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Abstract The accurate prediction of coke quality is important for the selection and valuation of metallurgical coals. Whilst

many prediction models exist, they tend to perform poorly for coals beyond which the model was developed. Further, these

models general fail to directly account for physical interactions occurring between the blend components, through the

assumption that the aggregate properties of the blend are suitably representative of the overall behavior of the blend. To

study this assumption, a parameter termed the vitrinite distribution category was introduced to directly account for the

distribution of one of these commonly aggregated parameters, the vitrinite reflectance. The introduction of this parameter

in a regression model for coke quality prediction improved the model fit. The vitrinite distribution category was

demonstrated to provide new information about coal blending decisions, and was found to be capable of providing insight

into the behavior of different blending structures. Residual analysis was applied to explore the behavior of the coke quality

prediction model, with the vitrinite distribution category found to explain more than just the presence or absence of coals

within a blend. This work provides the foundation of future studies in examining coal blending decisions, with the proposed

parameter having the potential to be applied as part of a coke quality prediction model to optimize coal blending decisions.
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1 Introduction

1.1 Coal, coke and the prediction of their properties

Metallurgical coke, derived from the pyrolysis of selected

coals, plays several critical roles in the ironmaking blast

furnace (Babich and Senk 2013; Bertling 1999; Biswas

1981). As a structural support, and source of permeability

for the layers of softening iron materials, the selection of an

appropriate coke can significantly influence operational

stability (Bertling 1999). Due to the inability to directly

measure the behavior of the coke within the blast furnace,

several proxies to coke behavior under certain blast furnace

conditions have been developed. Many prediction models

have been developed to estimate the strength of coke

produced from blends of coals (Dı́ez et al. 2002; North

et al. 2018a, b). These models are used to value and select

coals, and to produce the desired coke. However, due to the

complex, heterogenous nature of coke, the ability to predict

its properties from the parent coals is a difficult task.

Presently, there is no singular model which allows accurate

prediction of the coke properties derived from coals of any

coal basin (North et al. 2018b).

Early prediction models (Ammosov et al. 1957; Scha-

piro and Gray 1964; Schapiro et al. 1961) relied on the
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characterization of behavior over the entire vitrinite

reflectance distribution. However, the application of these

models is limited to the coals they were derived from, and

in part due to the seemingly arbitrary assumptions

regarding the fusibility of macerals. The models were not

able to be readily applied, or provide a reasonable level

accuracy in their proposed form, at least without significant

modification (North et al. 2018b). More recent models tend

to rely on bulk, aggregated coal measures such as the mean

maximum vitrinite reflectance, and thermoplastic behavior.

However, due to the physical and chemical interactions

occurring between the blend components (Sakurovs

1997, 2000; Sakurovs et al. 1994), and the non-additive

nature of some of these measures (Lin and Hong 1986),

these properties may be insufficient to capture these

chemical interactions in an appropriate way.

1.2 Vitrinite reflectance and coal blending decisions

Coal rank is a prevalent feature in both coke quality pre-

diction models and coal blending decisions, particularly in

the form of the mean maximum vitrinite reflectance (Rv,-

max; North et al. 2018b). This prevalence is likely due to the

relationship between coal rank and other key coal proper-

ties such as fluidity (Coin and Broome 1997; Ryan et al.

1998). The breakdown of the measured vitrinite reflectance

into cumulative bins of 0.1% reflectance, termed vitrinoid

types or V-groups, was popularized by Schapiro and co-

workers in the 1960’s (Schapiro and Gray 1964; Schapiro

et al. 1961). These cumulative bins can be arranged

graphically into a histogram, with the bars showing the

percentage contribution of each V-group in the overall

distribution. The shape of this histogram represents the

distribution of reflectance in the measured spectrum. In the

context of coal blending, vitrinite reflectance distributions

are used to provide an indication of the similarity of the

coals within blends (Bukharkina et al. 2012; Pearson 1991;

Stankevich et al. 1998). In industrial use, completely

overlapping ranges of reflectance, represented by a single

peak within the histogram, is preferred by some coke

producers over a multimodal vitrinite distribution

(Choudhury et al. 2005; Yao 2008).

Although the concept of V-groups is an important factor

in industrial coal blend preparation, the direct inclusion of

V-groups in models that predict coke quality is limited.

Several models (Bukharkina et al. 2012; Dash et al.

2005, 2012; Kishore et al. 2011; McKenzie et al. 1998;

Suresh et al. 2012) consider an aggregate of a portion of the

vitrinite distribution as an input parameter, in effect cre-

ating a weighted Rv,max. Kumar et al. (2008) reported that

the vitrinite reflectance in the range V9–V13, a commonly

used aggregate value, is an improved predictor of the

measured Coke Strength after Reaction (CSR) than the

mean maximum vitrinite reflectance. The standard devia-

tion or petrographic non-uniformity of the distribution is

another attribute used within models, that relates to

V-groups and blending decisions (Bulanov et al. 2009;

Stankevich and Bazegskiy 2013; Stankevich et al. 2008;

Stankevich and Zolotukhin 2015). However, none of these

methods are adequate in capturing the modality of the

distributions, shown in Fig. 1. In the case of a distinctly

bimodal distribution, neither the Rv,max, subset sum, or

standard deviation approaches are able to suitably

Fig. 1 Demonstration of the limitations of existing characterizations

of vitrinite reflectance in determination of the modality of distribu-

tions, with both distributions shown having the same mean Rv,max and

SD
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distinguish between a bi- or multi-modal distribution.

These limitations of existing approaches suggest that

alternative methods able to capture the diverse distributions

of vitrinite reflectance may be useful in improving coke

quality prediction models.

1.3 An introduction to knowledge discovery

and data mining

This study makes use of two knowledge discovery tech-

niques for the identification of patterns of coal blending,

and for the exploration of model results, with the aim of

improving coke quality prediction models. In general,

knowledge discovery is the process of extracting new

information, searching for patterns, and solving problems

associated with large volumes of data using analytical tools

(Han et al. 2011). In essence, the techniques used, typically

termed machine learning, represent the region between

traditional statistical analysis and artificial intelligence,

although there is no clearly defined boundary between the

techniques (Witten and Frank 2000). In terms of applica-

tions, data mining has been extensively utilized in the

medicine, advertising, and manufacturing domains (Fayyad

et al. 1996; Tsai 2012). Whilst not an exhaustive list of

applications, the adoption within the metallurgical domain

has been limited in comparison. This could be attributed to

the domain requiring a certain level of knowledge in order

to make meaningful contributions, or to the lack of general

datasets suitable for data mining activities. In this regard,

there is an opportunity to adapt these advanced analytical

data mining techniques and further explore relationships

within data sets that are not easily identified by linear

methods.

This study seeks to develop an understanding of the

influence of blending decisions on the prediction of coke

quality. In particular, the influence of vitrinite reflectance

distributions associated with blends is examined, through

the development of a single parameter which captures the

overall shape of the distribution. The impact of this

parameter, termed the vitrinite distribution category

(VDC), on coke quality prediction, is examined through

regression modelling. An analysis of the residuals associ-

ated with regression modelling is applied to explore the

information contained within the proposed VDC attribute.

2 Modelling framework

The following sections discuss the overall modelling

approach, data sources, and calculations made as part of

this study. The overall process is summarized in Fig. 2.

2.1 Background to vitrinite reflectance distribution

analysis

As a single statistical measure, such as mean, does not

adequately capture the shape of vitrinite distributions, a

novel parameter that allowed robust classification of this

behavior was developed (North et al. 2017). This param-

eter, the vitrinite distribution category (VDC), was derived

using a data-mining algorithm known as a self-organizing

map (SOM; Kohonen 1982). In essence, the VDC groups

different coals, and blends of coals, into categories based

on the full shape of their reflectance distribution. This

method is shown schematically in Fig. 2 [for full details,

see (North et al. 2017)] and in brief, comprises the fol-

lowing steps:

(1) Data cleaning—remove missing data, cumulative

frequency not between 99 and 101, blends where a

single coal represented more than 90% of the blend

(i.e., only blends where used in this stage of the

process)

(2) Offsetting—remove the influence of the Rv,max by

shifting each histogram left or right such that the

Rv,max was overlapped on the same location for each

data point

(3) Conversion—convert the data to binary values by

plotting as an image

(4) Determination of modelling parameters—iterative

process to determine the parameters that need to be

set for the SOM. See (North et al. 2017)

(5) Generating the classes—using the determined model

parameters, a SOM was generated, with similar

distributions grouped. For each grouping, a proto-

type vector, characterizing the group, is generated,

with each data point assigned to a group based on the

similarity to the prototype vector. This created the

new categorical VDC variable, that captures a class

of vitrinite reflectance distribution and can be used

as a parameter in prediction models

(6) Fitting a regression equation—a regression model

was generated for the case without using the

assignment to VDCs (the original model), and a

model including assignment to VDCs (the V-group

model), improving the overall fit of the model. This

analysis also included single coal data.

2.2 Application and modifications of previously

described approach

The data used in this study is half V-group data, with bin

sizes of 0.05% reflectance, taken from pilot coking oven

experimental results, representing both Australian and

some overseas coals, and their blends. In this study, the
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method for measuring CSR is equivalent to the ISO stan-

dard method (International Organization for Standardiza-

tion 2006), however a coke size of ? 19–21 mm is used

yielding no measurable difference in CSR results. To

generate the categories contained within the VDC param-

eter, only blends were considered. As a modification to the

approach described by North et al. (2017), additional new

data was added to extend the training set. Data that had

previously been filtered due to low measured CSR was also

reintroduced. This change was adopted as it was considered

that provided the V-group data itself was acceptable, then

the CSR, and conditions under which the coke was pro-

duced would not affect the SOM itself. This extended the

data set for the VDC parameter generation from 401 to 638

instances.

For the regression analysis, single coals, considered to

be samples representative of a single coal brand or coal

mine, were combined with the available coal blend data

set. The data, however, was filtered prior to regression

fitting to remove non-standard samples. Cases where the

CSR was below 40 were also filtered, as in this region,

measurement variability was considered to dominate. After

the inclusion of single coals, and filtering accordingly, the

total number of data points was 1039, of which 314 were

blends.

The regression terms defined in the previous work

(North et al. 2017) were also modified. The rank term that

was previously used, Rv,max, was replaced with the blend

volatile matter on a dry, ash free basis (VMdaf). The basis

for this selection was the criticism that the average value of

vitrinite reflectance has little physical meaning in the case

of distinctly bimodal distributions. Conversely, the volatile

matter term does physically represent the proportion of

material that will be released upon heating, and can be

verified by mass balance. Other attributes used in the

regression analysis were other commonly used measures of

coal quality, namely the modified basicity index (MBI),

and the coal fluidity (logMF, the maximum fluidity

expressed as a logarithm). The influence of the V-group

distribution on the regression behavior was considered

through analysis of both regression fit, as well as the

residuals. Residual analysis was conducted using a decision

tree, as discussed in the following section.

2.3 Residual analysis using decision trees

Interpretation of the behavior of the VDCs derived from

the SOM analysis is important in further understanding the

implications of blending decisions. In particular, a method

for analyzing the residuals to better understand the com-

binations of coals that lead to under prediction is sought.

Thus, in order to examine patterns of behavior associated

with the blending of different coals, the residuals of both

regression models were analyzed using a decision tree

approach as discussed in the following section.

2.3.1 An introduction to decision trees, and the C4.5

algorithm

A decision tree is one class of data mining algorithm that

allows classification of instances by their attributes (Tan

et al. 2013). This particular approach is well suited to

applications where the attribute to be classified is a cate-

gorical variable, such as the presence or absence of a coal

within a blend. The algorithm generates a tree like flow

chart structure, generating a series of splits in the data at

branch nodes until a terminating leaf is reached, where the

terminating leaf assigns the instance to one of the cate-

gorical variables (Han et al. 2011). The process of identi-

fying these split points is dependent on the algorithm

selected (Han et al. 2011).

In this analysis, the GNU General Public Licensed Weka

3.8.1 (Frank et al. 2016) machine learning software, and

specifically the J48 decision tree algorithm, was used. The

J48 decision tree is a Java based implementation of the

C4.5 algorithm (Quinlan 1993), which uses the gain ratio

measure to determine the value of a split (Tan et al. 2013).

In brief, using the concept of entropy to represent the

ordering of the data, this approach maximizes the differ-

ence between the resulting splits, which improves the

Fig. 2 Flowchart demonstrating overall modelling framework
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ordering of the data, reducing the entropy (Bramer 2016).

Depending on the model set up, the tree may be evaluated

during or after generation, with branches that add little

value removed, in a process termed pruning. The C4.5

algorithm implements post pruning using a confidence

measure of the classification error associated with each

branch. If the decision node is unstable, then it is more

likely to be removed during this process (Quinlan 1993).

2.3.2 Implementation of decision trees

In this work, the J48 algorithm in Weka was used. The key

parameters, confidenceFactor and minNumObj have values

of U and 2 respectively. The parameter confidenceFactor is

used in the post pruning phase to determine the sensitivity

of pruning, with the value U meaning that the tree is

unpruned, whilst the minNumObj defines how many

instances are required to generate a leaf node. These

parameters were selected to grow the tree to maximum

size.

Input and target data were generated from the dataset

implemented in the regression. The input variables for the

decision tree included the list of coals, encoded as a binary

attribute, representing the presence or absence of that coal

within the blend. The volatile matter was also implemented

as a term to identify any systematic behavior associated

with coal rank of blended components. The target variable

was derived from each of the two regressions, also a binary

attribute. This binary attribute was calculated from the

difference between the residual value from the model, and

the root mean square error calculated from the model. If the

instance was underpredicted by more than the root mean

square error of the model, it was classed as underpredicted.

Conversely, if the instance was predicted within this range,

it was classed as an acceptable prediction.

Comparison was made to the case where no rules are

implemented and all instances are assigned to the dominant

class (ZeroR in Weka), to assess the improvement of the

model over this null hypothesis (Witten and Frank 2000).

It is noted that in this application, the decision trees

generated are not intended to be used for a classification

end goal; rather, they are used as an exploratory tool to aid

in the assessment of the implications of the use of the VDC

attribute in the prediction of coke quality.

3 Results and discussion

The following section firstly discusses the results of

grouping the vitrinite reflectance distributions using the

SOM algorithm, to produce the VDCs, and the implications

on improving regression quality. The residuals of both

regression models, with and without the grouped vitrinite

reflectance distributions, are then analyzed using decision

trees, and finally the associated links to vitrinite reflectance

distribution are examined.

3.1 Implementation of the SOM

As described in Sect. 2.2, a self-organizing map was gen-

erated to group the vitrinite reflectance distributions. The

SOM process generates VDCs, to which each instance is

assigned. These VDCs are shown in Fig. 3. A tenfold cross

validation was used to test the repeatability of the classi-

fication by evaluating the stability by which individual

cases within the dataset are assigned to the same VDC

during repeated runs of the process. The instances were

assigned to the same category 87.6% of the time, indicating

a high level of stability. Visual inspection of these VDCs

notes a clear grouping of unimodal distributions in the top

left corner of the map, corresponding to VDCs 4, 7, and 8.

The remainder of the VDCs are associated with multimodal

distributions, with varying proportions of high and low

rank coal.

3.2 Regression analysis

3.2.1 Original regression model

As a benchmark for the remainder of the analysis, a

regression which excluded the SOM classifications was

completed using the method described in Sects. 2.1 and

2.2. The fit of this regression is displayed in Fig. 4. It is

observed that a reasonable overall fit of the data is

achieved, and that all inputs are statistically significant at

the 5% level. However, it is noted that the fit of the data

Fig. 3 VDCs derived from the self-organizing map. The numbers 1

through 9 are arbitrarily assigned to each grouping to provide a

unique identifier

Understanding the impact of coal blending decisions on the prediction of coke quality… 211

123



points representing blends are relatively poorly predicted

when compared to the behavior of single coals.

Grouping the regression results by the associated VDC,

as shown in Fig. 5, it is apparent that there is a systematic

underprediction which is more prevalent at higher CSR

values. This underprediction varies by each VDC. It is

noted, however, that the fit of the model in the region of

CSR below 50 is poor for both the single coals and blends.

This poor fit is considered to be associated with the mea-

surement variability that is known to increase as CRI

increases (and hence CSR decreases; Menéndez et al.

1999). Despite the prevalence of Australian coking coals

within the regression model, which could cause poor gen-

eralization to coals beyond this region, there is no apparent

link between poor model fit and the presence of non-

Australian coals.

3.2.2 Regression including VDCs (V-group regression

model)

Each instance was grouped to one of the VDCs shown in

Fig. 3. This grouping was assigned as a categorical vari-

able within a regression model, using the method described

in Sects. 2.1 and 2.2. The results of this V-group regression

model are shown in Fig. 6.

Within this prediction, the coefficients (not shown) are

similar between the original and the V-group regression

models, and are statistically significant, with the exception

of VDC 4, which is most similar in distribution to that of a

single coal. It is observed that both the correlation

coefficient and root mean square error improves with the

introduction of the VDC attribute, and a more significant

improvement in the prediction of blend behavior is also

shown.

3.2.3 Discussion of regression results

Examination of the resulting coefficients associated with

each of the VDCs shows a clear distinction between the

behavior of single coals and blends. The coefficients

associated with the VDCs are all positive, indicating that

there is a systematic difference in behavior occurring due

to the blending of coals and interaction between compo-

nents that soften at different temperatures. Further, by

sorting the coefficients associated with VDCs in ascending

order, a trend associated with distribution types emerges, as

shown in Fig. 7. It is evident that there are two distinct

groups of behavior. Firstly, a blend containing many

components generating a well overlapped distribution,

behaves most like a single coal. As the distribution moves

further away from well overlapped, towards distinctly

multimodal distributions, the model coefficient, and hence

difference in behavior from single coals, increases. Thus,

the inclusion of a graphical form of vitrinite reflectance

distributions in the regression model is capturing additional

information about blending decisions. It is worth noting

that inclusion of other statistical measures of the distribu-

tion, including the kurtosis and the standard deviation, are

respectively not statistically significant or provide marginal

improvement to the initial r2 (0.769) and RMSE (4.36)

values. Hence, this additional information that is captured

by the graphical form of the vitrinite reflectance distribu-

tions derived via SOMs is unable to be captured by tradi-

tional statistical measures. The following section examines

the nature of these blends with respect to the coal com-

ponents they are made up of.

3.3 Regression residual analysis

Visual inspection of the results, particularly those that were

underpredicted by the original model, suggests consistent

underprediction associated with specific coals, despite the

coal being well represented within the dataset. In order to

explore the role that the VDCs are playing within the

regression model, and whether any systematic behavior

was present, the residuals from both the original model and

the V-group regression model were analyzed. These

residuals were analyzed according to the decision tree

method described in Sect. 2.3.2.

Fig. 4 Original regression blend fit and overall model statistics for

both single coals and blends. Lines for y = x and y = x ± 5 are shown

to aid comparison. For ease of interpretation, the figure displays only

the results of blend fit, with the statistics reported developed on a

model including both single coals and blends, excluding the VDC

parameter
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3.3.1 Original regression residuals

In order to validate model behavior, residual plots were

generated for each independent input variable, as well as

for an alternate measure of thermoplastic behavior, the

total dilatation. These residual plots, shown in Fig. 8, dis-

play random patterns, indicate no remaining systematic

correlation with the key variables, and that the including

the total dilatation within the model would add little value.

Figure 9 shows the decision tree that examines the

behavior of underpredicted blends. As mentioned in

Sect. 2.3, the intent of this decision tree is not as a pre-

dictive tool, but to explore whether patterns of behavior are

associated with particular coals. This noted, the decision

tree presented provides marginally better accuracy than the

null hypothesis or uniform prediction to the majority class

(ZeroR accuracy = 72.0%, full set accuracy 85.4%). It is

evident from Fig. 9 that there are patterns associated with

individual coals, rather than random classifications.

Fig. 5 Original regression fits, grouped by VDCs, and shaded by percentage Australian coals, where the darker the data point, the higher the

proportion of Australian coal

Fig. 6 V-group regression blend fit and overall model statistics for

both single coals and blends. Lines for y = x and y = x ± 5 are shown

to aid comparison. For ease of interpretation, the figure displays only

the results of blend fit, with the statistics reported developed on a

model including both single coals and blends, including the VDC

parameter
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3.3.2 Exploration of V-group regression residuals

A similar analysis to the previous section was conducted on

the V-group regression model residuals. Once again, these

residuals were plotted against parameters of interest in

Fig. 10, and analyzed according to the decision tree

method described in Sect. 2.3.2, producing the resulting

tree shown in Fig. 11. It is noted that as with the original

model results, the V-group regression residuals show no

patterns of behavior when plotted against the input

parameters.

The decision tree presented provides minimally better

accuracy than the null hypothesis or uniform prediction to

the majority class (ZeroR accuracy = 84.1%, full set

accuracy 89.5%). Visual inspection of the resulting deci-

sion tree suggests the presence of similar systematic

behavior within the residuals to that identified for the

original regression.

3.3.3 Discussion of residual analysis

As briefly discussed in the previous section, based on the

residual plots in Figs. 8 and 10, the form of the regression

Fig. 7 VDCs sorted by model coefficient (smallest at left, greatest at right). The greater the model coefficient, the greater the underprediction by

the original model. VDC numbering is consistent with that used Fig. 3

Fig. 8 Original model residual plots of independent input variables

VMdaf, logMF, and MBI, as well as parameter of interest total

dilatation

Fig. 9 J48 decision tree for underpredicted blends from the original model. Boxes indicate a decision point, whilst ovals are terminal nodes. A

white node with black text represents a sample predicted by the original regression model within the RMSE, whilst a black node with white text

represents a sample that is underpredicted by the original regression
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model fitted to the data set is an appropriate fit. This form

of the model is consistent with the main factors influencing

coke strength after reaction identified by Dı́ez et al. (2002).

When the VDCs were added to the regression, the behavior

of residuals in these residual plots remained approximately

consistent with the original regression model, and the

coefficients of the regression model changed minimally

between the models. This suggests that the introduction of

the VDC attribute is including new information within the

regression model. Based on the ordering of coefficients in

Fig. 7, it is suggested that blends where coals of dissimilar

rank are used, will behave least similar to a single coal,

implying that these coals together combine better than a

single coal of comparable properties would.

Due to the overrepresentation of particular coals within

the blends, and the counterintuitive pattern of underpre-

diction identified in Fig. 7, it was initially believed that the

VDCs may be heavily influenced by presence or absence of

these coals, and hence that the new information that was

being captured by these VDCs was coal related rather than

related to the blending decisions as intended.

The residual analysis for both the original and V-group

regression models, shown in Figs. 9 and 11 shows structure

within the residuals. This structure takes the form of the

presence or absence of particular coals that are consistently

underpredicted. As a similar structure was found between

both sets of residuals, suggesting that this behavior was not

captured within either model. Further, given the structural

similarity of these residuals, it can be concluded that the

VDCs are not representing the presence or absence of

Fig. 10 V-group model residual plots of independent input variables

VMdaf, logMF, and MBI, as well as parameter of interest total

dilatation

Fig. 11 J48 decision tree for underpredicted blends from the V-group model. Boxes indicate a decision point, whilst ovals are terminal nodes. A

white node with black text represents a sample predicted by the original regression model within the RMSE, whilst a black node with white text

represents a sample that is underpredicted by the original regression
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particular coals within the blend, and are capturing new

information.

As structure within the residuals was identified, there is

an indication that there is some behavior associated with

the properties of some coals that is not well captured by the

regression model. As an underpredicted blend result

implies that the blend is forming a better coke than the

aggregate value of its components would suggest, both

regression models are failing to capture the positive effect

associated with the interaction of the blend components.

Further study is required to identify the properties of the

coals associated with underprediction.

4 Conclusion

This study has demonstrated the limitations of existing

approaches of implementing the vitrinite reflectance dis-

tribution within a coke quality prediction model. The

approach used within this work captured these distributions

using a self-organizing map, generating a new parameter,

the vitrinite distribution category (VDC), and identified

that these distributions provide insight into blending deci-

sions. The introduction of this parameter improved the fit

of a regression model for coke quality prediction, and

identified that blends of distinctly different rank coals were

poorly fitted by models assuming the aggregate value of

vitrinite reflectance. Residual analysis suggested that these

blending behaviors are influenced by the underlying coals,

and that none of the parameters considered within this

modelling account for this behavior. Whilst the develop-

ment of the VDC parameter improves the understanding of

blending decisions on coke quality prediction, further study

is required to identify and interpret the properties associ-

ated with particular coals that are affecting accurate pre-

diction of coke quality.
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