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Abstract A quantitative analysis of the porosity, pore size distribution, and fractal dimensions of pores is significant for

studying the pore structure characteristics of coal. This study utilized 12 anthracite coal samples from the Sihe mining area

to explore the pore structure characteristics of the coal therein. Hundred randomly selected points on each sliced coal

sample were imaged via scanning electron microscopy, and a total of 1200 images were used for the analysis. The porosity

and fractal dimensions of the coal samples were analyzed via digital image processing and box-counting dimension

methods. This method is characterized by extensive graphical analysis, and the results are based on statistical methods.

These were also used to analyze the structural and development characteristics of the microscopic pores in the coal. The

results reveal that the surface porosity obtained via digital image processing was 16.11% lower than that measured

experimentally. The fractal dimension and porosity of the pore surface were fitted to a natural logarithmic curve. The rate

of change in the pore fractal dimension depends on the porosity such that, to some degree, a greater porosity is associated

with more complex pore structures, a higher degree of micropore development, and improved pore connectivity.
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1 Introduction

Coal is a heterogeneous porous medium, the pore devel-

opment and pore structure characteristics (pore size, pore/

fracture distribution, and pore interconnectivity) of which

directly influence the adsorption, desorption, migration,

and enrichment of gas in coal seams (Xu et al. 2019; Zhao

et al. 2017). Multiple methods have been used to study the

pore structure of coal, including mercury intrusion

porosimetry, liquid nitrogen adsorption, nuclear magnetic

resonance, electron microscopy, and digital image analysis.

Scanning electron microscopy (SEM) imaging provides

unique advantages for the quantitative analyses of pore

characteristics in porous media (Wu et al. 2016). High-

resolution SEM imaging, capable of identifying pores and

matrices of different gray levels, has become an important

tool for analyzing micro-pore structures (Desbois et al.

2011; Pan et al. 2016). The porous structures in coal exhibit

a more complex morphology than those in sandstone or

shale, with both fractures and an abundance of micro-pores

(Wang et al. 2012). Since the initial fractal development

analysis conducted by Mandelbrot, the fractal geometry has

been widely used in porous media analyses, showing good

results in characterizing the porous structures of coal (Li

et al. 2015; Mahamud and Novo 2008; Peng et al. 2011).

The fractal dimension (D), an important parameter for the

quantitative characterization of pores and fractures, can be

experimentally obtained to represent complexity and

irregularity in such structures (Bird et al. 2006; Fernández-

Martı́nez and Sánchez-Granero 2016).
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Scientists have conducted many coal-structure studies

using fractal analyses. (Yao et al. 2008) found that the

fractal dimensions of coal range from 2.61 to 2.98, higher

than those of other types of rocks such as sandstone, shale,

and carbonate. This suggests that coal has a more com-

plicated and inhomogeneous pore structure than other

rocks.(Mahamud and Novo 2008) used both porosity,

obtained via mercury injection, and fractal analysis to

assess the texture of coal: The fractal dimensions and

fractal profiles were found to be sensitive to oxidation

treatment; this information is useful to follow the changes

in coal samples. (Liu and Nie 2016) employed a low-

pressure nitrogen gas adsorption technique along with SEM

to study methane adsorption in coal and demonstrated that

the fractal dimensions of the pores comprehensively reflect

the difference in the physical properties of the coal. (Shi

et al. 2018) investigated micrometer-sized fractures via

micro-CT scanning and fractal analysis, with results

showing high interconnectivity in the micro-fracture net-

works of low-grade coal and greater complexity in the

micro-fracture structure of higher-grade coal.

In this study, anthracite coal samples from 12 different

sites in the Sihe mining area were investigated using SEM,

digital image processing, and fractal analysis to identify the

fractal structure and developmental characteristics of their

pores and fractures.

2 Experimental

2.1 Coal sample preparation and image acquisition

Twelve coal samples from different sites in the Sihe mining

area were selected and numbered. These samples were

processed and imaged as follows: (1) Samples with more

flat surfaces were cut into thin slices; (2) The surfaces of

these slices were cleaned with acetone to remove any

stains; (3) The slices were air dried (as coal is an organic

substance with poor electrical conductivity); (4) A thin

layer of gold was vapor-deposited onto the slices via ion-

beam sputtering; (5) The specimens were imaged under an

electron microscope at different magnifications. Figure 1

shows the SEM images for the same field of view of

the No. 8 coal sample at various magnifications (500, 750,

1000, 1500, and 2000 9 for (a), (b), (c), (d), and (e),

respectively). As shown, the number of dark pores in the

field of view decreases with increasing magnification, but

each pore is more prominent.

2.2 Digital image processing

Figure 2 illustrates the basic processes of sampling and

quantization. Figure 2a shows a continuous image f (x,

y) taken using a camera. The x and y coordinates and

grayscale of the image are continuous. To convert to a

digital form, sampling and quantization operations were

performed on the image. The digitized coordinate value is

called sampling, and the digitized grayscale value is called

quantization. The one-dimensional function, shown in

Fig. 2b, represents the amplitude value (grayscale) of the

continuous image along the line segment ABCD indicated

in Fig. 2a. The function is sampled at equal intervals along

the AD line, as shown in Fig. 2b. Each sampling position is

given by a grid point on the ABCD line, and the sampling

points are indicated by small white squares on the grays-

cale curve. Each sampling point (digitized) corresponds to

a gray value. On the right side of Fig. 2b, the corre-

sponding gray values are shown, ranging from black (0) to

white (255). Figure 2b shows the sampling and quantiza-

tion processes of the samples. This process is performed

line-by-line starting from the vertices of the image to

produce a two-dimensional digital image.

The SEM images were converted to digital images via

sampling, which involves dividing the continuous images

into M 9 N matrices to make them spatially discrete, and

quantization.

The digital images were stored, calculated, and analyzed

using matrices such that a digital image f can be expressed

in the form of the following two-dimensional M 9 N

matrix:

f ðx; yÞ ¼

f ð0; 0Þ f ð0; 1Þ � � � f ð0;N � 1Þ
f ð1; 0Þ f ð1; 1Þ � � � f ð1;N � 1Þ

..

. ..
.

� � � ..
.

f ðM � 1; 0Þ f ðM � 1; 1Þ . . . f ðM � 1;N � 1Þ

2
6664

3
7775

ð1Þ

The following four steps were involved in digitally

processing the images:

(1) Image pre-processing: The surrounding environ-

ment, human factors, and quality of the sensor

components affect the image acquisition process.

Therefore, it is necessary to reduce the noise and

filter the acquired images for subsequent processing

and image accuracy. Because of the substantial salt-

and-pepper noise in SEM images, a median filter is

employed in this study to effectively eliminate the

noise (Erkan et al. 2018; Singh et al. 2017;

Vijaykumar et al. 2014).

(2) Image enhancement: In cases of insufficient expo-

sure or excessive exposure, the gray levels in an

image can be limited, causing problems in pore

recognition and analysis. Therefore, to improve the

image quality and pore clarity, we performed

grayscale transformations, wherein a pre-set trans-

formation relationship is employed to adjust the gray
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level of each pixel in the source image to achieve a

target effect. These transformations may be linear or

nonlinear, with the latter including logarithmic,

gamma, and exponential transformations; threshold

functions; and more (Grundland and Dodgson 2007).

Gamma transformations are primarily used to correct

images with excessive or insufficient gray levels, thus

enhancing their contrast to allow image features to be

accurately identified. This is done by performing power-

Fig. 1 SEM images of the No. 8 coal sample captured at different magnifications

Fig. 2 Digital image formation: a continuous image, b sampling and quantization
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law calculations for every pixel in the original image using

the following transformation function:

s ¼ crc r 2 0,1½ � ð2Þ

Here, s represents the gray level after transformation,

c is a constant, r represents the normalized gray level, and c
represents the gamma transformation coefficient. Figure 3

shows the gamma correction curves. With 1 as the

demarcation, lower c values (c\ 1) shift the low gray

levels to a higher brightness, whereas higher c values

(c[ 1) alter the high gray levels.

(3) Image binarization: To identify pore regions in the

image and calculate their percentage, the grayscale

images are converted to binary images with only two

gray levels (generally assumed to have brightness

values of black or white), where black indicates

pores (Yao et al. 2009). The threshold value is

mainly determined based on the pores in the figure,

but all use the same parameter to ensure relative

consistency.

(4) Histogram thresholding: Balanced histogram thresh-

olding is commonly used to split grayscale images

owing to its intuitiveness and ease of implementa-

tion. Here, the image pixels with gray levels below a

pre-determined threshold are designated as the target

region, and the pixels with gray levels above this

threshold are excluded.

3 Results

3.1 Pore size distribution characteristics

Figure 4 shows the pore size (diameter) distribution his-

tograms of the No. 8 coal sample at magnifications of

500 9 , 750 9 , 1000 9 , 1500 9 , and 2000 9 , respec-

tively. These plots reveal a normal distribution of the pore

size regardless of the magnification, indicating a higher

percentage of small-sized pores (primarily in the nanome-

ter range). This is consistent with the current understanding

on coal pores. As the pore size increases, the pore per-

centage decreases, with larger pores representing only a

small percentage of the overall porosity. These plots also

show that smaller pores can be identified at higher mag-

nifications; however, as the interval between the pore sizes

is greater, there exists a greater discontinuity in the pore

size distribution. This is unfavorable for the fractal analy-

ses of pore and fracture characteristics (Liu 2016). Lower

magnifications, representing wider fields of view, allow a

broad range of pore sizes to be observed, though only

larger pores can be identified. Once the magnification is

increased to a certain value, the field of view is narrowed,

and only a portion of the micro-pores can be observed. The

varied distribution characteristics of the pore size under

different magnifications demonstrate the importance of

magnification in image analyses.

Fig. 3 Gamma transformation curves
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3.2 Porosity calculation at the cross section

of the coal sample

Figure 5 shows a backscattered electron–scanning electron

microscopy image. The color of the minerals in the crack is

significantly different from the color of the coal matrix.

The mineral is white with high brightness, while the color

of the coal matrix is dark.

The gray scale pixel value of the mineral located on the

digital image is higher and that of the coal matrix is lower

and close to 0. Since the cracked surface shows a darker

color due to the depression, the gray value is very close to

0, making the coal matrix to appear black. Therefore, the

microscopic morphology of the coal can be divided into

three types: mineral filling area with white floc, coal matrix

area, and micro-porous or fracture area.

Fig. 4 Pore size (diameter) distributions of coal sample #8 captured under different magnifications

Fig. 5 Backscattered electron (BSE)–scanning electron microscopy image of the No. 8 sample
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The porosity of coal is the ratio of the total volume

occupied by the pores to the overall volume of the coal.

Here, however, the porosity studied was not the exact

porosity of the coal but the percentage occupied by pores as

identified by the electron microscopy image at a selected

magnification. In stereology, the characteristics of a 2D

cross-section characteristic domain are considered repre-

sentative of the associated 3D characteristic domain

(Vanhecke et al. 2007), allowing the pore characteristics

from SEM images taken at different magnifications to be

used for coal pore characterization.

The scanning electron microscope image observed in the

BSE mode shows that the crack surface is darker due to the

depression, and its gray value is very low, representing the

color black. An appropriate grayscale threshold is selected,

and the BSE image is projected onto a binary map to dis-

tinguish microvoids or cracks from the coal matrix and

minerals. Figure 6 shows the results of processing the

image shown in Fig. 5, where the color black represents a

microporous or fracture.

Two randomly selected positions on each sliced coal

sample were imaged using SEM. Each original gray-scale

SEM image was then divided into 64 pixels by 64 pixels,

and 100 images from each original gray-scale SEM image

were randomly selected for analysis. Figure 6 shows the

final, processed image of the No. 8 coal sample after dig-

itization, graying, gray-scale transformation, and binariza-

tion. The number of pixels in the black regions represents

the pores, and the porosity is the ratio of this number to the

total number of pixels in the image.

3.3 Calculation of pore and fracture fractal

dimensions

The differential box dimension algorithm is used to obtain

the fractal dimension. Several algorithms have been pro-

posed for the calculation of box dimensions. Gagnepain

(Gagnepain and Roques-Carmes 1986) first proposed a grid

counting method to calculate the analysis dimension.

(Keller et al. 1987) proposed a probability fractal box

algorithm. However, these algorithms calculate the fractal

dimension of the image on a 2D basis and are difficult to

implement. (Sarkar and Chaudhuri 1992; Sarkar and

Chaudhuri 1994) proposed a simple and fast 3D algorithm

after summarizing the advantages and disadvantages of

previous algorithms, namely the differential box dimension

algorithm. The main principle behind this algorithm is as

follows:

A grayscale image with a pixel size ofM 9 N (M = N) is

subdivided into a sub-block of S 9 S, with r ¼ S=M. The

image is thus regarded as a surface in a 3D space. (x, y) is the

position coordinate of the image, and f(x, y) is its gray value.

The image is divided into a number of S 9 S grids with a box

column on each grid; h is the height of the box column. If the

total gray level is G, G=h ¼ M=S. The minimum and maxi-

mum values of the grayscale of the image set in the (i, j) grid

fall in the kth and lth boxes, respectively:

nr ¼ l� k þ 1 ð3Þ

Here, nr is the number of boxes required to cover the

image in the (i, j) grid. Thus, the number of boxes nr

Fig. 6 Image processing results of digital image for the No. 8 sample
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required to cover the entire image can be determined as

follows:

Nr ¼
X
i;j

nr i; jð Þ ð4Þ

The fractal dimension can be expressed as follows:

D ¼ lim
log Nrð Þ
log 1=r

ð5Þ

Based on this formula, we can find the number of fractal

dimensions D by linear fitting (Table 1).

The box-counting dimension method was used in this

study to calculate the fractal dimensions of the pores and

fractures in digitally processed binary images. The calcu-

lation results show that the fractal dimension is in the range

of 2–3. Because the image can be viewed as a hilly terrain

surface whose height from the normal ground is propor-

tional to the image gray value, the fractal dimension is

greater than 2 based on the gray images (Sarkar and

Chaudhuri 1994). This indicates that the 3D space occupied

by the pore structure is limited. The higher the fractal

dimension, the more complex the pore structure.

Using the No. 8 coal sample as an example, we obtained

60 fractal dimensions and analyzed them with respect to

their corresponding porosities to establish a fractal

dimension versus porosity curve (y = 0.2676ln x ?

3.1325) with a correlation coefficient of 0.9046 (Fig. 7).

This relationship is highly accurate. Figure 7 shows a clear

logarithmic relationship between the fractal dimensions of

the pores and the porosity.

The fractal dimensions of the other eleven coal samples

were similarly calculated, yielding porosity and fractal

dimension data that could be fitted to a natural logarithmic

curve. Table 2 gives the logarithmic functions and corre-

lation coefficients from the fitting of the data pertaining to

the twelve coal samples. As the correlation coefficients are

greater than 0.8, the results are considered accurate. The

twelve equations, listed in Table 2, demonstrate that

porosities close to 1 give a fractal dimension of - 3,

resulting in a strong logarithmic relationship between the

Table 1 Calculated porosity and fractal dimension values of coal sample SH-8

Coal

sample No.

Porosity

(%)

Fractal

dimension

Coal

sample No.

Porosity(%) Fractal

dimension

Coal

sample No.

Porosity

(%)

Fractal

dimension

Coal

sample No.

Porosity

(%)

Fractal

dimension

1 9.57 2.45 26 4.35 2.29 51 1.51 1.99 76 4.42 2.39

2 5.54 2.32 27 3.74 2.26 52 2.93 2.20 77 1.54 2.05

3 2.69 2.11 28 3.25 2.22 53 2.00 2.06 78 1.56 1.97

4 6.18 2.44 29 2.71 2.20 54 2.69 2.14 79 2.64 2.20

5 16.7 2.64 30 4.42 2.36 55 1.37 2.03 80 11.1 2.54

6 3.91 2.21 31 2.08 2.02 56 2.93 2.20 81 2.44 2.11

7 2.51 2.21 32 1.90 2.05 57 1.05 2.01 82 3.61 2.22

8 4.10 2.33 33 1.61 2.01 58 7.69 2.42 83 2.93 2.21

9 5.91 2.43 34 1.00 1.89 59 6.08 2.33 84 3.17 2.23

10 4.10 2.37 35 2.98 2.26 60 2.64 2.13 85 2.10 2.08

11 3.91 2.33 36 2.44 2.18 61 1.90 2.02 86 3.74 2.24

12 2.20 2.02 37 2.10 1.98 62 2.20 2.17 87 3.22 2.16

13 2.42 2.09 38 3.15 2.18 63 2.59 2.15 88 1.78 2.00

14 2.98 2.26 39 1.83 1.99 64 2.51 2.20 89 2.86 2.18

15 6.96 2.45 40 1.32 2.00 65 1.81 2.04 90 2.03 2.10

16 3.88 2.23 41 1.29 1.97 66 3.03 2.16 91 7.01 2.37

17 8.23 2.47 42 3.59 2.24 67 4.44 2.31 92 5.27 2.29

18 4.64 2.36 43 7.30 2.39 68 1.39 1.99 93 4.37 2.22

19 1.15 1.98 44 1.71 2.05 69 2.81 2.15 94 1.44 1.97

20 2.86 2.25 45 1.10 1.86 70 2.78 2.24 95 1.86 2.07

21 1.93 2.05 46 3.78 2.31 71 1.59 1.99 96 1.73 2.05

22 2.76 2.26 47 3.71 2.31 72 7.25 2.37 97 2.59 2.08

23 1.90 2.02 48 1.22 1.97 73 1.88 2.09 98 4.37 2.31

24 1.59 1.98 49 6.86 2.43 74 3.47 2.26 99 3.42 2.17

25 3.03 2.20 50 3.88 2.33 75 1.90 2.19 100 3.81 2.24
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fractal dimension of the pores and the porosity. This can be

expressed as:

Df ¼ k lnuþ 3 ð6Þ

where Df is the fractal dimension of the pores, k is the

coefficient of the logarithmic relationship determined by

the coal structure, and u is the porosity.

4 Discussion

4.1 Calculation results and experimental porosity

The porosity of each coal sample was calculated at dif-

ferent magnifications, and the corresponding fractal

dimensions of the pores were obtained using the box-

counting dimension method (Li et al. 2009). Using the No.

8 coal sample as an example, 100 small figures were taken

from the SEM image, and 100 porosities were calculated

using the mentioned method, and the average porosity was

used as the porosity of the No. 8 coal sample. The same

method was used to determine the porosity of the other

samples; the results were then compared with the porosity

obtained using a porosimeter based on Boyle’s Law, as

shown in Fig. 8.

The porosity calculated from the SEM images is dif-

ferent to that obtained using the porosimeter in principle.

To analyze this difference, a comparative analysis was

performed. As shown, the porosities obtained via digital

Fig. 7 Fractal dimension vs. porosity cross-plot for the No. 8 coal sample

Table 2 Logarithmic functions for fractal dimension versus porosity curves

Coal

sample No.

Natural logarithm function Correlation coefficient

R2
Coal

sample No.

Natural logarithm function Correlation coefficient

R2

1 y = 0.196lnx? 2.8114 0.8452 7 y = 0.2747lnx ? 3.1632 0.8359

2 y = 0.2346lnx ? 3.0116 0.8265 8 y = 0.2676lnx ? 3.1325 0.9046

3 y = 0.2751lnx ? 3.2132 0.9193 9 y = 0.1896lnx ? 2.8308 0.8834

4 y = 0.2189lnx ? 2.9777 0.8375 10 y = 0.2542lnx ? 3.1429 0.8136

5 y = 0.1559lnx ? 2.6888 0.6788 11 y = 0.2438lnx ? 3.038 0.7942

6 y = 0.2073lnx ? 2.9211 0.6851 12 y = 0.1758lnx ? 2.7305 0.8537
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image analysis are generally lower than the measured

values, though this difference is less at higher magnifica-

tions. Above a certain magnification, however, the digitally

calculated values once again deviate from the actual

measurements, with the difference now being significant.

Accounting for the pore size distribution characteristics

mentioned before, 60 SEM images of each coal sample

were taken randomly at 1000 9 magnification for the

analysis. The experimentally measured porosity values are

then compared with the image analysis results, as shown in

Fig. 8. The digitally calculated average porosities are

consistently lower than the experimental values, with dif-

ferences ranging from 12.48% to 20.66% and averaging at

15.36%. As shown in Fig. 8, the actual fitting curve is

nearly parallel to the theoretical fitting curve but falls to its

below, indicating identical trends between the calculated

and measured porosities but lower calculated porosity

values. As the average porosity calculated via digital image

processing was the percent volume occupied by the pores

identified using this technique, some micro-pores in the

coal may not have been recognized or included (Table 3).

4.2 Micro-pore structure characteristics

The pore structure characteristics are closely related to the

porosity and fractal dimension of the pores. (Jiang et al.

2011) assessed the development and pore characteristics of

briquettes with different particle sizes using fractal theory,

whereas we used the changes in the porosity and pore

fractal dimensions as references to investigate the pore

structure characteristics (exemplified by the No. 8 coal

sample). Equation (6) shows that the fractal dimension

varies significantly with the porosity, as shown in Fig. 9a,

b: The porosities are 4.03% and 5.13%, respectively, and

the fractal dimensions are 2.341 and 2.417, respectively. At

higher porosities, the porosity has a minor effect on the

fractal dimension, as shown in Fig. 9c, d: The porosities

are 9.026% and 10.531%, respectively, while the fractal

dimensions are 2.55 and 2.559, respectively. According to

Eq. (6), the fractal dimension should approach 3 (the

Euclidean dimension) as the porosity approaches 1 (indi-

cating the coal is completely occupied by pores and frac-

tures). This could be explained microscopically as follows:

The fractal dimension of pores represents pore complexity.

At low porosities, the micro-pores are distributed more

independently with a uniform size and occupy a relatively

Fig. 8 Comparison of porosity calculated from digital images at different magnifications with experimental data
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small percentage of the overall volume. As the porosity

increases, the pores occupy more space and become less

independent, giving rise to a more complex pore structure

and rapidly increasing fractal dimension. At large porosi-

ties, the percent volume occupied by the pores is relatively

high, and the pore structure is complex, characterized by

uneven pores. In this situation, an increase in the local

porosity does not significantly increase the pore structure

complexity nor the fractal dimension.

4.3 Characteristics of micro-pore and fracture

development

Figure 9 shows the porosities and corresponding fractal

dimensions. The fractal dimension of the pores increases

with porosity; therefore, the fractal dimension is deter-

mined by both the porosity and pore structure. For coal

samples of equal porosity, the one with the more complex

pore structure would have a higher fractal dimension. For

example, the porosities, shown in Fig. 9b, e, are 4.03% and

4.32%, respectively, and the fractal dimensions are 2.341

and 2.4759, respectively. These porosities are very close;

however, the fractal dimensions differ significantly. In

Fig. 9e, a concentrated pore distribution is observed in

limited regions. The pore structure is therefore simpler,

giving a lower fractal dimension for the same porosity. At

higher porosities, more complex pore structures tend to

develop with a greater abundance of micro-pores and

higher interconnectivity between them, whereas at lower

porosities, pore development is reduced, resulting in

homogeneous pores with a uniform distribution. These

differences in the micro-pore development can be seen in

Fig. 9, indicating an uneven pore growth. This leads to the

formation of independent small pores around highly

interconnected pores with high porosity. These small pores

are less porous and poorly connected, significantly hin-

dering the exchange between the pores and the external

environment.

Table 3 Comparison of digitally calculated (at 1000 9 magnification) and experimentally measured average porosity

Coal

sample No.

Average porosity

statistics(%)

Measured

porosity (%)

Deviation

percentage (%)

Coal

sample No.

Average porosity

statistics (%)

Measured

porosity (%)

Deviation

percentage (%)

1 8.726 10.600 17.679 7 14.029 16.110 12.917

2 6.537 8.200 20.280 8 3.44 4.36 22.018

3 5.915 7.455 20.657 9 12.687 14.758 14.033

4 10.034 11.804 14.995 10 10.312 12.008 14.124

5 10.882 13.066 16.715 11 10.53 12.100 12.975

6 8.628 10.086 14.456 12 9.874 11.282 12.480

Fig. 9 Processed images of the No. 8 coal sample at 1000 9 magnification
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5 Conclusions

Twelve anthracite coal samples from the Sihe mining area

were studied. Hundred positions were randomly selected

from each sliced coal sample and imaged via scanning

electron microscopy (SEM). A total of 1200 images were

used for the analysis. The porosity and fractal dimension of

the samples were calculated using SEM, digital image

processing, and box-counting dimension method to analyze

the structural characteristics and development of the micro-

pores in the coal. The following conclusions can be drawn

from the study results:

(1) The pore size distribution characteristics vary when

different magnifications are used in the SEM anal-

yses of the pore size. Digitally processed SEM

images of thin coal slices show consistently lower

average porosities relative to the experimental

values. The differences between the two groups

ranged from 12.480% to 22.018%, with an average

of 16.11%. The average porosity calculated via

digital image processing was defined as the percent

volume occupied by the pores identified in the

images. With this method, some micro-pores in the

coal might not be recognized or included.

(2) The porosity and fractal dimension of the coal

samples exhibited a logarithmic relationship. The

coefficients of the logarithmic equations were dif-

ferent. Based on this logarithmic relationship, dif-

ferent variation rates in the fractal dimension were

found at high and low porosities, which could be

explained at a microscopic level.

(3) Microscopically, the porosity and fractal dimension

of the pores and fractures can be used to characterize

the porosity development. At higher porosities, pore

structures tend to be more complex with advanced

micro-pore development and greater interconnectiv-

ity between the pores whereas at lower porosities,

the pores are less developed and have a more

homogeneous and uniform distribution.
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