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Abstract Coal and coal-shales tend to undergo spontaneous combustion under favourable atmospheric conditions.

Spontaneous combustion liability index and intrinsic properties of coals and coal-shales varies between (above and below)

coal seams. The spontaneous combustion liability index (obtained from the Wits-Ehac Index) and intrinsic properties

(obtained from proximate, ultimate, and petrographic analysis) of fourteen samples representative of in situ coal (bitu-

minous) and fourteen coal-shales obtained in Witbank coalfield, South Africa were experimentally studied. Comparative

analysis of the relationships between the spontaneous combustion liability index and intrinsic properties of coals and coal-

shales were established to evaluate their effects on self-heating potential. The intrinsic properties show linear relationship

with spontaneous combustion liability and therefore, identifies the factors affecting spontaneous combustion of these

materials. The influence of coal-shales intrinsic properties towards spontaneous combustion liability shows higher cor-

relation coefficients than the coals. Both coals and coal-shales show inertinite maceral as major constituents than the

vitrinite and liptinite macerals, hence the reactivity of inertinite macerals may show greater influence on spontaneous

combustion liability. A definite positive or negative trends exists between the intrinsic properties and spontaneous com-

bustion liability index. This research is part of a larger project which is considering the influence of intrinsic properties of

coals and coal-shales on spontaneous combustion liability.
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1 Introduction

Spontaneous combustion causes an increase in the tem-

perature of a thermally segregated accumulation of coal or

other combustible materials due to the chemical reactions

between this material and oxygen (Davidson 1990). The

low-temperature oxidation exists when the heat produced is

absorbed by the surrounding environment (Kim and Sohn

2012). Spontaneous combustion of coal will eventually

occur if nothing is done to minimize it (Onifade and Genc

2018c; Phillips et al. 2011). The liability of coal to spon-

taneous combustion is a function of the coal properties,

geological, environmental and mining factors, which are in

turn functions of various contributory factors (Smith and

Glasser 2005).

The recent challenge faced by a number of coalfields in

South Africa is spontaneous combustion of coals and coal-

shales (Onifade et al. 2018; Onifade and Genc 2018d, e;

Fig. 1), which frequently causes loss of revenue and at

several intervals it has led to loss of precious resources,

increase in production cost, loss of properties, and an

increase in rehabilitation cost. Sedimentary rocks such as

coals and coal-shales contain different volumes of organic

and inorganic matter in which pore spaces are embedded in

the solid together with carbon-rich matter (Alpern and de
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Sousa 2002; Dullien 1979; Onifade and Genc 2018e). This

renders the rock to be permeable to water and air, and with

the increased surface area, the organic materials may have

reactive oxidation sites (Dullien 1979). Studies reported by

Mastalerz et al. (2010), Restuccia et al. (2017) and Rum-

ball et al. (1986) indicated that for coal-shale to experience

self-heating, it may contain varying proportions of sulphur

(forms of sulphur), organic matter, reactive nature and rank

of associated coal. Research on spontaneous combustion of

coal has been examined by Beamish and Blazak (2005),

Falcon (2004), Genc and Cook (2015), Gouws and Wade

(1989a, b), Kaymakci and Didari (2002), Panigrahi and

Sahu (2004), Panigrahi and Sexana (2001) and etc. How-

ever, a detailed investigation on the relationships between

intrinsic properties of coals and coal-shales towards spon-

taneous combustion is limited. There is limited information

to compare and contrast the intrinsic properties and spon-

taneous combustion liability of coal-shales in relation to

coals (Onifade et al. 2018; Onifade and Genc 2018d, e).

For this study, selected experimental tests on coals and

coal-shales intrinsic properties (moisture, ash, volatile

matter, ash, maceral compositions, total sulphur and forms

of sulphur and etc.) were carried out according to the

procedures of the American Society for Testing and

Materials (ASTM) and International Organization for

Standardization (ISO). A broad understanding of the

inherent characteristic of coal-shales in relation to coal

properties may be used to provide reliable information on

the causes of spontaneous combustion of coals and coal-

shales.

2 Materials and methods

2.1 Sample collection and preparation

Samples of coal and coal-shale from four open cast mines

in the Witbank Coalfield, South Africa using the ply

sampling method were experimentally examined. A full

description of sample and collections and preparation for

both petrographic and chemical analyses tests is exten-

sively described in the studies reported by Onifade and

Genc (2018d, e).

2.2 Wits-Ehac tests

The Wits-Ehac Index has been developed to measure the

spontaneous combustion liability of coal since the late

1980s and has been widely used in South Africa [Eroglu

(1992), Genc et al. (2018), Genc and Cook (2015), Gouws

and Wade (1989a, b), Onifade et al. (2018), Onifade and

Genc (2018a, b, d), Uludag et al. (2001) and Wade (1989)].

Full details of the Wits-Ehac experimental procedure

(Fig. 2a) are extensively explained in the studies reported

by Wade et al. (1987) and Onifade and Genc (2018e). The

index is calculated from the formula shown in Eq. (1) and

MS Excel is used to calculate the stages and generates the

thermogram (Fig. 2b).

Wits-Ehac Index ¼ Stage II slope/XPTð Þ � 500 ð1Þ

Fig. 1 a Spontaneous combustion of highwall and b effects of shale

spontaneous combustion at at Khwezela Mine (Bokgoni Pit),

Witbank, South Africa

Fig. 2 a Schematic of the Wits-Ehac test apparatus setup (Wade

et al. 1987). b Typical differential thermogram of a coal sample
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3 Intrinsic properties and spontaneous
combustion liability of coal and coal-shale
samples

This study used the set criterion (Table 1) documented by

Onifade and Genc (2018e) to evaluate and compare the

linear relationships between the intrinsic properties and

spontaneous combustion liability of coals and coal-shales.

Full details of the statistical analysis is reported by Onifade

and Genc (2018e). The data set is divided into dependent

(Wits-Ehac Index) and independent (intrinsic properties

obtained from proximate, ultimate, total and forms of sul-

phur and petrographic analysis) variables to enable simple

interpretation and analyses. The R-squared values and the

correlation coefficients were used to determine the trends

of relationships between the intrinsic properties and the

liability index (Tables 2, 3, 4, 5, 6).

The overall database involved the Wits-Ehac Index and

intrinsic properties of 14 coals and 14 coal-shales. Data

were analysed using the set criterion. Tables 2, 3, 4, 5 and

6 present the results of the linear regression analyses for

both the coal and coal-shale samples.

The experimental data were analysed with the use of a

linear regression analysis to establish whether any of the

intrinsic properties were linearly correlated to the sponta-

neous combustion liability index. The relationships

between independent and dependent variables using the

correlation coefficients and R-squared values are seen in

Tables 2, 3, 4, 5 and 6. The linear regression analysis

identifies linear relationships between dependent and

independent variables. The analysis of variable pairs (de-

pendent and independent) indicated consistent trends, i.e.

an increase in the liability index with increasing volatile

matter and vice versa for these materials. Coals and coal-

shales show inertinite as the major constituent among the

maceral (Tables 3, 6). Weak linear relationships were

noted between the Wits-Ehac Index and petrographic

properties (total vitrinite, total inertinite, and total liptinite)

for both coals and coal-shales (Table 7).

Table 1 Criterion for factors influencing spontaneous combustion liability of coals and coal-shales (Onifade and Genc 2018e)

Category Criterion Remarks

1 Correlation coefficient/R-squared value between 0.95 and 1 or - 0.95

to - 1

Variable indicate a perfect positive or negative linear

relationship

2 Correlation coefficient/R-squared value between 0.51 and 0.94 or

- 0.51 to - 0.94

Variable indicate a strong positive or negative linear

relationship

3 Correlation coefficient/R-squared value between 0.25 and 0.50 or

- 0.25 to - 0.50

Variable indicate a moderate positive or negative linear

relationship

4 Correlation coefficient/R-squared value between 0.1 and 0.24 or - 0.1

to - 2.24

Variable indicate a weak positive or negative linear

relationship

5 Correlation coefficient/R-squared value less than 0.1 but not zero Variable indicate a very weak positive or negative linear

relationship

6 Correlation coefficient/R-squared value of zero Variable indicate no linear relationship at all

Table 2 Relationships between independent (proximate and ultimate analysis, wt%-ad) and dependent variables for the coal samples

Independent variables Range Dependent variables

Correlation coefficients Wits-Ehac Index R-squared values Wits-Ehac Index

Moisture 1.6–2.5 - 0.0637 0.0041

Volatile matter 16.7–26.9 0.5164 0.2666

Ash 13.7–48.4 - 0.6884 0.4739

Carbon 36.1–69.7 0.6572 0.4318

Hydrogen 2.55–4.21 0.6616 0.4377

Nitrogen 0.85–1.63 0.6945 0.4823

Oxygen 5.65–10.4 - 0.0686 0.0047

Sulphur 0.59–5.30 - 0.0115 0.0001

Pyritic sulphur 0.13–4.13 0.0869 0.0076

Sulphate sulphur 0.003–0.422 - 0.6422 0.4124

Organic sulphur 0.28–1.09 - 0.1787 0.0319
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Table 3 Relationships between independent (petrographic analysis, vol%) and dependent variables for the coal samples

Independent variables Range Dependent variables

Correlation coefficients Wits-Ehac Index R-squared values Wits-Ehac Index

Vitrinite and its group

Total vitrinite 7.0–49.4 0.2591 0.0671

Total vitrinite (mmf) 7.9–60.0 0.0874 0.0076

Collotelinite 1.6–39.0 0.1481 0.0219

Collotelinite (mmf) 1.7–44.4 0.0439 0.0019

Collodetrinite 2.8–13.3 0.3944 0.1556

Collodetrinite (mmf) 3.1–18.8 0.1725 0.0298

Inertinite and its group

Total inertinite 11.7–84.6 0.1679 0.0282

Total inertinite (mmf) 36.9–90.1 - 0.0735 0.0054

Fusinite 0.8–7.6 0.5663 0.3207

Fusinite (mmf) 1.2–12.1 0.4392 0.1929

Secretinite 0.8–6.0 0.1284 0.0165

Secretinite (mmf) 1.1–6.7 0.0064 0.0001

Reactive semifusinite 0.2–7.7 0.1993 0.0397

Reactive semifusinite (mmf) 0.3–8.4 0.1874 0.0351

Inert semifusinite 5.1–41.4 0.2518 0.0634

Inert semifusinite (mmf) 7.4–43.8 0.0882 0.0078

Total semifusinite 5.5–43.4 0.2898 0.0840

Total semifusinite (mmf) 14.1–45.9 0.1460 0.0213

Reactive inertodetrinite 0–4.6 0.1353 0.0183

Reactive inertodetrinite (mmf) 0–45.7 0.1232 0.0152

Inert inertodetrinite 3.2–47.1 - 0.1111 0.0123

Inert inertodetrinite (mmf) 10.0–50.9 - 0.3103 0.0963

Total inertodetrinite 3.2–49.4 - 0.0894 0.0080

Total inertodetrinite (mmf) 10–55.5 - 0.2768 0.0766

Liptinite and its group

Total liptinite 0.6–3.8 0.0280 0.0008

Total liptinite (mmf) 0.6–4.4 - 0.2228 0.0496

Sporinite 0.4–3.4 0.2321 0.0539

Sporinite (mmf) 0.7–3.8 0.2116 0.0448

mmf mineral matter free basis

Table 4 Relationships between independent (total reactive maceral, total maceral and total mineral matter-vol%) and dependent variables for

the coal samples

Independent variables Range Dependent variables

Correlation coefficients Wits-Ehac Index R-squared values Wits-Ehac Index

Total reactive maceral 11.2–53.0 0.3148 0.0991

Total reactive maceral (mmf) 12.8–64.4 0.1229 0.0151

Total maceral 31.7–94.6 0.3785 0.1433

Total mineral matter 5.4–68.4 - 0.3782 0.1430

Total reactive is the sum of total vitrinite, total liptinite, reactive semifusinite and reactive inertodetrinite
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Table 5 Relationships between independent (proximate and ultimate analysis, wt%-ad) and dependent variables for the coal-shale samples

Independent variables Range Dependent variables

Correlation coefficients Wits-Ehac Index R-squared values Wits-Ehac Index

Moisture 0.8–1.7 0.7715 0.5952

Volatile matter 8.5–16.6 0.6389 0.4082

Ash 51.5–88.7 - 0.8352 0.6975

Carbon 2.66–33.7 0.7962 0.6339

Hydrogen 0.75–2.87 0.5795 0.3358

Nitrogen 0.08–0.96 0.6446 0.4155

Oxygen 5.01–11.85 - 0.3212 0.1031

Total sulphur 0.12–6.90 0.5791 0.3353

Pyritic sulphur 0.04–4.26 0.5704 0.3254

Sulphate sulphur 0.003–0.45 0.5365 0.2878

Organic sulphur 0.05–2.19 0.5933 0.3519

Table 6 Relationships between independent (petrographic analysis-vol%) and dependent variables for the coal-shale samples

Independent variables Range Dependent variables

Correlation coefficients Wits-Ehac Index R-squared values Wits-Ehac Index

Vitrinite and its group

Total vitrinite 0.4–8.4 0.1230 0.0151

Total vitrinite (mmf) 2.4–39.3 - 0.2632 0.0693

Collotelinite 0–4.2 0.2206 0.0487

Collotelinite (mmf) 0–19.6 - 0.1073 0.0115

Collodetrinite 0–2.6 0.2105 0.0443

Collodetrinite (mmf) 0–12.1 - 0.2330 0.0543

Inertinite and its group

Total inertinite 4.9–46.1 0.7360 0.5418

Total inertinite (mmf) 44.9–91.7 0.2143 0.0459

Fusinite 0–4.0 - 0.4038 0.2194

Fusinite (mmf) 0–16.9 - 0.5898 0.3479

Secretinite 0–1.8 0.6003 0.3604

Secretinite (mmf) 0–4.8 0.3304 0.1092

Reactive semifusinite 0–1.1 - 0.2795 0.0781

Reactive semifusinite (mmf) 0–4.6 - 0.3862 0.1492

Inert semifusinite 0.2–8.0 0.7688 0.5910

Inert semifusinite (mmf) 1.3–40.7 0.2970 0.0882

Total semifusinite 0.2–8.0 0.7776 0.6046

Total semifusinite (mmf) 1.3–40.7 0.2970 0.0882

Reactive inertodetrinite 0–3.6 0.3292 0.1083

Reactive inertodetrinite (mmf) 0–18.5 - 0.0829 0.0069

Inert inertodetrinite 1.9–34.8 0.7460 0.5565

Inert inertodetrinite (mmf) 14.8–76.6 0.2480 0.0615

Total inertodetrinite 3.3–35.2 0.7749 0.6005

Total inertodetrinite (mmf) 25.2–80.5 0.2367 0.0560

Liptinite and its group

Total liptinite 0.4–5.5 0.3360 0.1129

Total liptinite (mmf) 2.6–25.0 - 0.0113 0.0001

Sporinite 0.4–5.5 0.3463 0.1199

Sporinite (mmf) 2.6–25.0 0.0059 0.0001
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From Tables 2, 3, 4, 5 and 6, according to the criterion

set, contents of volatile matter, 0.5164; ash, - 0.6884;

carbon, 0.6572; hydrogen, 0.6616; nitrogen, 0.6945; sul-

phate sulphur, 0.6422; and inertinite macerals-fusinite,

0.5663; with strong effects on self-heating potential are

factors affecting spontaneous combustion liability of coals,

while contents of moisture, 0.7715; volatile matter, 0.6389;

ash, - 0.8352; carbon, 0.7962; hydrogen, 0.5795; nitrogen,

0.6446; total sulphur, 0.5791; and its forms [pyritic,

0.5704; sulphate, 0.5365; and organic sulphur, 0.5933],

total inertinite, 0.7360; and its constituents [fusinite, mmf,

0.5898; total semifusinite, 0.7776; secretinite, 0.6003; and

Table 7 Relationships between independent (total reactive maceral, total maceral analysis and total mineral matter-vol%) and dependent

variables for the coal-shale samples

Independent variables Range Dependent variables

Correlation coefficients Wits-Ehac Index R-squared values Wits-Ehac Index

Total reactive maceral 1.6–12.8 0.2923 0.0850

Total reactive maceral (mmf) 9.6–63.9 - 0.2552 0.0651

Total maceral 9.9–53.1 0.7653 0.5857

Total mineral matter 46.9–90.1 - 0.7653 0.5857
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total inertodetrinite, 0.7749; total maceral, 0.7653; and

mineral matter, - 0.7653] with strong effects on self-

heating potential are factors affecting spontaneous com-

bustion liability of coal-shales. Ash, some macerals and

mineral matter contents for both coals and coal-shales

show negative trends. Coal-shale intrinsic properties show

better linear relationships to spontaneous combustion lia-

bility than the coals and hence, identifies the intrinsic

properties influencing these materials toward spontaneous

combustion. Despite the low contents of moisture, volatile

matter, carbon, hydrogen, nitrogen and total sulphur in

coal-shales compared to coals, the coal-shales shows sig-

nificant correlation to the spontaneous liability index than

the coals. The influence of intrinsic properties on sponta-

neous combustion liability of coals and coal-shales using

statistical analysis has been extensively reported in a study

by Onifade and Genc (2018e). The study created models

which combined the effects of the main intrinsic properties

affecting spontaneous combustion liability of these mate-

rials for predictive purposes (Onifade and Genc 2018e).

From Figs. 3, 4, 5, 6, 7, 8, 9 and 10, there is an increase

in contents of moisture, volatile matter, ash, carbon, total

sulphur, calculated oxygen, pyritic sulphur, organic sul-

phur, inertinite macerals and mineral matter in both coals

and coal-shales. However, this appears to be more notice-

able for coal-shales than for the coals, while coals seem to

be more distinct in terms of hydrogen, nitrogen and sul-

phate sulphur content than coal-shales. It was found that

spontaneous combustion liability of coals and coal-shales

could be affected by varying proportions of one or more

intrinsic properties.

4 Conclusion

This study has evaluated, compared and identified the

relationships between intrinsic properties and spontaneous

combustion liability of coals and coal-shales. The influence

of selected intrinsic properties towards spontaneous com-

bustion liability indicated a better linear relationship for the
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coal-shales than the coals, thus they may have a greater

effect to cause spontaneous combustion of coal-shales. The

linear regression analysis shows that among the macerals,

the inertinite macerals indicated a stronger linear rela-

tionship to spontaneous combustion liability. Thus, the

spontaneous combustion liability index of coals and coal-

shales may be influenced by the proportion of each maceral

composition. A definite positive or negative correlation

coefficient exists between the intrinsic factors and

spontaneous combustion liability index. This paper has

established a comparative analysis between the dependence

of spontaneous combustion liability index on intrinsic

properties of selected coal-shales and associated coals. The

results obtained from the petrographic and chemical anal-

yses may be used as a tool to predict spontaneous com-

bustion liability and may serve as of reference when

comparing characteristics of coals and coal-shales from

different coalfields.
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Fig. 7 Influence of proximate and ultimate analysis on spontaneous combustion liability of coal-shales
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