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Abstract

Purpose of Review Despite no general conclusions regarding the therapeutic effect of MSCs on virus-induced acute lung
injury in pre-clinical studies, a significant number of clinical trials using MSC-based treatment for COVID-19-associated
ARDS were initiated during the global pandemic. Here, we aimed to discuss differences and similarities in clinical trials
using MSC-based treatments for classical ARDS and COVID-19-associated ARDS and to raise some future perspectives.
Recent Findings Several pre-clinical studies have demonstrated that MSC treatment may not be a good treatment option for
virus infections because MSCs themselves are susceptible to the virus. However, MSCs lack expression of the angiotensin-
converting enzyme 2 (ACE2) receptor, suggesting that MSCs are not likely to be infected by the COVID-19 virus. Interest-
ingly, recent meta-analyses demonstrated that an improved survival rate in patients with COVID-19-associated ARDS treated
with MSCs was obtained in 24 out of 26 completed clinical trials.

Summary This review provides comparative perspectives on MSC-based therapy for COVID-19-associated ARDS and

classical ARDS.
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Introduction

The classical acute respiratory distress syndrome (ARDS)
was described for the first time in 1967 by Ashbaugh et al.
as a destructive lung injury with an uncontrolled inflamma-
tory process [1]. This acute inflammatory process causes
severe alveolar damage and capillary basement membrane
leakage leading to a progressive respiratory failure with high
morbidity and mortality burden (Reviewed in [2, 3]). Classi-
cal ARDS can result from different causes including sepsis,
pneumonia, and trauma (Reviewed in [2]). During the last
years, more and more studies point towards that classical
ARDS is an umbrella term that includes several different
ARDS phenotypes [2, 4, See, 6, 7]. For example, Calfee
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et al. described in 2014 the two subgroups hyper- and hypo-
inflammatory ARDS. The hyper-inflammatory group, with
hallmarks such as high plasma levels of inflammatory mark-
ers including interleukin (IL)-6, IL-8, and plasminogen acti-
vator inhibitor-1 (PAI-1), was associated with more severe
disease progression and lower survival rate [4]. These two
phenotypes have also been identified in other cohorts and
clinical trials including for example the SAILS trial and the
HARP-2 trial [8, 9] with similar findings.

During the last decades, much effort has been put into
understanding the pathogenesis and pathophysiology of
ARDS, and many clinical trials have been completed in
the search for an effective treatment. In particular, recent
clinical trials have investigated mesenchymal stromal cell
(MSC)-based therapies, based on the results from very suc-
cessful pre-clinical studies utilizing bacteria, endotoxin,
smoke inhalation, and other models of acute lung injury.
These clinical studies have all demonstrated safety but unfor-
tunately failed to uniformly prove significantly increased
clinical outcomes [10-13].

In 2019, the coronavirus disease 2019 (COVID-19)-associated
ARDS was described for the first time [14, 15]. Although
there are similarities between the classical ARDS and the
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COVID-19-associated ARDS pathology, an increasing number
of studies demonstrate that there are also differences between
the syndromes [2, 16—18], which will be summarized in the
section below (Fig. 1). The first clinical investigation using
MSC-based therapy to treat COVID-19-associated ARDS was
initiated very early in the pandemic outbreak, and the numbers
of completed studies are currently increasing (Table 1) [19ee].
Similar to the results from the MSC trials on patients with
classical ARDS, MSC infusions were shown to be safe for the
patients. Interestingly, a pooled analysis of the clinical trials
using MSCs to treat COVID-19-associated ARDS completed
between January 2020 and the end of July 2022 demonstrated
a relative risk reduction for all-cause COVID-19 mortality
(RR=0.63) [19e¢]. However, the number of studies is still fairly
small, and results derived from the different studies are difficult
to compare to each other since the standard clinical treatment
strategies changed during the pandemic, and sometimes also
during an ongoing study [19ee, 20, 21].

In the first part of this review, we will discuss the
differences and similarities between ARDS and COVID-
19-associated ARDS pathology. In the second part, we
will summarize, discuss, and compare the results from the
clinical trials using MSC-based treatment for ARDS and
COVID-19-associated ARDS.

Classical ARDS

Differences in Classical ARDS
and COVID-19-Associated ARDS
Pathophysiology

Classical ARDS and COVID-19-associated ARDS share
several similarities in their pathology including significant
lung inflammation with fluid accumulation in the alveoli,
respiratory failure, and excessive immune response, but
there are also important differences between the two syn-
dromes (Fig. 1) [2, 16—18, 22]. The most obvious differ-
ence is that COVID-19-associated ARDS is exclusively
caused by the SARS-CoV-2 virus, while the classical
ARDS can have different etiologies including for example
trauma, sepsis, and aspiration [2, 3, 14, 15, 22]. Moreover,
other significant differences include differences in respira-
tory mechanics where higher respiratory system compli-
ance and increased dead space fractions have been reported
in patients with COVID-19-associated ARDS compared to
patients with the classical ARDS [16, 23ee  24]. Moreo-
ver, increased levels of thrombotic mediators and lower
expression of interferons have been reported in COVID-
19-associated ARDS compared to the classical ARDS [25,
26]. A reduction of neutrophil-to-lymphocyte ratio with
an impaired or delayed lymphocyte activation has also

COVID-19 associated ARDS

PATHOLOGICAL SIMILARITIES

[ v

¢ Significant lung
inflammation

e Fluid accumulation
% in the alveoli

)  Respiratory failure

e Excessive immune
response

DISEASE-SPECIFIC DIFFERENCES

« Different etiologies

o Lower respiratory system
compliance

e Decreased dead space fractions

¢ Increased interferons

¢ Increased neutrophil-to-
lymphocyte ratio

Fig.1 Important pathological similarities and differences between
classical ARDS and COVID-19-associated ARDS. Classical ARDS
and COVID-19-associated ARDS share several similarities in their
pathology including significant lung inflammation with fluid accu-
mulation in the alveoli, respiratory failure, and excessive immune
response, but there are also important differences between the two
syndromes which have been summarized in this figure. Understand-
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DISEASE-SPECIFIC DIFFERENCES

o Caused by SARS-CoV-2 virus

o Higher respiratory system
compliance

¢ Increased dead space fractions

¢ Increased thrombotic mediators

¢ Impaired/delayed lymphocyte
activation

e High levels of circulating D-dimer

ing these differences is important for the clinical management and the
development of therapeutic strategies for both classical ARDS and
COVID-19-associated ARDS. Abbreviations: ARDS, acute respira-
tory distress syndrome; COVID-19, coronavirus disease 2019; SARS-
CoV-2 virus, severe acute respiratory distress syndrome coronavirus
2. This figure was illustrated using Biorender.com
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been observed in COVID-19-associated ARDS compared
to classical ARDS, where the reduced neutrophil-to-lym-
phocyte ratio has been correlated to an increased disease
severity [25, 26]. There is also evidence that patients with
COVID-19-associated ARDS have elevated levels of cir-
culating D-dimer [23e¢]. Understanding these differences
is important for the clinical management and the develop-
ment of therapeutic strategies for both classical ARDS and
COVID-19-associated ARDS.

MSC-Based Therapies for Classical ARDS
and COVID-19-Associated ARDS

What Is Known from Pre-clinical Experiments on MSC
Treatment for Virus-Induced Acute Lung Injury?

There is a large body of literature demonstrating the efficacy
of MSC administration in pre-clinical models of acute lung
injury; however, most of them have focused on endotoxin-
or bacterial-induced lung injury [27, 28] and not so much
focus, so far, has been on virus-induced lung disease.
Nevertheless, a few papers on MSC-based treatment for
virus-induced acute lung injury have been published with
contradictory results. For example, in a recent paper, Tan
et al. investigated the effect of MSC treatment in HIN1
influenza virus-induced acute lung injury. Here, the authors
reported that MSC treatment decreased the total cell count
in bronchoalveolar lavage fluid and increased the number of
infiltrating CD4*, CD8%, B-cells, T-cells, and monocyte in
the alveolar space, but did not result in an improved survival
rate or reduced viral load compared to untreated control
cells [29ee]. Similar results, i.e., no improved survival rate
and no reduction in viral load, have also been reported by
other groups [30, 31]. In contrast, Qin et al. demonstrated
that MSC treatment reduced herpesvirus-68-induced
pneumonia with decreased lung damage, decreased levels
of inflammatory markers, and inhibition of viral replication
compared to untreated control mice [32]. Similar results
were reported by Chan et al., where they reported that
mice infected with influenza A/H5N1 treated with MSCs
had an increased survival rate compared to controls treated
with control fibroblasts [33]. As such, there is no general
conclusion regarding the therapeutic effect of MSCs on
virus-induced acute lung injury. One potential explanation
for this could be that MSCs are effective against specific
viruses. For example, Tan et al. demonstrated that the
majority of MSCs in their study expressed a-2,6-linked
SA (influenza A/HINI virus binding receptors) and were
highly susceptible to infection of the virus. Interestingly,
it has been reported that human MSCs do not express the
angiotensin-converting enzyme 2 (ACE2) receptor [34ee],

suggesting that MSCs might not be susceptible to infection
of the COVID-19 virus.

What Is Known from Clinical Trials?
MSC-Based Clinical Trials in Patients with Classical ARDS

Since the two first phase I trials on MSC-based treatments for
classical ARDS in 2014-2015 [10, 11], several other trials
have been completed which all demonstrated that MSCs
were well-tolerated in this patient group, but no significant
improved lung function or other clinical relevant outcomes
were consistently observed [12, 35, 36ee, 37]. The data
obtained in the clinical trials mentioned above, except the
two latest publications, have been extensively summarized by
us and others [38—40] and will therefore not be covered here.
In the more recent study by Wick et al., the authors measured
potential biomarkers in the airspace and in circulation in
ARDS patients included in the START trial study 48 h after
treatment with MSC or placebo. Here, they found that there
was a decrease in the airspace proteins Ang-2, IL-6, and
sTNFR1 in patients treated with MSC compared to patients
in the placebo group. Interestingly, the levels of measured
biomarkers in the circulation differed very much from
those measured in the mini-bronchoalveolar lavage fluid
samples. This is important information to consider when
collecting samples for treatment evaluation and biological
understanding, as biomarkers isolated from the plasma
versus the airspace most likely reflect different biological
processes [37]. The most recent completed clinical trial in
classical ARDS was published in 2022; here, the authors used
multipotent adult progenitor cells to treat classical ARDS
(moderate-to-severe) in a multicenter, randomized, double-
blind, dose-escalation, placebo-controlled phase 1/2 trial.
The patients were given either 300X 10° or 900 x 10° cells
diluted in 300 ml PlasmaLyte-A or placebo through a 200-um
blood filter tubing set as a single peripheral or central venous
infusion. Similar to the other completed trials, the cells
were demonstrated to be well-tolerated, and no acute safety
concerns were observed. There was one death that occurred
in the cell-treated group; however, it was determined by the
data and safety monitoring board (DSMB) to be unrelated
to the cell therapy. At day 28 after treatment, there was an
increased number of treatment-emergent adverse events in
the group that received the cells compared to the placebo
group (91.3% in patients receiving 900 x 10° cells vs. 60%
for placebo); however, there was a lower mortality rate in the
cell-treated group both at day 28 (25% in patients receiving
900 x 10° cells vs. 40% for placebo) and at day 365 (40%
in patients receiving 900 x 10° cells vs. 50% for placebo)
compared to placebo [36ee].
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MSC-Based Clinical Trials in Patients
with COVID-19-Associated ARDS

After the COVID-19 outbreak, the enthusiasm for using
MSC:s as cell-based therapy was once again raised leading to
a dramatic increase in clinical trials using MSCs as therapy
for COVID-19-associated ARDS. Searching on the PubMed
database for published clinical trials through October 2,
2023, using the keywords “COVID-19” and “mesenchymal
stromal cells,” we identified 24 published studies (summarized
in Table 1). In this section, we will briefly summarize and
discuss the more recent papers and highlight some interesting
lessons that can be learned from these trials as well as discuss
differences and similarities with completed MSC-based trials
on patients with classical ARDS.

In 2022, Kirkham et al. published a meta-analysis of
controlled trials of MSC-based treatment for patients with
COVID-19-associated ARDS. This was a systematic search of
the literature conducted on studies published until November
15, 2021. Based on the results from the reviewed studies, the
authors concluded that MSCs likely can reduce mortality in
patients with critical or severe COVID-19 because they found
evidence that MSC-based treatment reduced the relative
and absolute risk of death at the study endpoint [41e]. All
studies included in this meta-analysis were however very
small and different investigational protocols were used [41e].
Earlier this year, 2023, Soetjahjo et al. published a double-
blind, randomized, placebo-controlled, multicenter trial
(NCT04333368) involving severe COVID-19 patients in which
they gave three injections of umbilical cord-derived MSCs with
1% 10° cells/kg body weight per time point. The study enrolled
4?2 patients who were randomly assigned into two equal groups
and aimed to investigate the safety and effectiveness of MSC-
based treatment. No decrease in the length of hospitalization
was seen in the MSC-treated group compared to the control
group. However, the MSC-treated group had a significant
increase in oxygenation index and a smaller increase in
procalcitonin values compared to the control group [42e]. In
the trial by Zarrabi and colleagues (IRCT20200217046526N2),
MSC treatment was combined with a dose of extracellular
vesicles (EVs) derived from MSCs. In this randomized,
multicentric, phase II clinical trial, 43 patients with severe
COVID-19 were enrolled (MSC alone, n=11; MSC combined
with EVs, n=8; control group, n=24), and the study aimed
to assess safety and efficacy of two doses of perinatal tissue-
derived MSC or one dose of MSCs followed by a dose of MSC-
derived EVs. The authors reported the treatments to be safe
with minimal adverse events, and a decreased serum level of
inflammatory markers was seen in all study groups; however,
there was a more prominent change in the MSC alone and
MSC combined with EVs compared to controls [43e]. Li et al.
published their 2-year follow-up results from a randomized,
double-blind, placebo-controlled trial (NCT04288102) [44],
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in which 100 patients with severe COVID-19 were included.
The patients received either 3 MSC infusions (n=65, 4x 10’
cells per infusion) or placebo (n=35) on days 0, 3, and 6 in
combination with standard of care. The authors observed that
MSC administration was safe 2 years after treatment; however,
the efficacy of MSC treatment reported at the 1-year follow-up
[45] was not significantly sustained at the 2-year follow-up
according to 6-min walking distance data, quality of life, and
extent of lung damage. There were no significant differences
in pulmonary fibrosis based on the CT images between the
MSC group and the placebo group at 24-month follow-up [44].
Taken together, it is very difficult to draw any conclusions from
these different studies on COVID-19-associated ARDS because
since they were performed during the pandemic, they are small
studies, the standard of care changed between different trials,
and sometimes within one trial, different MSC sources, doses,
and criteria were used. However, there are several clinical
trials that report at least some beneficial effects, and similar
to the MSC trials on classical ARDS, they demonstrate that
MSC-based therapy is safe also for COVID-19-associated
ARDS. As suggested by Kirkham et al., one option would be
to develop a “master protocol” to ensure consistency of cell
product production and manufacturing and dosing strategies
to simplify the ability to compare results between different
clinical trials [41e]. However, creating a “master protocol” for
ensuring consistent product manufacturing among the clinical
trials would entail several difficulties including for example
intellectual patent rights associated with each pharmaceutical
industry and differences in regional laws and regulations.

So far, only first-generation MSC products have been
used in all MSC therapy for classical and COVID-19-
associated ARDS; however, a large body of literature
indicates that pre-activating MSCs with appropriate cues
prior to infusion could enhance their therapeutic potency
[46-48]. For example, IFN-y pre-treated MSCs have
been demonstrated to inhibit T-cell proliferation as well as
inhibit T-cell production of IFN-y, TNF-a, and IL-2 in vitro
[46]. However, contradictory results have been published
on the actual in vivo effect of IFN-y pre-treated MSCs in
experimental graft versus host disease models [48, 49]. In
another study, Bustos et al. pre-treated MSCs with serum
obtained from ARDS patients and found that pre-treated
MSCs produced increased levels of anti-inflammatory
cytokines such as IL-10 and IL-11RN and decreased levels
of pro-inflammatory cytokines such as IL-6, IL-8, IFN-
v, and IL-1p [47]. An altered secretome profile has also
been demonstrated by MSCs treated with bronchoalveolar
lavage fluid samples obtained from ARDS patients [50].
An increasing number of publications suggest that the MSC
therapeutic function depends on the microenvironment
they encounter [47, 50-53]. Therefore, it is essential to
understand how MSC function is altered after entering
a COVID-19 infectious environment containing large
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concentrations of pro-inflammatory cytokines (cytokine
storm) and neutralizing antibodies and B-cell responses.
In a recently published study, it was demonstrated that
MSC:s inhibit B-cell differentiation and block pan-antibody
secretion, findings that may have implications for B-cell-
mediated anti-viral responses [54]. Another important factor
is the increased levels of D-Dimer observed in COVID-19
patients [23ee]. In a few case reports, elevation levels of
D-dimer have been observed after MSC treatment and linked
with serious side effects such as pulmonary embolisms and
venous clots [55, 56]. However, the pooled analysis on the
clinical trials using MSCs to treat COVID-19-associated
ARDS found that MSC-based treatment was safe for patients
with COVID-19-associated ARDS [19ee]. However, further
studies are warranted before we can understand the exact
impact of the COVID-19-associated ARDS environment on
infused MSCs.

Summary and Final Remarks

The completed clinical trials have all demonstrated that
MSC-based treatment is safe to be used as treatment for
patients with classical ARDS and COVID-19-associated
ARDS, despite the different etiologies and differences in
pathophysiology. Some of the clinical trials published during
the last years and recent meta-analyses suggest that MSCs
could potentially reduce mortality in patients with severe
COVID-19-associated ARDS.

After several decades of progression in the field of MSC-
based therapies for respiratory diseases with good pre-clinical
outcomes and very stimulating results, we have now reached
a plateau phase without a well-defined track forward. After
several years with many completed clinical trials reporting
no significant improved outcomes, it is easy to be critical
and question if MSC-based therapies would be a likely future
treatment option for patients with respiratory failure or severe
acute lung disorders. However, we strongly believe that MSC-
based therapy will be a future therapeutic option for at least
subgroups of patients within specific inflammatory lung
disorders such as ARDS and COVID-19-associated ARDS.
But to advance to the next step, it is important to take a step
back. We need to return to do some bench work and to repeat
many of the in vitro and pre-clinical experiments with all the
advanced techniques and instruments that are now available to
us, because we believe that it is crucial that we understand (i)
the MSC biology, (ii) the MSC-host environment interaction,
(iii) the plasticity of in vivo MSCs, and (iv) which subgroups
of patients that truly have a chance of benefit from this type
of treatment before we can obtain significantly improved out-
comes in future MSC-based clinical trials for acute inflam-
matory lung disorders.
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