increasing coal seam

thickness; therefore, coal seam thickness is an important

factor affecting WFFZ height. In addition, with similar

conditions of coal seam thickness, when the length of the

Table 1 Measured height of the water-flowing fracture zone and its main control factors

No. of

boreholes

Working face length

(m)

Burial depth

(m)

Coal seam

thickness (m)

Hard-rock proportion in

different ranges of roof

thickness

Height of water-flowing fracture

zone (m)

0–7 M 7–10 M 10–15 M

ZK1 180.0 550.00 3.50 0.25 0.93 0.38 130.00

ZK2 180.0 550.00 3.50 0.35 0.80 0.32 134.00

ZK3 240.0 546.96 3.82 0.56 0.64 0.32 180.60

ZK4 240.0 550.00 3.85 0.48 0.41 0.61 145.00

ZK5 93.4 332.00 8.90 0.64 0.47 0.28 149.48

ZK6 93.4 333.50 9.00 0.51 0.29 0.39 124.50

ZK7 116.0 650.00 9.10 0.09 0.00 0.83 121.03

ZK8 103.9 520.00 9.10 0.26 0.00 0.75 134.98

ZK9 116.0 650.00 9.20 0.34 0.25 0.81 138.38

ZK10 93.4 325.00 9.80 0.30 0.27 0.47 120.00

ZK11 116.0 650.00 9.80 0.52 0.57 0.34 175.80

ZK12 93.4 325.00 9.90 0.56 0.45 0.14 149.00

ZK13 116.0 650.00 9.99 0.38 0.23 0.62 165.83

ZK14 130.0 980.00 10.00 0.08 0.12 1.00 130.00

ZK15 180.0 475.95 11.22 0.52 0.72 0.24 211.09

ZK16 180.0 475.95 11.22 0.46 0.61 0.42 192.00

ZK17 200.0 650.00 12.00 0.56 0.36 0.13 238.67

ZK18 180.0 480.00 12.34 0.53 0.34 0.38 187.00

ZK19 180.0 488.24 12.56 0.39 0.21 0.52 179.50

ZK20 175.0 610.0 12.92 0.34 0.21 0.60 189.52

ZK21 175.0 610.0 13.00 0.42 0.21 0.65 225.43

ZK22 116.0 550.0 3.83 0.53 0.59 0.31 121.00

ZK23 116.0 549.0 3.81 0.49 0.43 0.62 110.00

ZK24 180.0 629.0 9.20 0.34 0.25 0.81 152.60

ZK25 180.0 637.0 9.80 0.52 0.57 0.34 183.20

ZK26 180.0 650.0 9.80 0.47 0.58 0.41 176.30

ZK27 120.0 490.0 12.31 0.51 0.42 0.37 172.30

ZK28 130.0 500.0 12.50 0.42 0.19 0.53 164.20

M denotes coal seam thickness
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working face is large, the height of the water diversion

fracture zone is also large.

3.2.2 Working face length

Working face length is an important index of the dis-

placement and failure degree of roofs in coal mining. When

the working face length is small, a balanced arch structure

is formed in the periphery of the roof-failure area, which

leads to a low WFFZ height. Before full mining, WFFZ

height increases with increasing working face length, but

after full mining, this increase ceases. According to the

observational data obtained in the study area (Fig. 2b),

under similar conditions of coal seam thickness, roof cat-

egory, and other factors, WFFZ height increases with

increasing working face length.

3.2.3 Coal seam burial depth

Coal seam burial depth controls the original stress of the

surrounding rock. Deeper burial coal seam entails higher

original stress on the surrounding rock. With coal mining,

Fig. 2 Correlation between WFFZ height and coal seam thickness, working face length, coal seam burial depth and hard rock proportion of roof
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the overburden rock collapses under gravity, causing the

stress of surrounding rock to be redistributed, resulting in

tensile failure above the mined-out area and shear failure

above the coal wall, forming the WFFZ. Accordingly, with

the increasing of coal seam burial depth, the unloading and

fracture range of the surrounding rock increases gradually

after mining. The observational data (Fig. 2c) show that

WFFZ height increases markedly when the coal seam

burial depth increases from 300 to 500 m, and increases

slowly when the burial depth exceeds 500 m.

3.2.4 Roof classification

There is a close relationship between WFFZ height and

roof classification. Brittle rocks (conglomerate, sandstone)

usually have high compressive strength, but it is difficult to

close cracks after failure. The compressive strength of

plastic rock (siltstone, mudstone) is low, but the cracks

caused by failure are easy to close. The roof of the coal

seam often comprises a combination of brittle-plastic rock

layers, and different lithologic combinations have different

effects on WFFZ height after mining. Some scholars have

used the proportion of hard rock, which is the proportion of

hard rock (sandstone and conglomerate) to WFFZ height,

to characterise the properties of lithologic combinations of

the roof (Hu et al. 2012). However, recent results show that

lithologic combinations of different positions of the coal

seam roof have different effects on WFFZ height after

mining (Xu et al. 2009, 2012). In the area close to the coal

seam, a hard rock layer will form connected fissures and

control the synchronous fracture of soft rock for a given

range, conducting the development of a WFFZ. Away from

the coal seam, either the hard-rock layer is less affected by

mining, which inhibits WFFZ development. Therefore, the

proportion of hard rock in the WFFZ is used to characterise

the properties of the lithologic combination of the roof,

which obscures the effect of different layers of hard rock

on the overburden failure process and may lead to large

deviations prediction results. In our study, the roof is

divided into three parts: A, B, and C (Fig. 3). The obser-

vational data (Fig. 2d) show that WFFZ height increases

significantly with increasing hard-rock proportion when the

distance from the coal roof to its upper strata is 0–7 times

the coal seam thickness. With increasing hard-rock pro-

portion in roof B, WFFZ height increases slowly (Fig. 2e).

There is a negative correlation between hard-rock propor-

tion in roof C and WFFZ height (Fig. 2f). To describe the

effect of the lithologic combination of the roof at different

positions in the overburden failure process, the hard-rock

proportions of roofs A, B, and C are proposed to jointly

characterise the influence of roof category on WFFZ

height.

4 Methodology

The SVM model is a prediction model based on small-

sample learning, which can be divided into a support-

vector classifier and a support-vector regression (SVR)

(Vapnik 1995; Fang et al. 2018). The main idea of SVR is

to find an optimal surface based on the Vapnik–Chervo-

nenkis generalization theory to minimise the structural risk

of the model (Vapnik 1998).

GA is a kind of simulated evolutionary algorithm pro-

posed by Professor Holland of Michigan University in

1969 and summarized by DeJong, Goldberg, and others

(Holland 1975; DeJong 1975; Goldberg 1989). The algo-

rithm comes from Darwin’s theory of evolution, Weiz-

mann’s theory of species selection, and Mendel’s theory of

population genetics. GA is a type of self-organizing and

adaptive artificial-intelligence technology that simulates

the process and mechanism of biological evolution in

nature to solve extreme-value problems.

SVM parameters greatly impact the prediction ability of

the SVM model, therefore, reasonable selection of

parameters is important to establish an SVM model. GA is

an effective method to select parameters with characteris-

tics of global optimization and computational stability (Lin

et al. 2013; Lewis and Randall 2017; Ouyang et al. 2017).

Therefore, GA is used to select SVM parameters, avoiding

the subjectivity of artificially selecting parameters and

improving the prediction ability of SVM. Compared with

other methods, SVM optimised by GA (GA-SVM) has the

advantages of being only weakly dependent on training

samples and having a strong predictive ability.

5 Results and verification

Using the observed WFFZ height and coal seam thickness,

working face length, coal seam burial depth and hard rock

proportion of roof for the ZK1-ZK21 borehole as training

samples, a prediction model for WFFZ height was estab-

lished by GA-SVM. The ZK22-ZK28 borehole data were

applied to the prediction model as verification samples.

Through comparative analysis and an engineering appli-

cation, the superiority and reliability of the model are

verified.

5.1 Application of the GA-SVM method

When the GA-SVM method is used, the reciprocal of the

sum-squared error of the verification samples is defined as

a fitness function. When the population evolves to 80

generations, the sum-squared error of the verification

samples and the fitness function (Figs. 4) reach an optimal

744 E. Hou et al.

123



condition, and the optimum output parameters are

C = 8.001 and g = 0.0884.

The optimum parameters C and g are assigned to the

SVM parameters, and the SVM model is established by the

training samples:

yðxÞ ¼
X19

i¼1

Wi��0:0884 Xi�Xk k2 � 0:0946

where Xi and Wi are the support vectors and their coeffi-

cients, respectively (Table 2), X is the normalised vector of

the prediction-sample factors, and ||Xi - X|| is the two-

norm distance between the support vector and the nor-

malised vector of the prediction-sample factors.

5.2 Verification

To verify the reliability and superiority of the GA-SVM

prediction model, the same training samples were used to

establish an MLR and a BPNN prediction model. Then, all

sample data were substituted into the three models to

obtain predictions of WFFZ height (Fig. 5a). Using to the

predicted and observed heights, the residual values of the

WFFZ heights were obtained (Fig. 5b).

The determination coefficient R2 largely reflects the

effect of the prediction model. The equation used to cal-

culate R2 is given below (Gujarati 2003):

R2 ¼ 1�
P

Yi � Ŷ
� �2

= n� p� 1ð Þ
P

Yi � �Yð Þ2= n� 1ð Þ

where Yi, �Y , and Ŷ are the observed, mean, and predicted

values of WFFZ height, respectively; n is the sample size;

and p is the number of variables.

The calculation results show that the determination

coefficients R2 of the GA-SVM-based prediction model for

the training and verification samples are 0.925 and 0.974,

respectively. The corresponding determination coefficients

R2 of the MLR-based prediction model are 0.859 and

0.970, respectively, and those of the BPNN-based predic-

tion model are 0.986 and 0.581, correspondingly. The

results show that the SVM- and MLR-based prediction

models closely fit the training and verification samples,

making the models suitable for WFFZ-height prediction in

the study area (Fig. 5a). The determination coefficient of

the BPNN-based prediction model for the training samples

is much larger than that for the verification sample, and

Fig. 3 Geological cross-section of study

Fig. 4 Sum-squared error and fitness-function variation
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over-fitting of the training data occurs without considering

the effect of the main factors on WFFZ height. Therefore,

compared with GA-SVM and MLR, BPNN performs

poorly in WFFZ-height prediction in the study area.

The residual plot (Fig. 5b) shows that the residual value

of the GA-SVM prediction model is between -28.69 and

15.57 m in all samples, and the sample size with a residual

value between -5 and 5 m is 22, accounting for 78.57% of

the total samples. The residual value of the MLR prediction

model is between -30.66 and 14.79 m, and the sample size

with a residual value between -5 and 5 m is 14,

accounting for 50% of the total samples. The results above

show that compared with the MLR model, the GA-SVM

model can better eliminate the influence of outlier points

on the model and can establish a model that most samples

obey, achieving accurate fitting of most of the sample data.

Therefore, the GA-SVM model has more advantages in the

prediction of WFFZ height.

To further verify the reliability of the model, the GA-

SVM-based model was used in the first mining area of the

Wenjiapo coal mine (Fig. 6).

The Wenjiapo coal mine is located to the east of the

study area, with an area of about 79.69 km2. Coal seam No.

4 is the current main coal seam, with a thickness of

1.08–15.00 m and a burial depth of 300–500 m. The main

aquifer is the bedrock-fracture aquifer of the Luohe Group.

The thickness of the combined aquifuge between coal seam

No. 4 and the aquifer in the first mining area of the

Wenjiapo coal mine is between 180 and 235 m (Fig. 7).

From the northwest to the southeast of the first mining area,

the thickness of the combined aquifuge first increases and

then decreases.

Using drilling data from the first mining area of the

mine, thematic maps of coal seam thickness, burial depth,

and hard-rock proportions in different layers were drawn

(Fig. 8). A thematic map of coal seam thickness (Fig. 8a)

shows that the thickness of coal seam No. 4 in the first

mining area of the Wenjiapo coal mine is between 3 and

15 m, with an average thickness of 11.3 m, low thickness

in the east and high thickness in the west, reaching a

maximum in the southwest of the first mining area. The

thematic map of burial depth (Fig. 8b) shows that the burial

depth of the coal seam is between 250 and 550 m, with an

average burial depth of 395 m. From the northwest to the

southeast, the burial depth of the coal seam is deep-shal-

low-deep. The thematic maps of hard-rock proportion,

when the distance from the coal roof to its upper strata is

0–7 times, 7–10 times, and 10–15 times the coal seam

Table 2 Support vectors and their coefficients

Coefficients,

Wi

Support vectors, Xi Coal seam thickness (m) Burial depth (m) Working face length (m) Hard rock propagation in

ranges of roof different heights

0–7 M 7–10 M 10–15 M

W1 4.89 X1 0.18 - 0.31 - 1.00 - 0.39 1.00 - 0.43

W2 - 8.00 X2 0.18 - 0.31 - 1.00 - 0.04 0.72 - 0.56

W3 4.62 X3 1.00 - 0.32 - 0.93 0.71 0.38 - 0.56

W4 - 3.30 X4 1.00 - 0.31 - 0.93 0.43 - 0.12 0.10

W5 6.93 X5 - 1.00 - 0.98 0.14 1.00 0.01 - 0.66

W6 - 8.00 X6 - 1.00 - 0.97 0.16 0.54 - 0.38 - 0.40

W7 - 3.95 X7 - 0.69 - 0.01 0.18 - 0.96 - 1.00 0.61

W8 8.00 X8 - 0.86 - 0.40 0.18 - 0.36 - 1.00 0.43

W9 - 4.73 X9 - 0.69 - 0.01 0.20 - 0.07 - 0.46 0.56

W10 - 5.32 X10 - 0.69 - 0.01 0.33 0.57 0.23 - 0.52

W11 - 1.77 X11 - 1.00 - 1.00 0.35 0.71 - 0.03 - 0.98

W12 8.00 X12 - 0.69 - 0.01 0.37 0.07 - 0.51 0.13

W13 - 2.25 X13 - 0.50 1.00 0.37 - 1.00 - 0.74 1.00

W14 5.86 X14 0.18 - 0.54 0.63 0.57 0.55 - 0.75

W15 4.83 X15 0.45 - 0.01 0.79 0.71 - 0.23 - 1.00

W16 - 8.00 X16 0.18 - 0.53 0.86 0.61 - 0.27 - 0.43

W17 - 8.00 X17 0.18 - 0.50 0.91 0.11 - 0.55 - 0.10

W18 2.19 X18 0.11 - 0.13 0.98 - 0.07 - 0.55 0.08

W19 8.00 X19 0.11 - 0.13 1.00 0.21 - 0.55 0.20

M denotes coal seam thickness
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thickness, show that the proportion of hard rock in the

different roof-thickness ranges is basically between 0.3 and

0.9. In addition, the mining data show that the length of the

coal face in the first mining area is 240 m.

The thematic maps of coal seam thickness, coal seam-

burial depth, and hard-rock proportion for roofs A, B, and

C in the first mining area were applied to the established

GA-SVM prediction model. Using the predicted height of

the WFFZ and the thickness of the combined aquifuge in

the first mining area, a connectivity map of the roof aquifer

after mining was drawn (Fig. 9).

The connectivity map of the roof aquifer after mining

(Fig. 9) shows that of the three coal faces mined in the first

mining area, coal faces 4101 and 4102 have not been

connected to the roof aquifer of the Luohe Group, while the

WFFZ formed after mining coal face 4103 has been

connected.

According to the measured working face mine-water

inflow (Fig. 10), since mining of coal face 4103 began in

August 2018, the mine-water inflow from coal faces 4101

and 4102 is about 10 m3/h and 90 m3/h, respectively, while

the mine-water inflow from coal face 4103 is 180 m3/h, the

latter continuing to exhibit an increasing trend. This indi-

cates that after the mining of coal faces 4101 and 4102, the

roof aquifer of the Luohe Group is not connected to the

goaf, and the mine-water inflow is relatively small. How-

ever, the aquifer of the Luohe Group was connected to the

goaf after the mining of coal face 4103, which led to a

Fig. 5 Prediction and residual values of WFFZ height
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significant increase of mine-water inflow. This result is

basically consistent with the results of the prediction model

and further shows that the GA-SVM-based prediction

model is reliable.

After completing the WFFZ-height prediction in the

study area, some additional information about the influence

of each factor on WFFZ height is obtained. Specifically,

Fig. 11 shows 6 variables sorted according to average

decreasing accuracy. The average decrease in accuracy is a

measure of the contribution of each variable in the SVM

model. The more the accuracy of the SVM model

decreases due to the exclusion of variables, the more

important is the variable; therefore, the greater the average

decrease in accuracy, the more important the variable.

According to this index, the most important variable is coal

seam thickness, followed by working face length and the

ratio coefficient of hard rock proportion in the range of 0–7

times the thickness of the coal seam roof.

6 Discussion

In the prediction of roof-gushing (inrush) conditions, the

study of WFFZ height is important. Research shows that in

coal mining, coal seam thickness, burial depth, working

face length, and roof category are contributory factors in

roof-WFFZ height. A coal seam roof often comprises a

combination of brittle-plastic rock layers, and the hard rock

in different roof ranges has different effects on WFFZ

height after mining. Therefore, roof category cannot be

divided simply into three types: weak, medium-hard, and

hard. The hard rock proportions in different roof ranges can

be used to characterise the influence of roof category on

WFFZ height. This is because the effect of hard rock in

different roof ranges on WFFZ height differs. Among the

factors of WFFZ height, the most important variable is coal

seam thickness, followed by working face length and the

ratio coefficient of hard rock proportion in the range of 0–7

times the thickness of the coal seam roof.

In addition, the results show that compared with the

MLR and BPNN methods, the GA-SVM-based prediction

model has a high fitting accuracy for the training and

verification samples and can be used to determine WFFZ

height in the study area. This is because, compared with

other methods, GA-SVM may meet the accuracy require-

ments when few training samples are provided. Besides,

the method may also effectively reduce the impact of

outlier values in the model.

7 Conclusion

Using the Binchang mining area as a study area, we used

mathematical statistics to analyse the factors that influence

WFFZ height during the mining of coal seams. GA-SVM

Fig. 6 Location of the first mining area in the Wenjiapo coal mine

Fig. 7 Thickness of the combined aquifuge
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was used to establish a prediction model for WFFZ-roof

height. The results of this analysis reveal a number of

findings outlined below.

(1) The factors that influence WFFZ height in the study

area are coal-seam-mining thickness, burial depth,

working face length, and roof category. There is a

negative correlation between WFFZ height and the

ratio coefficient of hard rock proportions in the range

of 10–15 times the thickness of the coal seam roof.

There is a positive correlation between coal seam

thickness, working face length, coal seam burial

depth, hard rock proportion in the range of 10–15

times the thickness of the coal seam roof and WFFZ

height.

Fig. 8 Thematic maps of main control factors of the water-flowing fracture zone height
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(2) Among the variables, the most important is coal

seam thickness, followed by working face length,

and the ratio coefficient of hard rock proportion in

the range of 0–7 times the thickness of the coal seam

roof.

(3) Compared with MLR and BPNN, the GA-SVM

model is more accurate for the verification samples

and is more suitable for the prediction of WFFZ-roof

height in coal mining.

This research not only proposes a new index to char-

acterise the effect of coal seam-roof category on WFFZ

height but also provides a new method for the prediction of

WFFZ height in coal mining for the future; this is of great

significance for the prediction of roof-gushing (inrush)

conditions in coal mining.
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