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Abstract Conventionally, mining industry relies on a deterministic view, where a unique mine plan is determined based

on a single resource model. A major shortfall of this approach is the inability to assess the risk caused by the well-known

geological uncertainty, i.e. the in situ grade and tonnage variability of the mineral deposit. Despite some recent attempts in

developing stochastic mine planning models which have demonstrated promising results, the industry still remains

sceptical about this innovative idea. With respect to unbiased linear estimation, kriging is the most popular and reliable

deterministic interpolation technique for resource estimation and it appears to remain its popularity in the near future. This

paper presents a new systematic framework to quantify the risk of kriging-based mining projects due to the geological

uncertainties. Firstly, conditional simulation is implemented to generate a series of equally-probable orebody realisations

and these realisations are then compared with the kriged resource model to analyse its geological uncertainty. Secondly, a

production schedule over the life of mine is determined based on the kriged resource model. Finally, risk profiles of that

production schedule, namely ore and waste tonnage production, blending grade and Net Present Value (NPV), are

constructed using the orebody realisations. The proposed model was applied on a multi-element deposit and the result

demonstrates that that the kriging-based mine plan is unlikely to meet the production targets. Especially, the kriging-based

mine plan overestimated the expected NPV at a magnitude of 6.70% to 7.34% (135 M$ to 151 M$). A new multivariate

conditional simulation framework was also introduced in this paper to cope with the multivariate nature of the deposit.

Although an iron ore deposit is used to prove the concepts, the method can easily be adapted to other kinds of mineral

deposits, including surface coal mine.
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1 Introduction

A critical task of any mining projects is to construct a three-

dimensional block model mainly representing the tonnage and

grade distribution of themineralised deposit. It is constituted by

arrays of blocks holding necessary geological attributes, i.e.

mineral andmetal grades, lithology codes, density and tonnage.

The quality of a resource block model is highly dependent on

how attributes of blocks are estimated from exploration struc-

tures. Geostatistical estimation methods, such as ordinary krig-

ing and simple kriging, have widely been used since the 60 s of

the last century given their superiority in considering spatial

distribution of samples in the calculations (David 1977; Isaaks

and Srivastava 1989; Ravenscroft and Armstrong 1990). Nev-

ertheless, there is still no available algorithmwhich can provide

100%accurate estimates. Thus, estimation errors are inherent in

all resource block models and this phenomenon is generally

referred to as geological uncertainty. Considering this draw-

back, the true grade and tonnage of a deposit can be vastly

different from the estimated figures and the mine plan
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constructed based on this resourcemodel tends to fail to achieve

production targets and revenue expectation (Baker and Gia-

como 1998; Vallee 2000; Dimitrakopoulos et al. 2002; Groen-

eveld and Topal 2011; Groeneveld et al. 2012).

To fulfil the inability of estimation techniques in char-

acterising variability, conditional simulation is developed

to generate a series of plausible possibilities of an orebody,

which are commonly termed as realisations. Each realisa-

tion has an equal chance to be real and this provides an

appropriate platform to analyse the risk-associated with the

geological conditions (Goovaerts 1997; Vann et al. 2002;

Dimitrakopoulos 2011; Topal and Ramazan 2012). To deal

with multivariate deposits, where at least two attributes of

interest are correlated, multivariate conditional simulation

techniques have been developed (Matheron 1979; Carr and

Myers 1985; Gómez-Hernández and Journel 1993; Goo-

vaerts 1993; Verly 1993; Desbarats and Dimitrakopoulos

2000; Leuangthong 2003), as discussed in the next section.

Once the resource blockmodel is available, strategic mine

planning is the next critical step to the success of a mining

project as it decides on the economic output. Although one of

those realisations can be true, detecting the correct one is not

possible for the time being. Therefore, deterministic estima-

tion techniques, such as ordinary kriging, are still preferable

in the industry and will not be replaced soon in the role of

providing resource models for mine planning. Conditional

simulation, however, can be applied in two promising areas:

(1) to characterise the geological uncertainty of the kriged

resource model and (2) to analyse risk of the kriging-based

mine plan against the geological conditions. This information

is crucial for decision makers and shareholders as a new

dimension for analysing the potential of mining projects. In

this paper, a new systematic framework to quantify the geo-

logical risk in mining projects is proposed. Then, it is fol-

lowed by the implementation of the prosed framework onto

an iron deposit to demonstrate its practical aspects.

The remainder of the paper is outlined as follows, in

Sect. 2 methodology to characterise geological uncertainty

of a multivariate deposit is developed using a new multi-

variate conditional simulation framework and subsequently

implemented to an iron ore deposit in Western Australia. In

Sect. 3, strategic mine planning is implemented using an

in-house mine planning tool and the risk profiles associated

with that mine plan are constructed using simulations.

Conclusions and recommendations follow at the end.

2 Characterising geological uncertainty using
multivariate conditional simulation

It is common in mining industry that the deposits contain

multiple correlated attributes of interest. A typical

example is iron ore mining, where up to six variables

need to be considered in resource estimation and mine

planning, namely iron (Fe), silica (SiO2), alumina

(Al2O3), phosphor (P), loss on ignition (LOI) and

Ochreous Goethite (GOL), and they are cross-correlated.

As demonstrated in Table 1, iron and silica contents have

a strong negative correlation of -0.72 which means that

if an ore block has a high iron grade, the silica grade

must be low and vice versa. Because the nature of

simulation is random, performing simulation on these

two attributes without considering their correlation with

other attributes will lead to an unrealistic result (Mai

et al. 2016).

2.1 A new framework for multivariate conditional

simulation of iron ore deposits

Several methods for multivariate conditional simulation

have been developed in the past decades, including co-

simulation (Matheron 1979; Carr and Myers 1985; Verly

1993), Stepwise Conditional Transformation (SCT)

(Leuangthong and Deutsch 2003), Principal Component

Analysis (PCA) (Switzer and Green 1984; Goovaerts 1993)

and Minimum/maximum Autocorrelation Factors (MAF)

(Desbarats and Dimitrakopoulos 2000). Each of these

above mentioned approaches has their own strengths and

weaknesses. Co-simulation can be applied directly on the

correlated variables but it becomes computationally inef-

ficient to work with more than three variables. SCT and

PCA are capable of de-correlating variables only at zero or

small lag distance, in addition, SCT requires an intensive

amount of samples to ensure the accuracy of its transfor-

mation procedure. Finally, MAF is the most suitable ap-

proach for doing simulation of iron ore deposits, where

MAF can be implemented in any lag distances and has no

specific requirements for the number of samples. More-

over, MAF is available in ISATISTM, a commercial geo-

statistical software package (Bleines and de Paris 2000).

As MAF works in normal score space, a Gaussian-based

simulation technique is preferable to perform simulation on

MAF factors. In this study, Sequential Gaussian simulation

Table 1 Pearson correlation matrix of six variables of borehole

samples inside the ore domain

Variable Fe SiO2 Al2O3 P LOI GOL

Fe 1 -0.72 -0.67 0.19 -0.45 0

SiO2 -0.72 1 0.5 -0.23 0.21 -0.02

Al2O3 -0.67 0.5 1 -0.14 0.39 -0.08

P 0.19 -0.23 -0.14 1 0.19 0.17

LOI -0.45 0.21 0.39 0.19 1 0.24

GOL 0 -0.02 -0.08 0.17 0.24 1
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(SGS) was selected because its application in mining

industry has been widely recognised (Johnson 1987; Dowd

1994; Journel 1994).

A six-step framework is proposed to perform the joint

simulation using MAF and SGS:

Step 1: Primary Gaussian transformation: Running

Gaussian anamorphosis to transform the sample data Z xð Þ
into normal (Gaussian) scores Y xð Þ;
Y xð Þ ¼ / Z xð Þð Þ ð1Þ

Step 2: MAF transformation: Transform Y xð Þ into

uncorrelated MAF factors M xð Þ;
M xð Þ ¼ AT Y xð Þð Þ ð2Þ

Step 3: Secondary Gaussian transformation: Run sec-

ondary Gaussian anamorphosis if the Gaussianity of MAF

factors are not adequate. After this transformation, the

output data is called normal score MAF factors N xð Þ;

N xð Þ ¼ /
0
M xð Þð Þ ð3Þ

Step 4: Continuity analysis and variography of normal

score MAF factors N xð Þ individually;
Step 5: Perform SGS on each normal score MAF factors

N xð Þ individually;
N� xð Þ ¼ y N xð Þð Þ ð4Þ

Step 6: Back transformation of step 3, 2, and 1

sequentially.

where Z xð Þ is the original data; Y xð Þ is the normal

scores; M xð Þ is the MAF factors; N xð Þ is the normal score

MAF factors; N� xð Þ is the simulated result of N xð Þ; / is the

primary Gaussian anamorphosis; /0 is the secondary

Gaussian anamorphosis; AT is the MAF transformation

matrix; y is the sequential Gaussian simulation.

The simulation procedure is schematically demonstrated in

Fig. 1.

2.2 Implementation of the proposed framework:

Kriging versus Simulation

The proposed framework is implemented on an iron ore

block model consisting of 985,088 blocks with a block size

of 25 m 9 12.5 m 9 10 m. 20 orebody realisations were

generated using the proposed simulation framework.

Ordinary kriging was also performed on the same block

model. The grade/tonnage curves of the realisations and

kriged model are presented in Fig. 2.

By comparing the kriged resource model with 20 ore-

body realisations, the geological uncertainty of the deter-

ministic resource model can be identified as:

• The estimated Fe grade would be considerably lower

than the reality by approximately 1%;

• The krigedmodel overestimates total ore tonnage when Fe

grade is lower than themean of the composite Fe (59.23%)

and underestimates when Fe grade is higher. This is an

evidence of smoothing effect of ordinary kriging;

• The in situ tonnage variability of iron ore is approx-

imately 3 million tonnes;

• At cut-off grade of 57.5% Fe, there is a risk that the

actual iron ore tonnage would be approximately 10–13

million tonnes less than expectation;

• Thenumber of 20 realisations generated for thegiven ironore

deposit is adequate to capture its uncertainty characteristics

according to the reasonable similarity between realisations.

Plan views of the kriged and example of simulated

orebody models are presented in Figs. 3 and 4.
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Fig. 1 Schematic presentation of the proposed simulation framework. NS normal score, Transf. transformation, anam. anamorphosis
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Fig. 2 Grade/tonnage curves of regular kriging versus 20 SGS realisations

Fig. 3 Kriged resource model for Fe element
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3 Strategic mine planning and quantifying
the associated risk

3.1 Utilisation of an in-house strategic mine

planning tool

In this study, an in-house mine planning tool was deployed

to find the optimal production schedule over the life of

mine upon the kriged resource model generated in

Sect. 2.2. The mine planning process consists of two pha-

ses: In phase 1, blocks are aggregated using TopCone

Algorithm (TCA) to create TopCones (TCs). The main

purpose of this phase is to significantly reduce the amount

of data being processed in the production scheduling pro-

gress. Then in phase 2, TCs are fed into an integer pro-

gramming (IP)-based model to optimise the long-term

production schedule, where the project’s NPV is max-

imised subject to various operational constraints.

Fig. 4 SGS realisation 1 for Fe element
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Fig. 5 Three TopCones were generated with minimum size of one block
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The basic ideas of our in-house strategic mine planning

tool can be described as follows:

3.1.1 Phase 1. Block aggregation

TCA formulates and solves a series of linear programming

models to combine blocks into TCs. The main features of

TCA are:

• TCs have positive economic value and can be mined in

a certain order without violating the slope safety

• The number of TCs generated can be controlled by

setting the minimum number of blocks per TC

• The combination of all TCs forms an ultimate pit

The performance of TCA is demonstrated via a hypo-

thetical two-dimensional deposit of 15 blocks, of which

blocks 7, 8, 9 and 13 are ore, as presented in Fig. 5.
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Fig. 6 Two TopCones were generated with minimum size of three blocks

Fig. 7 Visualisation of 500 TCs and the ultimate pit limit
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Implementing TCA with a minimum number of block per

TC is one, three TCs and an ultimate pit were generated.

Joint support ability of TCA can be observed at TC 1 as

either ore block 7 or 8 is strong enough to support their

overlying waste blocks. In addition, the extractions of TC 1

then 2 and 3 sequentially always secure the slope safety.

To demonstrate the ability of TCA in controlling the

number of TCs generated from the aggregation process, the

algorithm was also implemented with a minimum size of

three blocks per TC, the number of TCs reduced to two and

still inside the same ultimate pit, as shown in Fig. 6.

Similarly, keep increasing minimum size of TC and the

whole ultimate pit only contained a single TC. This ability

of TCA to control number of TCs is critical for the

application of mathematical programming on open pit mine

planning, as the solution time and computational inten-

siveness of solving mathematical models are exponentially

related to the amount of data imported. Generally, a stan-

dard computing system is not able to solve an IP-based

production scheduling model for 5 years life of mine over

10,000 blocks within a practical timeframe, meanwhile

industry-standard resource models normally contain much

more than that. In other words, data scale is the greatest

obstacle of optimising mine plans using operations

research techniques and TCA was developed to directly

tackle this challenge. In addition, the precise mining

sequence between TCs allows to significantly reduce the

number of sequencing constraints in the downstream

mathematical model and contribute to cut the solution time

further. In addition, the ability to find an ultimate pit limit

of TCA eliminates the implementation of external pit

optimisation algorithms in the proposed mine planning

procedure.

Running TCA on the given iron ore deposit with the

minimum size of 200 blocks per TC, 500 TCs were gen-

erated in 10 min using an office-standard computer having

an Intel(R) Core(TM) i7 with 3.4 GHz CPU processor and

8 Gb of RAM. The visualisation of 500 TCs and the ulti-

mate pit limit are presented in Fig. 7.

3.1.2 Phase 2. Production scheduling using integer

programming

Once TCs are generated, each of them has a specific eco-

nomic value, mineral/metal grade, ore tonnage, waste

tonnage and mining sequence with other TCs. The for-

mulation of the IP model followed traditional format with

an objective function of maximising discounted cash flow,

operational constraints and slope safety. Similar IP models

can be found at the works of Caccetta and Hill (2003);

Gleixner (2009); Ramazan and Dimitrakopoulos (2004).

As the number of TCs is relatively small, the IP model was

efficiently solved by CPLEXTM (CPLEX 2009) in less than

20 min. A set of hypothetical scheduling parameters, as

presented in Table 2, for a mine plan of 6 years was used

Table 2 Scheduling parameters of the iron ore project

Parameter Lower bound Upper bound

Mining capacity (Mt) 37 100

Processing capacity (Mt) 30 37

Fe (%) 58.5 60.5

SiO2 (%) 0 5.7

Al2O3 (%) 0 2.8

P (%) 0 0.062

LOI (%) 0 6.8

GOL (%) 0 15.2

Fig. 8 Typical cross-sections of mining sequence generated by TCA-based IP model
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to prove the concepts. The model, however, can easily be

adjusted for real input values.

To prove the practical mining sequence of the result,

some typical cross-sections of the mine plan are presented

in Fig. 8.

3.2 Quantifying risk

To analyse the risk associated with the mine plan which

was determined based on the kriged resource model, its

mining sequence, as presented in Fig. 8, was sequentially

Fig. 9 Risk profiles of the mine plan using TCA-based IP and kriged resource model
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applied on the 20 orebody realisations generated in Sect. 2.

The purpose of this task is to find all possible production

scheduling outcomes of the mining project under the

impact of geological uncertainty. The results are presented

in Fig. 9. The red lines are the scheduling results of IP

model implemented on kriged resource model while blue

dots are the associated risk profiles.

From the risk profiles of material production, it is likely

that there are less ore tonnage and more waste tonnage in

all periods over the life of mine. The blending grades of 6

attributes are also highly deviated from predicted values by

the kriging-based mine plan. For example, Fe grade is

considerably higher than expectation whereas those of

SiO2, Al2O3, P and LOI are lower. A 60% chance of vio-

lating upper bound of the GOL grade can be observed at

the 2nd period, which does not exist in the deterministic

mine plan.

In addition, calculating the risk associated with project’s

NPV, as shown in Fig. 10, points out the likelihood that the

project will not achieve the expected NPV. Indeed, the
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Fig. 10 NPV risk profiles of the mine plan using TCA-based IP and kriged resource model

Fig. 9 continued
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NPV deficit due to the impact of geological uncertainty is

between 6.70% and 7.34%, equal to 135 M$ and 151 M$.

This great loss of NPV again emphasises the detrimental

impact of geological uncertainty on project’s valuation.

4 Conclusions

In this study, the authors successfully applied joint simu-

lation using MAF and SGS on a multivariate deposit

consisting of six attributes of interest. 20 realisations and a

kriged resource model were generated to facilitate the

analysis of grade/tonnage variability and smoothing effect

of ordinary kriging.

The authors deployed an in-house mine planning tool

where block aggregation and integer programming were

used to find the optimal production schedule for the kriged

resource model. By testing the mining sequence against the

20 orebody realisations, the risk profiles of the determin-

istic mine plan were constructed. The results proved that

under the impact of geological uncertainty, the project’s

NPV can be considerably less than expectation at a mag-

nitude of 6.70% to 7.34%, as well as some strong devia-

tions of blending grade and tonnage.

Given that kriging estimation and deterministic mine

planning techniques will well remain their popularity in the

near future, it is recommended that any mine plan built

based on deterministic resource model should be validated

against geological uncertainty. Ignoring this factor could

turn a sound mine plan in feasibility study into a project

failure in the future.

Similar to iron ore deposits, the nature of coal deposits is

typically multivariate, where attributes of interest, such as

calorific value, sulphur, nitrogen, and ash content, are

commonly cross-correlated. To this extent, the application

of multivariate conditional simulation and mining planning

methodology as outlined in this paper can be easily adapted

to coal mining.
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