
Analysis on intersections between fractures by parallel
computation

Zhiyu Li • Mingyu Wang • Jianhui Zhao • Xiaohui Qiao

Received: 20 May 2014 / Revised: 6 August 2014 / Accepted: 6 August 2014 / Published online: 31 October 2014

� The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract The discrete fracture network model is a powerful tool for fractured rock mass fluid flow simulations and

supports safety assessments of coal mine hazards such as water inrush. Intersection analysis, which identifies all pairs of

intersected fractures (the basic components composing the connectivity of a network), is one of its crucial procedures. This

paper attempts to improve intersection analysis through parallel computing. Considering a seamless interfacing with other

procedures in modeling, two algorithms are designed and presented, of which one is a completely independent parallel

procedure with some redundant computations and the other is an optimized version with reduced redundancy. A numerical

study indicates that both of the algorithms are practical and can significantly improve the computational performance of

intersection analysis for large-scale simulations. Moreover, the preferred application conditions for the two algorithms are

also discussed.

Keywords Fracture intersections � Discrete fracture network � Intersection analysis � Parallel computing

1 Introduction

Water inrush is one of the most concerning safety problems

in coal production. Fractures act as channels for fluid flows

that are highly relevant to this type of disaster. The discrete

fracture network (DFN) model is a powerful tool for fluid

flow simulations in fractured rock mass and can provide

invaluable information to assist safety assessments.

To create a DFN model, many independent yet related

procedures are involved. Intersection analysis is one of

these procedures and is used to identify all pairs of inter-

sected fractures (PIF) in the region of study–a basic step to

construct an interconnected fracture network. Because the

DFN model is an application of Monte Carlo simulation

technology, tens or hundreds of complete models runs are

usually performed to obtain a stable result. Thus, it is

necessary to require each of the procedures, including

intersection analysis, to be computationally efficient and

seamless interface with other procedures in modeling. For

example, a mere 10-min performance gain in a single

model run is of great practical significance because it can

save nearly 17 h for 100 repeated simulations.

The essence of intersection analysis is quantifying the

spatial relation between two individual fractures. Because a

precise portrayal of the shape of a real fracture is often

impractical, some assumptions have to be adopted for

mathematical modeling. One of the most prevalent

approaches is the Baecher’s model (Baecher et al. 1977) in

which a fracture is simplified to be a three-dimensional disc

defined by its center point, radius, orientation and aperture.

Thus, the task for intersection analysis is transformed into a

geometrical computation on pairs of disc-shaped objects.

Although the analytical solution for this problem is

explicitly defined in solid geometry and has been well

discussed in the field of fracture simulation (Gilmour et al.

1986; Song and Xu 2004; Li et al. 2007), its applications

Z. Li � M. Wang (&) � J. Zhao � X. Qiao

College of Resources and Environment, University of Chinese

Academy of Sciences, Beijing 100049, China

e-mail: mwang@ucas.ac.cn

J. Zhao

College of Computer and Information Engineering,

Henan University, Kaifeng 475001, China

123

Int J Coal Sci Technol (2014) 1(3):356–363

DOI 10.1007/s40789-014-0040-3

are often limited to theoretical analyses or small scale

projects due to its computational expense.

A revised method was proposed in which the entire

process of intersection analysis can be implemented in a

stepwise manner (Yu et al. 2006). The concept of this

approach is based on the theory of computer graphics,

where each fracture is wrapped inside an individual

bounding box, and the spatial relation between the boxes is

analyzed in the first step, a procedure known as ‘coarse

analysis’. If the two bounding boxes intersect, a ‘precise

analysis’ (the second step) on the real disc-shaped fractures

is then performed. Because the computation cost for a

single analysis on one pair of bounding boxes is far less

than that of the fractures themselves, the stepwise proce-

dure reduces the total execution time of a high-cost algo-

rithm (precise analysis) by introducing a preprocessing

technique such as a low-cost algorithm (coarse analysis)

that acts as a filter. This approach can result in a consid-

erable performance gain compared to the traditional

method where the precise analysis is used alone.

Moreover, several modifications were proposed to

optimize the procedure of intersection analysis. Liu et al.

(2011) introduced the concept of spatial indexing from GIS

and incorporated an R tree to accelerate the coarse analysis.

Fadakar et al. (2011) designed a general framework for

intersection analysis that handles polygon fractures, and

more detailed algorithm can be found at Einstein and

Locsin (2012). Liu et al. (2013) applied a spatial database

to efficiently structure and manage fracture data. Li et al.

(2014) performed an analysis on the relation between

fractures’ predominant orientations and the actual perfor-

mance of the intersection analysis, presenting some prac-

tical suggestions on tuning the algorithm.

This paper is proposed to introduce parallel computing

technology into the fracture intersection analysis proce-

dure, extending its scope of application to large-scale

problems. Section 2 describes the basic requirements for

the parallel algorithm design, Sect. 3 presents an inde-

pendent parallel algorithm with redundant computations,

Sect. 4 presents an optimized version with reduced

redundancy, Sect. 5 presents the numerical study, and

Sect. 6 provides conclusions for this study.

2 Basic concepts

The basic idea behind parallel computing is breaking down

a complete task into several sub-tasks and executing them

concurrently. A parallel algorithm should address the

potential side effects introduced by task segmentation and

guarantee a result that is identical to the original algorithm

(serial version). The actual performance of a specific par-

allel algorithm depends on the degree of parallelism of the

underlying problem and the procedures used to implement

the computational logic. Moreover, the solution to a real-

world problem often requires a combination of different

algorithms (such as in the DFN simulation). Thus, a

practical scheme for parallel computing should be designed

in view of the entire problem, not simply for a single

algorithm alone.

The intersection analysis of fractures is a standalone

procedure, but it is also one link of a complete simulation

task. For a certain region of study, the number of fractures,

Nf, is fixed. The workflow of the intersection analysis is

essentially an enumeration process in which each pair of

fractures is selected and successively tested against inter-

section. Thus, there are a total number of Nf(Nf – 1)/2 pairs

of fractures for the analysis. A simple method to parallelize

this procedure is evenly dividing (as possible) the Nf

fractures into Ngroup groups according to the fractures’

ordinal numbers and selecting each fracture from the group

to test it against every other fracture from the entire frac-

ture pool. This approach exactly distributes the required

analysis of all pairs of fractures into several groups. Thus,

the complete task can be solved in parallel without

redundancy with the total number of calculations equal to

Nf(Nf – 1)/2.

However, the following drawbacks exist in this

approach:

(1) This approach is a pure parallel algorithm in view of

the computation itself and ignores the physical

reality of the underlying problem. Although the

fractures have been divided into groups, each group

still requires access to the entire fracture pool when

performing the analysis. It is known that fractures

are geographic objects with spatial features, and

there are surely higher possibilities of intersections

among fractures that are located in the same or

nearby regions than those that are separated from

each other. The scheme that groups the fractures by

their ordinal numbers cannot make use of this prior

knowledge.

(2) Although it is a parallel procedure, the analysis

results of all the groups have to be centralized and

subsequently redistributed. This is because the

procedures before and after this step are often

parallelized by partitioning the region of study

according to some geological properties (e.g.,

parameter assignment for geologically homogeneous

zones, zonal flow path identification and flow fluid

simulations along hydraulic gradients). Thus, the

inconsistency in parallel computing designs between

the related procedures may influence the algorithm’s

performance as a result of excessive data transfor-

mations and inter-process communications.

Analysis on intersections between fractures 357

123

Therefore, it is necessary to design a parallel intersec-

tion analysis algorithm by partitioning the region of study,

where each processor only requires a portion of the data

during the analysis process. The next two sections present

two parallel algorithms. The first algorithm is straightfor-

ward and easy to implement but contains a certain amount

of redundant computations. The second algorithm is an

optimized version with considerably less redundancy.

3 An independent approach with redundant

computations

The study region can be partitioned in one, two, or three

directions along the coordinate axis, yielding multiple

adjacent boxes called grid cells. Each cell is assigned with

a certain amount of fractures and is typically associated

with one processor. Next, a parallel computation is per-

formed such that each cell conducts an intersection analysis

on its own fracture data.

Figure 1 shows a two-cell partition in the region of

study where fractures O1 and O2 are crossing the boundary

between cells A and B and intersecting with each other.

The point P12 is the mid-point of the two fractures’ inter-

sected line.

Much attention is required for a fracture intersecting a

cell boundary (called a boundary fracture) for two reasons:

(1) it is these boundary fractures that establish the con-

nections between different cells, which is of great hydro-

geological interest for simulations, and (2) an important

step in parallel intersection analysis is properly addressing

these boundary fractures because they are related to more

than one cell and may result in an overestimation or

underestimation on the total number of PIFs.

As shown in Fig. 2, the fractures that intersect the center

cell are grouped into a fracture set and assigned to this cell.

An independent analysis procedure is then performed in

this cell to identify all the PIFs it owns. At the same time,

other cells analyze their own fracture sets in parallel.

It is clear that some redundant analyses are performed,

which means that an identical pair of fractures is analyzed

in more than one cell. For example, the fractures O1 and O2

shown in Fig. 1 will be tested against intersection twice:

once in cell A and once in cell B. Moreover, a pair of large

fractures can introduce additional redundant analyses

because they may simultaneously intersect many cells.

The first algorithm presented here is based on the con-

cept that, under the requirement for achieving a full cov-

erage and investigation of all possible PIFs, a certain

number of redundant analyses is expected and acceptable

because the extra computations can be averaged and

accommodated by parallel computing.

However, if two fractures have been identified to be a

PIF after performing an analysis in one cell, the record of

this PIF should be unique throughout all cells, meaning that

no duplication of the same record is allowed in other cells.

This requires a criterion upon which each cell can decide to

accept (record) or reject (ignore) a certain PIF that it has

found. A straightforward approach is selecting a point P on

every PIF that spatially associates it with a cell, estab-

lishing a ‘one-to-one’ relation. Figure 1 shows two obvious

options for P: the center of either of the two fractures (O1

or O2) or the mid-point of a PIF’s intersected line (P12).

The former two can be viewed as ‘the priors’ because they

are known parameters, whereas the latter is a ‘posterior’

property requiring calculation. However, the point P12 is

almost ready to use because its coordinate is merely the

average of both ends of the intersected line that have been

calculated in the process of precise intersection analysis.

Moreover, compared to the edge effect of the fracture

centers caused by fracture radii inside the boundary cells,

the mid-points can distribute more uniformly under evenly

Fig. 1 Sketch of two boundary fractures in a two-cell partition study

region

Fig. 2 Sketch of fracture assignment in two dimensions

358 Z. Li et al.

123

spaced partitions, yielding similar numbers of PIFs among

the different cells. This can benefit the loading balance of

subsequent simulation procedures. Thus, for a certain cell,

a PIF is recorded only if its mid-point of the intersected line

is inside this cell.

Assume that there are a total number of Nf factures and

Np cells. Each cell is analyzed on a separate processor in

parallel with other cells. The procedure for the k-th pro-

cessor can be presented as follows:

(1) Assemble a subset from the fracture pool where

each fracture intersects with cell k;

(2) Enumerate a pair of factures from the set; and.

(3) Perform an intersection analysis between the two

fractures:

(3–1) If they intersect, calculate the position of the mid-

point of their intersected line; otherwise, go to step

4;

(3–2) if the mid-point is inside cell k, record this PIF in

cell k; otherwise, simply ignore this PIF (another

cell will record it), and go to step 4.

(4) If there are pairs that have not been analyzed,

return to step 2; otherwise, go to step 5;

(5) Terminate the intersection analysis procedure on

cell k.

4 An optimized approach with reduced redundancy

The advantage of the first algorithm is that it is a com-

pletely independent parallel algorithm that requires no

inter-process communication. However, its shortcoming is

also obvious, as it lacks a method to reduce the redundant

analysis among different cells, which may counterbalance

some of the performance gains of parallel computing.

Thus, an optimization is necessary to improve this tech-

nique, and this can begin with a further analysis of the

sources of redundancy.

Figure 3 shows four possible states of a single fracture

related to cell A:

(1) State 1: facture O1 is fully contained in cell A, called

a ‘contained fracture’ (CF);

(2) State 2: facture O1 is separated from cell A, called a

‘disjoint fracture’ (DF);

(3) State 3: facture O1 intersects cell A, with its center

inside this cell, called an ‘inside-center boundary

fracture’ (ICBF);

(4) State 4: facture O1 intersects cell A, with its center

outside this cell, called an ‘outside-center boundary

fracture’ (OCBF).

For a certain cell, it is assigned to the fractures in states

1, 3 and 4. Thus, six types can be used when selecting a

pair of fractures: (CF, CF), (CF, ICBF), (CF, OCBF),

(ICBF, ICBF), (ICBF, OCBF), and (OCBF, OCBF). The

first three types of pairs can only appear in one cell. In

other words, the two fractures appearing in cell A can

never simultaneously appear in cell B or other cells

because one of the fractures is fully contained by cell A.

Thus, no redundant analysis occurs for these types of pairs.

However, the last three types, which are pairs of

boundary fractures, may be involved in various types of

redundancy:

(1) For a pair of fractures that are both ICBFs in cell A,

if they simultaneously intersect another cell (or

cells), say cell B, the two fractures must both be

OCBFs in cell B.

(2) Similar to (1), for a pair of fractures where one is an

ICBF and the other is an OCBF in cell A, for cell B,

the types of the two fractures could be either (ICBF,

OCBF) or (OCBF, OCBF). If they simultaneously

intersect more than one cell, the possible type could

be one (ICBF, OCBF) with multiple (OCBF, OCBF)

or only multiple (OCBF, OCBF).

Fig. 3 Sketch of the possible states of a fracture related to a cell in

two dimensions

Analysis on intersections between fractures 359

123

(3) For a pair of fractures that is in the form of (OCBF,

OCBF) in cell A, one possible type for cell B is one

or multiple (OCBF, OCBF). Other possible types can

be obtained through reverse deduction of types (1)

and (2).

Table 1 lists all possible redundancies in the presence of

a pair of boundary fractures. Based on the possible states

listed in Table 1, the number of redundant analyses on the

same pairs of fractures in different cells can be reduced to

some degree. This is accomplished by ‘forecasting’, e.g., if

cell A has a pair of (ICBF, ICBF), the same pair can only

appear in cell B (or in more cells) in the form of (OCBF,

OCBF). To avoid a potential redundancy, one of the two

cells should postpone its analysis. Table 1 indicates that the

(OCBF, OCBF) pair type may be involved in more

redundancies than that of the other two types. Thus, it is

practical to require all cells to postpone their analysis on all

pairs of (OCBF, OCBF) that they own while preferentially

performing analyses of the (ICBF, ICBF) and (ICBF,

OCBF) types. A special case is when a (ICBF, OCBF) pair

in cell A may appear in the same type in cell B, introducing

another type of redundancy. A workaround can be per-

formed by comparing the global ordinal numbers (id) of the

two fractures: if the ICBF-type fracture has a lower id than

that of the other (OCBF), an analysis is performed; other-

wise, it is simply postponed because another cell may meet

this condition and thus perform the analysis. Note that all

the postponed analyses will likely result in an underesti-

mation of the number of actual PIFs. Thus, a double-check

phase is required to re-examine all the postponed pairs.

Provided that some of these postponed pairs have not been

analyzed by other cells, a supplementary analysis is then

performed.

The above procedure can reduce all types of redundan-

cies except for some pairs in the form of (OCBF, OCBF).

For a pair of large fractures that are crossing through the

entire region of study and simultaneously intersecting many

cells in the form of (OCBF, OCBF), it is possible that no

analysis has been performed on them because they do not

simultaneously intersect with a cell where any of their

centers are located (being absent in the form of (ICBF,

ICBF) or (ICBF, OCBF) in other cells). Moreover, these

postponed (OCBF, OCBF) pairs will be discovered in the

double-check phase. Thus, redundant supplementary anal-

yses are concurrently performed in many cells. To avoid

duplicated records of this pair if it is a PIF, only the cell that

contains the mid-point of their intersected line records this

PIF, whereas other cells simply ignore it.

Note that the double-check phase requires inner-com-

munications among all the cells (processors) such that each

cell tells other cells which pairs it has analyzed while

gathering information on the work that others have per-

formed. When every cell has determined the analyzed pairs

of the entire fracture pool, each cell can decide whether a

postponed pair it owns requires a supplementary analysis.

The complete workflow of this parallel algorithm is

presented as follows, where steps 1–5 is the ‘forecasting’

phase, steps 6–8 is the ‘postponing analysis’ phase and the

remainder (steps 9–15) is the ‘double-check’ procedure:

(1) Assemble a fracture set {F}k of which all

fractures intersect cell k;

(2) Divide {F}k into {CF}k, {ICBF}k and {OCBF}k;

(3) Perform analyses on all pairs enumerated from

{CF}k, and record all found PIFs;

(4) Perform analyses on all pairs, of which one

fracture is from {CF}k and the other is from

{ICBF}k [{OCBF}k; and record all found PIFs;

(5) Perform analyses on all pairs enumerated from

{ICBF}k, save each pair’s name to List A, and

record all found PIFs;

(6) Enumerate a pair where one fracture is from

{ICBF}k and the other is from {OCBF}k; the two

fractures are denoted as (fi, fj), where i \ j and

where i and j are their global ordinal numbers,

respectively;

(7) If fi is a type of ICBF, save this pair name to List B1,

and then perform an analysis and record all found

PIFs; otherwise, save this pair name to List B2;

(8) Return to (6) if there are other pairs that have not

been enumerated; otherwise, proceed with

remaining steps;

Table 1 Possible redundancy caused by a pair of boundary fractures

(n C 1)

Cell A Cell B (s) Redundancy

(ICBF, ICBF) Absent 0

(OCBF, OCBF) 9 n n

(ICBF,

OCBF)

Absent 0

(ICBF, OCBF) 9 1 1

(OCBF, OCBF) 9 n n

(ICBF, OCBF) 9 1 ? (OCBF,

OCBF) 9 n

1 ? n

(OCBF,

OCBF)

Absent 0

(OCBF, OCBF) 9 n n

(ICBF, ICBF) 9 1 1

(ICBF, ICBF) 9 1 ? (OCBF,

OCBF) 9 n

1 ? n

(ICBF, OCBF) 9 1 1

(ICBF, OCBF) 9 1 ? (OCBF,

OCBF) 9 n

1 ? n

(ICBF, OCBF) 9 2 2

(ICBF, OCBF) 9 2 ? (OCBF,

OCBF) 9 n

2 ? n

360 Z. Li et al.

123

(9) Communications to other cells:

(9–1) Send List B1 to other cells;

(9–2) Receive all foreign List B1 sent from other cells;

(9–3) Merge these foreign List B1 into List B1’;

(10) Enumerate each pair from List B2. If this pair

does not exist in List B1’, then save this pair

name to List B3 and perform an analysis and

record all found PIFs; otherwise, ignore this pair

because it has been analyzed by another cell;

(11) Communications to other cells:

(11–1) Send List A and List B3 to other cells;

(11–2) Receive all foreign List A and List B3 sent from

other cells;

(11–3) Merge all foreign List A into List A’; merge all

foreign List B3 into List B3’;

(12) Enumerate a pair from{OCBF}k;

(13) If this pair does not exist in either List A’, List

B1’ or List B3’, perform an analysis on this pair:

(13–1) If the two fractures of this pair intersect and the

mid-point of their intersected line is inside cell k,

then record this PIF; otherwise, ignore it because

it should be recorded in another cell that contains

this mid-point;

(13–2) If the two fractures are separated, simply ignore

this pair;

(14) Return to step (12) if there are other pairs from

{OCBF}k that have not been enumerated; other-

wise, proceed with the remaining step;

(15) Terminate the intersection analysis procedure for

cell k.

5 Numerical study

All the testing codes are written in the Python and C??

languages, and the Massage Passing Interface (MPI) is

used to provide a parallel programming environment. The

MPI is a flexible framework that supports a wide scalability

and various types of parallel computing, e.g., single pro-

cessor with multiple cores, multiple-processor clusters and

hybrid models (Gropp et al. 1999). Moreover, the stepwise

intersection analysis approach is implemented in both of

the two algorithms because it can reduce the number of

precise analyses, which are computationally expensive.

The data for this test are several stochastic fracture

networks synthesized from three groups of fractures.

Table 2 shows the main properties.

The first test demonstrates the differences in the total

number of computations resulting from the redundant

analyses between the two algorithms. We use a realization

of a 30 m3 cubic rock that contains 40,500 fractures for this

test. Figure 4 shows the changes of the total numbers of

required precise intersection analyses for different numbers

of partitions.

Figure 4 indicates that the number of calculations for

algorithm 1 increases as more cells are involved, whereas

algorithm 2 shows no evident fluctuation. This is because a

denser cell partitioning introduces additional boundary

fractures, yielding a substantially greater number of

redundant analyses in algorithm 1. However, algorithm 2

can maintain a stable number of calculations because it is

equipped with a procedure to reduce this type of redun-

dancy to the greatest extent possible.

The second test compares the actual calculation times

for the two parallel algorithms. Three rock sizes (10, 30,

and 50 m3) are used, yielding different numbers of frac-

tures of 1,500; 40,500; and 187,500, respectively. Five

realizations of stochastic fracture networks are generated

for each rock size, and each realization undergoes ten

independent micro-runs, where the averaged calculation

time is used for comparison. The detailed configuration of

the testing platform is presented in Table 3.

Table 2 Properties of the synthesized fracture network

Group Intensity

(m-3)

Radius (Gaussian) Orientation (Fisher)

Mean

(m)

STD

(m)

Strike

(�)
Dip

(�)
Coef.

(K)

1 0.5 4 2 0 45 20

2 0.5 2 1 90 45 20

3 0.5 1 0.5 180 45 20

Fig. 4 Changes of the required number of precise intersection

analyses using different numbers of partitions

Table 3 Configuration of the testing platform

CPU Memory OS Software

AMD 4 GB*2 Windows 7

64-bit

Python 2.6

A8-5600 k VC2010

4 Cores MPICH2-1.4.1p1

3.60 GHz mpi4py-1.3.1

Analysis on intersections between fractures 361

123

Figure 5 shows the results for each rock size, and the

averaged speedup ratios among all rock sizes are summa-

rized in Table 4. A common tendency shown in Fig. 5 is

that the calculation times of both algorithms decrease as

more processes are launched, but a rebound occurs when

more than four processes are used. This is due to the

hardware limitations of the processor (four cores): although

many processes can be launched, only four of them execute

in parallel, while the others are running in serial mode,

resulting in a degradation of the performance. Another

tendency is that, within the four processes, algorithm 1

outperforms algorithm 2 in the low fracture amount test

(10 m3 rock), while the advantages of algorithm 2 become

significant when the fracture amount increases (30 m3 and

50 m3 rocks). In contrast, when the number of processes is

beyond the capacity of the processor, algorithm 2 shows a

more severe performance loss than that of algorithm 1.

Table 4 also shows this tendency in the measurement of the

averaged speedup ratios.

This is because when there is a small amount of fracture

data, the influence of the redundant analyses is completely

covered by routine procedures, e.g., program initialization

and I/O operations. Thus, algorithm 1 demonstrates its

advantage in performance because it is quite simple in

regard to computation logic. When more fractures are

involved, the burden of the redundant analyses gradually

dominates the total calculation time. Thus, algorithm 2

begins to outperform algorithm 1 because it can eliminate

much of the redundancy. However, the performance of

algorithm 2 is more sensitive to the limitations of hardware

capacity compared to algorithm 1. This is because algo-

rithm 1 is a completely independent parallel procedure,

whereas algorithm 2 relies on inner-process communica-

tions (double-check phase). When excessive processes are

launched, some of the processor cores are running pro-

cesses in series mode, which delays the collective com-

munication among all processes and thus reduces the

overall performance.

Therefore, in the face of different numbers of fractures

and parallel computing environments, a trade-off is neces-

sary when choosing between a simple algorithm at the cost of

redundant computations (algorithm 1) and another algorithm

that can avoid these redundancies but utilizes a more com-

plicated procedure (algorithm 2). Generally speaking, if the

number of fractures is large (more than ten thousand) and a

professional parallel computing environment where suffi-

cient processors (or cores) and unobstructed inter-process

communication channels are available, algorithm 2 is the

best choice. Otherwise, algorithm 1 is the practical solution.

6 Conclusions

In this paper, two parallel algorithms are proposed to

improve the computational performance of the intersection

analysis procedure. They are designed considering the

computational efficiency of the algorithms and a seamless

Fig. 5 Comparison of calculation times for the two algorithms for

(a) 10 m, (b) 30 m and (c) 50 m rocks

Table 4 Averaged speedup ratios

Number of

processes

Algorithm ID

1 2

1 1.0 1.0

2 1.3 1.4

3 1.6 1.8

4 1.9 2.2

5 1.7 1.6

6 1.7 1.4

362 Z. Li et al.

123

interfacing between other procedures. The first algorithm is

logically simple but contains redundant computations,

whereas the second is an optimized version with reduced

redundancy. The numerical study demonstrates that sig-

nificant performance gains can be obtained in both of the

algorithms in large-scale simulations. A further analysis

indicates that the second algorithm is the best choice in a

favorable parallel computing environment, but the first

algorithm is still a practical approach because it is insen-

sitive to hardware limitations and is easy to implement.

Future studies will include tests of the scalability on a

parallel cluster system, accommodating additional fracture

geometric properties and applying the algorithm to real-

world problems.

Acknowledgments The research was supported by the National

Basic Research Program of China (973 Program) (2010CB428801,

2010CB428804); National High-tech R&D Program of China (863

Program) (2011AA050105); National Science Foundation of China

(40972166); National Science and Technology Major Project of

China (2011ZX 05060-005).

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

References

Baecher GB, Lanney NA, Einstein HH (1977) Statistical description

of rock properties and sampling. In: Proceedings of the 18th U.S.

symposium on rock mechanics. CO, 1–8

Einstein H, Locsin J (2012) Modeling rock fracture intersections and

application to the Boston area. J Geotech Geoenviron Eng

138(11):1415–1421

Fadakar AY, Xu C, Dowd PA (2011) A general framework for

fracture intersection analysis: algorithms and practical applica-

tions. In: Proceedings of the 4th Australian geothermal energy

conference. Melbourne, 15–20

Gilmour HMP, Billaux D, Long JCS (1986) Models for calculating

fluid flow in randomly generated three-dimensional networks of

disc-shaped fractures: theory and design of FMG3D, DISCEL,

and DIMES. Lawrence Berkeley Laboratory, CA

Gropp W, Lusk E, Skjellum A (1999) Using MPI: portable parallel

programming with the message-passing interface. MIT Press,

MA

Li XQ, Yang SQ, Wang XG (2007) Generation and visualization

technologies of three-dimensional network of rockmass stochas-

tic structural plane. Chin J Rock Mech Eng 26(12):2564–2569

Li ZY, Wang MY, Zhao JH, Wang HF (2014) Optimizing fracture

intersection analysis procedure in 3D fracture network seepage

simulation. J China Coal Soc. doi: 10.13225/j.cnki.jccs.2013.

1385

Liu HM, Wang MY, Song XF (2011) A new approach for effectively

determining fracture network connections in fractured rocks

using R tree indexing. J Coal Sci Eng (China) 17(4):401–407

Liu HM, Wang MY, Song XF (2013) Stepwise approach for

identifying pairwise fracture intersections in 3D fracture net-

works. J Grad Univ Chin Acad Sci 30(1):24–32

Song X, Xu W (2004) Numerical model of three-dimensional discrete

fracture network for seepage in fractured rocks (I): generation of

fracture network. Chin J Rock Mech Eng 23(12):2015–2020

Yu QC, Xue GF, Chen DJ (2006) Theory on general block method of

fractured rock mass. China Waterpower Press, Beijing

Analysis on intersections between fractures 363

123

http://dx.doi.org/10.13225/j.cnki.jccs.2013.1385
http://dx.doi.org/10.13225/j.cnki.jccs.2013.1385

	Analysis on intersections between fractures by parallel computation
	Abstract
	Introduction
	Basic concepts
	An independent approach with redundant computations
	An optimized approach with reduced redundancy
	Numerical study
	Conclusions
	Acknowledgments
	Open Access
	References

