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Abstract To gain a competitive edge within the international and competitive setting of coal markets, coal producers must

find new ways of reducing costs. Increasing bench drilling efficiency and performance in open-cast coal mines has the

potential to generate savings. Specifically, monitoring, analyzing, and optimizing the drilling operation can reduce drilling

costs. For example, determining the optimal drill bit replacement time will help to achieve the desirable penetration rate.

This paper presents a life data analysis of drill bits to fit a statistical distribution using failure records. These results are then

used to formulate a cost minimization problem to estimate the drill bit replacement time using the evolutionary algorithm.

The effect of cost on the uncertainty associated with replacement time is assessed through Monte-Carlo simulation. The

relationship between the total expected replacement cost and replacement time is also presented. A case study shows that

the proposed approach can be used to assist with designing a drill bit replacement schedule and minimize costs in open-cast

coal mines.

Keywords Cost minimization � Drilling operation � Optimum replacement time � Evolutionary algorithm � Sensitivity
analysis � Monte Carlo simulation

List of symbols

a Scale parameter (Weibull distribution)

b Shape parameter (Weibull distribution)

Cf Cost of failure replacement

Cp Cost of predicted replacement

Ct Total cost of expected replacement

Ctu Total cost of expected replacement per unit time

EA Evolutionary algorithm

MTTF Mean time to failure

MWD Measurement while drilling

N Natural numbers

ROP Rate of penetration

Rtu Probability of a predicted replacement

Sp Mean of the unshaded area

te Expected length of a bit usage

tf Failure time

tp Predicted length of a bit usage

1 Introduction

The mining industry made a significant progress on long-

term mine planning in the previous decades (Kumral 2012).

The next step is to develop tactical plans through

addressing specific activities in mining cycle. Drilling is

one of these activities. During open-cast coal mining,

several benches must be created in both the overburden

strata and the coal seam. A drilling operation is required

where the overburden is hard. As a primary operation,

drilling affects both the production and overall operating

costs (Afeni 2009). The efficiency of the drilling operation

depends primarily on energy consumption and on the drill

bit life (Karpuz 2018) because a worn bit significantly
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decreases the rate of penetration (ROP). The driver of drill

bit consumption is wear due to the interaction between the

bit and the rock. Given that the bit cost is considered the

most expensive part of a drilling operation, accounting for

approximately 21% of total operating costs (Tail et al.

2010), it is vital to determine the ideal time to replace drill

bits.

In current practice, a bit is replaced either when it drops

into a drill hole during the operation, or the operator

determines it is worn based on professional judgement

(e.g., high vibration or significantly lower ROP can indi-

cate a worn drill bit). In the latter case, the bit might be

changed before its beneficial life has expired, which

increases drilling costs unnecessarily. On the other hand,

waiting to replace a bit until it is completely worn nega-

tively affects the production rate. Although operator

experience clearly plays an important role in drilling

operations, a more objective approach to support bit

replacement decisions is to monitor and analyze life data-

sets and use cost minimization methods (Hastings 2010).

The optimum replacement interval is the time period

when the total operating cost is at its lowest (Jardine and

Tsang 2013). Various researchers have developed strategies

such as corrective and predictive maintenance (Tsang 1995)

to determine optimal maintenance and replacement inter-

vals (Verma et al. 2007). According to Tsang (1995) the

high cost of maintenance activities is due to: (1) unsched-

uled events that stop ongoing operations and increase total

downtime, thus delaying production targets and increasing

labor costs; and (2) unexpected failures that may damage

other parts of the system and result in health and safety

problems. Critical to the development of a replacement

policy is determining the optimum replacement interval to

maximize the production rate, avoid unexpected failures,

and minimize operation costs (Jardine and Tsang 2013).

Weibull analysis is a commonly used failure analysis

technique because it has the ability to forecast with small

samples numbers and the flexibility to represent most of the

failure cases (i.e., it is capable of modeling both symmet-

rical and skewed datasets). It can also provide accurate

statistical predictions about characteristics of the system

(reliability, failure rate, hazard rate, and mean lifetime) and

help decision-makers formulate reasonable predictions

about the system (Jardine and Tsang 2013). Thus, Weibull

analysis is extremely useful for planning maintenance

schedules.

Most research on bit replacement strategies has focused

on two factors: bit age (reliability) and ROP (production

efficiency). For example, Godoy et al. (2018) modeled

replacement strategy based on condition-based reliability.

Hatherly et al. (2015) suggested using measurement while

drilling (MWD) systems, which provides wellbore position,

drill bit information and operating parameters, as well as

real-time drilling information for rock mass characteriza-

tion, blast design and optimization of fragmentation, to

monitor bit wear. Li and Tso (1999) proposed a method to

determine tool replacement time based on measurable sig-

nals such as cutting speed and feed rate. Tail et al. (2010)

proposed a fixed reliability threshold to determine replace-

ment time. Ghosh et al. (2016) and Karpuz (2018) used ROP

as an indicator of drill bit replacement time, whereas (Bilgin

et al. 2013) used rock condition as the indicator.

Unlike previous studies, optimal drill bit replacement

time is calculated in this paper based on the minimization

model of total expected replacement cost per unit time by

the evolutionary algorithm (EA). The outcomes of the

study are tested by Monte Carlo (MC) simulation with 100

randomly generated scenarios using Arena� simulation

software. In addition, a regression analysis is conducted to

determine the relationship between the replacement time

and the total cost of replacement. The originality of this

paper resides in presenting a practical approach to deter-

mine the optimum drill bit replacement time based on the

minimization of total expected replacement cost. Also, the

relationship between replacement time and the related costs

is quantified.

2 Research methods

The research was conducted in three stages: (1) life data

(Weibull) analysis of drill bits, (2) cost minimization based

on optimal replacement time, and (3) risk analysis based on

the differences between costs of predicted replacement and

failure replacement. Failure datasets were provided by

MWD systems to analyze the behavior of drill bits.

A Weibull model was fitted to drill bits, and the model

parameters were calculated using ReliaSoft� software.

Finally, the optimization procedure was applied to deter-

mine the optimal replacement time with minimum total

expected replacement cost per unit time based on the

operating and maintenance cost.

2.1 Life data analysis (Weibull analysis)

Replacement decision depend on changes in the perfor-

mance, reliability, or risk when the equipment or the tool

ages. Operating and maintenance records chronicle chan-

ges in operating performance, failure rate, and maintenance

cost (Hastings 2010) to support replacement decisions. Life

data analysis helps to forecast bit life by fitting a statistical

representative distribution using failure records. The

probability density function f(t), also called the failure

density function in reliability work, is used to describe the

distribution (ReliaSoft 2015). It can be defined by Eq. (1)

(Dhillon 2008).
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f tð Þ ¼ dF tð Þ
dt

ð1Þ

where F(t) is the cumulative distribution function.

Drill bits are non-repairable items and the times between

failures are independent and identically distributed.

Therefore, the renewal process can be applied to determine

the time to failure. The Weibull distribution is one of the

most widely used distributions for life data analysis of

independent and identically distributed variables because it

can characterize a variety of data forms (ReliaSoft 2015).

The probability density function of the 2-parameter Wei-

bull distribution is given by Eq. (2) (Tobias and Trindade

2012).

f tð Þ ¼ b
t

t

a

b
e�

t
að Þ

b

ð2Þ

where b is a shape parameter and a is a scale parameter.

The system behavior can be estimated based on b. When

b = 1, the system is constant. If b\ 1, the system is

improving (i.e., the system reliability increases after the

maintenance operation). If b[ 1, then the system relia-

bility is decreasing (Najim et al. 2004).

Mean Time to Failure (MTTF) is one of the most

commonly used statistics of life data analysis for non-re-

pairable systems. The general expression of MTTF is

presented in Eqs. (3) and (4) (Elsayed 2012).

M tð Þ ¼ r
1

0

R tð Þdt ð3Þ

or

MðtÞ ¼ r
1

0

tf ðtÞdt ð4Þ

where M(t) is MTTF and R(t) is the reliability for the

specified period of time.

In the case study, ModelRisk� software was used to

determine the Weibull distribution according to the Sch-

warz information, Akaike information, and Hannan-Quinn

information criteria goodness-of-fit tests.

2.2 Cost minimization model

The objective is to estimate replacement time to schedule

planned replacements, which are less costly than failure

replacements. Since it is not possible to find the exact time

of a failure, the goal is to reduce the failure replacements to

minimize the total expected replacement cost per unit time

(Ctu), which can be calculated by Eq. (5) (Campbell and

Jardine 2001).

Ctu ¼
Ct

te
ð5Þ

where Ct is the total expected replacement cost and te is the

expected length of a bit usage. Ct and te are calculated in

Eqs. (6) and (7), respectively (Campbell and Jardine 2001).

Ct ¼ Cp � Rtu þ Cf � 1� Rtu½ � ð6Þ

where Cp is the cost of a predicted replacement, Rtu is the

probability of a predicted replacement, Cf is the cost of a

failure replacement, and 1 - Rtu is the probability of a

failure replacement.

te ¼ tp � Rtu þ Sp � 1� Rtu½ � ð7Þ

where tp is the predicted bit usage time, which is the

optimum replacement time, and Sp is the expected length of

a failure cycle. From Eqs. (6) and (7), Ctu can be expressed

by Eq. (8) (Campbell and Jardine 2001).

Ctu ¼
Cp � Rtu þ Cf � 1� Rtu½ �
tp � Rtu þ Sp � 1� Rtu½ � ð8Þ

The failure density function can also be displayed on a

plot (Fig. 1). The area under the curve is used to determine

the probability of the failure in the specified period of time

(ReliaSoft 2015).

The unshaded area of Fig. 1 represents the probability of

a failure occurring before tp, which is denoted 1 - Rtu. The

shaded area is the probability of a failure occurring after tp,

which is denoted Rtu. Sp is the mean of the unshaded area

(Eq. 9) (Campbell and Jardine 2001).

Sp ¼
Ztp

0

tf ðtÞdt
1� Rtu

ð9Þ

The problem is formulated to determine optimal tp with

minimum Ctu. The formulation of the minimization of Ctu

by changing tp, Cp and Cf is given below. All variables

needed to develop an optimization model are calculated

from Eqs. (5) to (9). Cp and Cf are constant, and Ctu and Sp
are functions of tp. The objective function is given by

Eq. (10).

Minimize Ctu ¼
Cp � Rtu þ Cf � 1� Rtu½ �
tp � Rtu þ Sp � 1� Rtu½ � ð10Þ

The following assumptions must be met:

(1) The cost of a failure replacement cannot be less than

the cost of a predicted replacement.

Cf [Cp ð11Þ

(2) The predicted length of a bit usage, the cost of a

predicted replacement and the cost of a failure

replacement are positive integer numbers (N).

tp;Cp andCf 2 N ð12Þ

(3) The predicted length of a bit usage is larger than the

mean time of the failure times.
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tp [ Sp ð13Þ

(4) The cost of a failure replacement is larger than the

cost of a predicted replacement (Otherwise, drill bits

can be used until the failure time.).

Cf [Cp ð14Þ

The EA approach provided in the Excel Solver MS

Office tool was used to solve this problem. EA is a prob-

lem-solving technique based on the principles of biological

evolution and commonly used for probabilistic optimiza-

tions. It provides feasible solutions called individuals.

Recombination (crossover) and mutation are applied to

individuals to create new individuals (Muszyński et al.

2012). Possible solutions are represented by the population,

which is a dynamic object unlike the individuals. In most

EA applications, the population size is constant, and the

worst individual in the population is selected to be replaced

by the new better individual (the mutation rate must be

small in order to increase the searching ability of the

algorithm) (Eiben and Smith 2003). Convergence is a list

of criteria that ensure finding the optimal solution in infi-

nite time. More information can be found in (Eiben and

Smith 2003; Ugurlu and Kumral 2019). The steps to create

the EA model used in this study are given below:

(1) Initial EA parameters (e.g., population size and

mutation probabilities) are entered.

(2) Initial solutions corresponding to population size are

created.

(3) Solutions are assessed relative to the fitness function.

(4) Using crossover and mutation operators and rank

evaluation, previous solutions are perturbed, and the

new solutions are generated and ordered.

(5) These solutions are assessed relative to the fitness

function.

(6) The best solution is recorded.

(7) Steps 4–6 are repeated until EA converges.

2.3 Single-variable sensitivity analysis

Sensitivity analysis is used to quantify the effect of varia-

tion in input variable Cf in the model, which has a signif-

icant effect on the output and consequently, the cost.

Single-variable sensitivity analysis is a technique to

quantify the effect of variation of a single factor on the

outcome, while keeping the other factors constant (Al-

Chalabi et al. 2015).

It is common to use sensitivity analysis in mining

research. Al-Chalabi et al. (2015) used sensitivity analysis

to quantify the effect of the purchase price, operating cost,

and maintenance cost of the drilling machine. de Werk

et al. (2017) proposed a model to compare the parameters

of two different material haulage systems by sensitivity

analysis. Ozdemir and Kumral (2018b) applied sensitivity

analysis to determine the impact of variations of explosive

price, the unit cost of equipment, and electricity price on

the total mining operating cost. Yüksel et al. (2017) per-

formed sensitivity analysis to prevent long-range spurious

correlations for block size localization in open-cast coal

mines.

2.4 Monte Carlo simulation (MC)

MC generates random realizations to find an appropriate

solution to a stochastic problem (Shonkwiler and Mendivil

2009). Sembakutti et al. (2017) proposed an approach to

Fig. 1 Probability density function—normal distribution
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model fleet availability in open-pit mines by MC. de Werk

et al. (2017) applied MC to assess the uncertainty design

parameters of material handling systems in open-pit mines.

Ozdemir and Kumral (2018a) generated random variables

from a probability distribution with MC for uncertain

variables of a material handling system (e.g., loading time,

hauling time, and payload).

The failure behavior of the drill bits is simulated to

assess the bit replacement decision. First, the failure time is

assigned from the 2-parameter Weibull distribution

(Fig. 2). If the predicted time (tp) is longer than the failure

time (tf), the replacement decision is recorded as a pre-

dicted replacement; otherwise, it is recorded as a failure

replacement. Once all the replacement decisions are clas-

sified, the total cost of the replacement is calculated. This

cycle continues until the end of the simulation for a month

period.

3 Case study

To evaluate the performance of the proposed approach, a

case study was carried out in an open-cast coal mine using

time to failure data collected for 123 rotary drill tricone

rock roller bits by MWD tools. The probability of drill bit

changes being required was 90% between 29 and 67 h, and

the MTTF was approximately 47 h (Fig. 3). Bit replace-

ment times varied because of the operating conditions, the

heterogeneity on the rock, and geologic characteristics. For

the hard rock formations, excessive pull-down force is

needed to increase the ROP, but the bit life might be

reduced because of the over-stress. Similarly, for the

abrasive rock formations, because of the interaction

between the bit and the rock formation, the bit life length is

decreasing.

The results show no trend in the failure data; therefore,

the renewal process was conducted, and the 2-parameter

Weibull distribution was determined, using a = 3.8 and

b = 53.3. These parameters can be different based on the

rock condition. For the hard rock formations, because of

the shorter bit life, the parameters can be smaller.

After parameter estimation, the failure density function

of the drill bits was determined by Eq. (2), and the results

were plotted in Fig. 4. The initial variables, such as Rtu,

1-Rtu, Sp and tp were selected based on the MTTF.

The following initial EA parameters were selected:

convergence, 0.0001; mutation rate, 0.075; and population

size, 100. The solver engine explored 98,319 subproblems

in approximately 52 s. The optimal variables are given in

Table 1 and the optimal drill bit replacement time that

minimizes Ctu (tp = 51 h) is illustrated in Fig. 5. Note that

all costs are in Canadian dollars.

From Fig. 5, it is evident that there is a slight difference

between changing the bit in 47 h and 51 h in terms of the

cost of operation per unit time ($0.50). However, changing

the bit before the end of beneficial life incurs a substantial

cost to the company, approximately 8% less operation time

per bit. In other words, drill bit consumption increases by

approximately 14 bits per machine per year, a cost of

around $70,000. On the other hand, if the bit is changed 4 h

after tp, the cost increases $7.00 per unit time and the

probability of failure increases by 70%.

These results strongly depend on the cost of failure

replacement, which affects the risk of the replacement

decision. Therefore, a single-variable sensitivity analysis

was performed to identify the effect of the variation

(Table 2). An increase in the Cf has a considerable positive

impact on Ctu and negative impact on tp. The latter impact

is due to the increased risk of replacement decision-mak-

ing. A 10% increase in the Cf, leads to an increase in Ctu of

approximately $17 and a decrease in tp of 5 h.

To test the feasibility of the proposed approach, 100

randomly scenarios were created by MC using six pre-

dicted times to replace drill bits for six circumstances used

to compare the minimization results. The failure times

were randomly selected based on the 2-parameter Weibull

distribution by MC simulations. Then, the selected times

were categorized as predicted and failure replacements

depend on tp. Once the results were obtained, the averaged

values of 100 simulations were used. Finally, the number

of predicted replacements and failure replacements were

calculated in order to determine Ct (The cost of failureFig. 2 Flowchart of the MC simulation model
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replacement and the cost of predicted replacements were

multiplied by the number of replacements and then added

to the drill bit cost in order to calculate Ct). The possible

outcomes of the total replacement cost in a month (as-

suming C$5000 per bit) are given in Table 3. The total bit

usage and replacement costs were lowest for the 51-h

replacement time. Compared to the 47-h replacement time,

the total replacement cost is 11% lower, which agrees with

the optimization results shown in Fig. 5. Among the

replacement decisions, 51-h is the optimum time to change

the bit, in terms of the total replacement cost. Exceeding

the optimum replacement time concludes an increased

number of failure replacements According to MC results,

the number of failure replacement is rising sharply after

51 h. On the other hand, replacing the bits before the

optimum replacement time causes an increased number of

unnecessary usages of the bits. As can be seen in Table 3,
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Fig. 3 Histogram of the failure times of 123 rotary drill tricone rock roller bits
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Fig. 4 Weibull distribution showing failure density function (f(t)) of drill bits

Table 1 Optimum variables

Variable Value

Cp (C$) 10,000

Cf (C$) 15,000

Rtu 0.43

1 - Rtu 0.57

Sp (h) 38.00

tp (h) 51.00

Ctu (C$/h) 293.77

404 O. F. Ugurlu, M. Kumral

123



the total number of bits used is more for 43 and 47 h

compare to 51 h because of the higher number of predicted

replacements.

To investigate the relationship between the predicted

replacement time and the total drill bit replacement cost, a

regression equation was fitted using SPSS� software

(Eq. 15).

Ct ¼ 485:49� t2p � 49462� tp þ 151� 104 ð15Þ

The R-square of the proposed quadratic model is 0.89,

showing that the fitted curve is close to the model.

4 Conclusion

This paper proposed a practical approach through a cost

minimization model to determine optimum replacement

time for drill bits based on replacement costs. The

approach presented herein is based on failure data of the

drill bits and the maintenance cost of the replacements.

First, the Weibull life data analysis was applied to time-to-

failure data to obtain parameters of the model. Replace-

ment time was formulated as a minimization problem. In a

case study, the EA was used to determine the optimum

time to change the drill bits for an open-cast mining

operation. Model results show that increasing the operating

time of drill bits by 8% can make a considerable impact on

the total replacement cost of a drilling operation. The

proposed approach can be used to facilitate decision-

making for replacement scheduling.
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Fig. 5 Optimal drill bit replacement time

Table 2 Results of sensitivity analysis

Variation of Cf (%) Ctu ($) tp (h)

0 293.77 51

10 310.35 46

20 326.00 45

30 341.14 44

40 353.60 40

Table 3 Predicted drill bit replacement times and costs based on MC

Predicted replacement

time (h) (tp)

Number of predicted

replacements

Number of failure

replacements

Total number of

bits used

Total replacement cost (C$) (replacement

cost ? bit cost) (Ct)

43 12 5 17 280,000

47 11 5 16 265,000

51 9 5 14 235,000

55 6 9 15 270,000

59 4 11 15 280,000

63 4 13 17 320,000
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In addition, a sensitivity analysis was conducted to

quantify the relative importance of the cost of a failure

replacement. Results indicate that increasing the cost of a

failure replacement negatively affects the total cost of

expected replacements per unit time and the length of the

predicted cycle (the optimum replacement time). In other

words, when the cost of a failure replacement increases, the

optimum interval time to use the drill bits decreases. Thus,

the proposed approach can also be used to assess the risk of

the replacement decision.

MC simulation was implemented to determine variation

of total replacement cost. The total replacement cost can be

reduced by approximately 11% by using a 51-h replace-

ment time relative to a 47-h replacement time. Hence, the

simulation results support the consistency of the proposed

approach.

Lastly, the relationship between drill bit replacement

time and the total drill bit replacement cost was formulated

by a quadratic regression equation using the results of the

MC simulation. Using this equation, the total replacement

cost can be calculated when the drill bit replacement time

is chosen. It is important to note that the results obtained

from the simulation and the regression are site-specific.

Different results can be obtained from different rock for-

mations. The model must be implemented to the different

cases in order to have an accurate result. For harder rock

formations the optimum bit usage length can be shorter.

In future studies, the variables that affect the mainte-

nance cost will be investigated in detail. The constants of

the objective function, the cost of a failure replacement,

and the cost of a predicted replacement will be modeled as

the functions of maintenance cost elements, and the total

cost of the replacement will be formulated with these cost

elements.
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