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Abstract
Purpose of Review This article gives a broad overview of quantitative modelling approaches in biology and provides guidance 
on how to employ them to boost stem cell research, by helping to answer biological questions and to predict the outcome 
of biological processes.
Recent Findings The twenty-first century has seen a steady increase in the proportion of cell biology publications employing 
mathematical modelling to aid experimental research. However, quantitative modelling is often used as a rather decorative 
element to confirm experimental findings, an approach which often yields only marginal added value, and is in many cases 
scientifically questionable.
Summary Quantitative modelling can boost biological research in manifold ways, but one has to take some careful consid-
erations before embarking on a modelling campaign, in order to maximise its added value, to avoid pitfalls that may lead to 
wrong results, and to be aware of its fundamental limitations, imposed by the risks of over-fitting and “universality”.
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Introduction

Quantitative modelling is the use of mathematical or compu-
tational means to imitate real-world processes and to predict 
their outcomes. Historically, it has been used for centuries 
in the form of fundamental physical laws, such as Newton’s 
laws, while biological problems have been subject to math-
ematical modelling since the first half of the twentieth cen-
tury. An example is the work of Luria and Delbrück in 1943 
who employed mathematical models, tested on bacterial 
population data, to find that mutations occur without selec-
tion pressure [1]. Yet, for a long time, quantitative modelling 
has not been seen as a core ingredient of biological research. 
Only in the twenty-first century, the use of quantitative mod-
elling has become ubiquitous, and the way how it is being 
viewed by the experimental biologists community has turned 
from widespread scepticism to being a staple ingredient in 

modern biological research papers, in particular, in devel-
opmental and stem cell biology [2–5].

While quantitative modelling is employed in a wide 
range of biological work, researchers may not always be 
fully aware how to utilise the opportunities it offers in 
a best way. Modelling is often seen as a way to confirm 
experimental findings by reproducing them in silico, and 
having a “model” for the sake of it is perceived as a way to 
boost a paper’s impact. However, when modelling is used 
as a mostly decorative element for an already accomplished 
experimental campaign, the actual benefit of it is often mar-
ginal and sometimes questionable at all.

When considering whether and how to use quantitative 
modelling in a biological context, one should ask three 
questions: (1) is there anything quantitative modelling 
can do which cannot be done by experimental means and 
standard statistical inference; i.e. can it provide sufficient 
added value? (2) Can modelling replace experiments and 
can thereby cut costs and save staff time? (3) If modelling 
could provide added value, how do I employ it effectively, to 
maximise the scientific value of the work? In the following, 
I wish to give some ideas and guidance on how to approach 
these questions and how to make best use of computational 
and mathematical modelling.
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When assessing whether quantitative modelling can pro-
vide added value to a biological research project, one should 
first define what its purpose is. The most common purposes 
are the following:

1. To confirm a hypothesis previously suggested experi-
mentally, by fitting the corresponding model to the 
experimental data and reproducing it faithfully.

2. To predict the outcome of a biological process, e.g. gene 
expression, protein folding, or morphogenesis.

3. To answer research questions and test hypotheses, if this 
cannot be done by plain experimental means and stand-
ard statistical inference methods.

4. To study intrinsic properties of models and relationships 
between different models theoretically.

In addition to those purposes come others which are now-
adays implemented in established software and are often 
not explicitly perceived as “modelling”, like data cluster-
ing, inference of gene regulatory networks [6–8], and cell 
fate trajectory inference [9–12]. While those often seem to 
be straightforward statistical methods, they actually involve 
sophisticated models and model fitting, which require cer-
tain assumptions to be met and hyperparameters to be tuned.

In the following, I wish to assess under which circum-
stances quantitative modelling is fit for those purposes and 
how to maximise its added value.

Reconfirm an Experimental Finding 
by Modelling

When an experiment has delivered some interesting results, 
and a hypothesis has been suggested and tested through 
standard test statistics, one could be tempted to have a quan-
titative model representing that hypothesis to reproduce the 
experimental data. However, the added value of such an 
approach is questionable. On the one hand, if a hypothesis 
has been tested experimentally, having in addition a math-
ematical model of that hypothesis matching the data pro-
vides only a marginally improved certainty of this hypoth-
esis. While modelling can be used to increase the certainty 
of a hypothesis, computing such a certainty requires not only 
to test the model of the suggested hypothesis itself, but also 
all other, competing but reasonable hypotheses need to be 
tested.1 Otherwise, the added certainty from testing a math-
ematical model is undefined. On the other hand, having a 
fitted model matching the experimental data is by no means 
a guarantee that this model is correct. In particular, if the 

model is complex, with many free parameters, the model can 
easily be over-fitted, meaning that the parameters provide 
too much freedom for the model to be matched too closely 
to the data, fitting the noise rather than real trends [13]. The 
result is that a completely wrong model may fit the data. 
Even if the number of parameters is low, a model which 
may share some, but not necessarily the biologically crucial 
features with the correct model, may also fit the data (see 
discussion of “universality” in the section “Universality: 
Curse and Opportunity”. In both cases, such an approach 
not only has marginal benefit but may even yield wrong 
results, which when published stay in the public domain.

Predicting the Outcomes of Biological 
Processes

The second purpose is the prediction of the outcome of a 
biological process. Undeniably, quantitative models can be  
very powerful in achieving this, yet certain conditions need 
to be fulfilled to be successful. Most commonly, supervised 
machine learning is employed for this. Although often not 
seen as that, machine learning is also a form of mathemati-
cal modelling: for example, in deep learning, mathematical 
functions that resemble the connections of neurons (artificial 
neural networks (ANN)) are used, which are trained—that  
is, fitted—to data, in order to extrapolate trends from this 
data and thus to predict outcomes beyond the data regime 
[14]. Ironically, this usually leads to over-fitting of a “wrong 
model”, yet in a desired way: most of the time, the system to 
be predicted is not actually a neural network (for example, 
when predicting protein folding, such as by AlphaFold [15]), 
yet due to the vast number of parameters, those neural net-
works can fit almost any (labelled) data. However, despite 
over-fitting, machine learning yields excellent predictions—
a feat that has not been entirely understood yet.2 An addi-
tional method to improve the predictive power of ANNs is 
regularisation [16]: when fitting the ANN, large parameter 
variations are penalised in the evaluation of the fitting accu-
racy, so that the parameter space is effectively substantially 
reduced, leading to an excellent predictive power. Hence,  
the power of an ANN lies in its ability to be fitted to a large 
range of data, despite not representing the biological process 
on a model level. However, for machine learning to be predic-
tive, it requires vast amounts of data, which usually only high- 
throughput assays, like next-generation sequencing, can deliver.

While powerful for predictions, machine learning 
approaches cannot reveal information about the underly-
ing biology, since the models themselves do not reflect 

1 The certainty of a hypothesis can be computed as the "Bayesian 
posterior", but this requires the computation of likelihoods of all rea-
sonable candidate hypotheses.

2 It has been suggested that the training procedure of ANNs exhibits 
an intrinsic bias towards simple functions that avoid fitting noise and 
extrapolate predictions well beyond the training data [45, 46].
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the biology (and are therefore also called a “blackbox” 
models). Furthermore, the predictions work only under the 
circumstances under which the training data has been col-
lected; changes of circumstances, such as a change of phe-
notype from a mutation, or a change of experimental set-
tings, cannot be predicted without new experimental data.

An alternative are mechanistic models that reflect 
directly the underlying real-world processes [17]. Such 
models describe underlying biological or biochemical 
processes in a mathematical form, usually either (1) in 
the form of differential equations, which express the time 
evolution of relevant biological quantities as their time 
derivatives on the one side, and explicit terms expressing 
the change rates of these quantities on the other side, or (2) 
as stochastic processes, which include some degree of ran-
domness and whose predictions are probabilistic. Instead 
of providing a unique outcome, they predict a probability 
distribution of outcomes. The advantage of a mechanis-
tic model, if trained appropriately and once tested to be 
predictive, is that it allows to test the effect of particular 
changes of circumstances, that is, changes in parameters, 
which can be expressed in terms of the model rules more 
easily than in a blackbox machine learning model. How-
ever, it is highly challenging to develop such a model. 
It must be complex enough to contain all relevant fea-
tures, both for prediction and for comparability with the 
biological scenario, but at the same time, its free param-
eters must be few, to avoid over-fitting, since in such a 
case—in contrast to machine learning—fitting the wrong 
model would undermine the model’s purpose (even if it 
could be rendered predictive by regularisation). Hence, 
one can usually only use such a model if the majority of 
parameters are accurately known through measurements. 
An example is protein folding, where all relevant physico-
chemical parameters of amino acid crosslinking and their 
thermal motion are accurately known. If not all parameters 
are known a priori, mechanistic models can rarely make 
quantitatively accurate de novo predictions, but are often 
able to predict certain qualitative behaviours of a system, 
for example, whether a certain quantity varies smoothly 
or abruptly (in a step-change manner) under a change of 
external parameters [18], or  predict characteristic proper-
ties of differentiation, based on bifurcation theory [19].

Overall, quantitative modelling—which includes machine 
learning—has great potential to predict the outcome of bio-
logical processes, but there are limitations: machine learn-
ing requires vast amounts of data (which, however, can be 
obtained by high-throughput technologies) and can only 
make predictions for circumstances under which the data 
has been collected, while mechanistic modelling—which 
reflects the underlying biology and allows to predict changes 
in circumstances—requires less data but much pre-existing 
knowledge about the relevant parameters.

Answer Biological Questions Through 
Quantitative Modelling

When attempting to answer a biological question, experi-
mental means and direct hypothesis testing may not be suf-
ficient to yield a clear answer. The experimental data may 
contain the information relevant to answer the question, 
but it may not be readily extractable through direct statis-
tical tools. An example is the search for cell fate choice 
patterns using genetic cell lineage tracing [20•, 21–23] via 
the Cre-Lox recombinase system [24–26]. The Cre-Lox 
system allows labelling of cells with fluorescent proteins 
in an inheritable way, i.e. all of a labelled cell’s progeny 
caries that fluorescent marker, which allows to trace indi-
vidual clones (see Fig. 1A). When tissue is harvested and 
clones analysed, one can obtain the full statistical distri-
bution of clone sizes and their composition of cell (sub-)
types if appropriate markers are available. The issue is 
that, while this statistical distribution is the result of the 
cell fate choices and thus contains some information about 
them, it cannot directly reveal the cell fate choice patterns. 
The problem is twofold: (1) the data is a snapshot of clonal 
distributions at particular time points, while the biological 
question is about a dynamical process, i.e. the changes of 
cell type over time and upon cell division, and (2) the data 
is multicellular, about cell populations (a clone is a sub-
population of cells), while the biological question is about 
the fate of single cells and their daughters upon division. 
Hence, experimental data and the biological question, that 
is, any associated hypothesis, do not match in terms of 
scale of time (static vs. dynamic) and cell number (single- 
vs. multicellular).

At this point, quantitative modelling can help. It can 
bridge the gap between biological question/hypotheses and 
the experimental data, as depicted in Fig. 1B. The key is 
that every candidate hypothesis can be interpreted as the 
rules for a mechanistic model, which can be formulated 
and evaluated mathematically or computationally, as a 
set of differential equations (deterministic dynamics) or 
as a stochastic process (which includes random noise), 
to generate “virtual data”, as would be predicted by that 
hypothesis. That prediction can then be directly compared 
with the data and be tested on it.

As an example, let us again consider the search for cell 
fate choice patterns. Let us assume that we have measured 
clonal distributions experimentally; yet, we cannot directly 
see the cell fate choice rules from this data. We can, how-
ever, take the possible candidate hypotheses and translate 
each of them into the update rules of a stochastic process. 
Then, these models can be evaluated to produce predicted 
clonal (probability) distributions as output, and the param-
eters of the models can be fitted by some optimisation 
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method. Those predicted clonal distributions can now be 
directly compared with the data. Hence, the mathematical 
modelling turns hypotheses that cannot be compared with 
the data, into predicted clonal distributions that can be 
directly overlaid with the data (see Fig. 1B).

Now, if we find that a model’s output cannot be fitted 
to the data, we can reasonably reject the corresponding 
hypothesis. However, we have to be careful how to interpret 
a fitting model output. Can we confirm a hypothesis and 
settle the question about cell fate choice rules if a predicted 
clonal distribution fits the data? The answer is a clear “no”; 
a prediction fitting the data does not confirm a hypothesis, 
since other candidate hypotheses might as well predict the 

data equally well or better. And other than being the excep-
tion, this rather is the rule. On the one hand, over-fitting, as 
described before, can allow a wrong model to be fitted to 
the data if it is formulated with too many free parameters.3 
Hence, if one does not have the knowledge of all parameters 

Fig. 1  Hypothesis testing via quantitative modelling, exemplified on 
clonal statistics. A Depiction of lineage tracing via Cre-Lox recombina-
tion and clonal statistics. Transgenic animals carry a GFP gene preceded 
by a Stop sequence that is flanked by Lox constructs. The Lox-flanked 
Stop sequence is removed by a Cre recombinase which is expressed 
upon administration of tamoxifen, and thus, GFP is expressed. The GFP 
label is inherited to the progeny of the initial cell, which constitutes a 
clone and which grows over time upon Cre recombination (centre top, 
©2014 SpringerNature. Reprinted, with permission, from [28]). The 
statistical distributions of clone sizes is recorded (centre bottom, data 
from P. H. Jones as published in [29]), yet it cannot directly distinguish 
between hypotheses of cell fate outcome (bottom). B Quantitative mod-
elling can bridge the gap between hypotheses and data: each hypothesis 
represents the rules for a stochastic model of cell fate choice dynamics, 

which predicts the hypothesis’ expected clonal statistics. The latter can 
then be directly compared with the experimental data and tested (bot-
tom, data from P. H. Jones, as published in [29]). C, D Illustration of 
universality. C Two models of stem cell fate choice in homeostasis, 
which differ in some features, yet predict the same clone size distribu-
tion and are thus indistinguishable through static cell lineage tracing 
data [30] (plot on bottom: ©2019 SpringerNature. Reprinted, with per-
mission, from [31]). D ~ 800 randomly generated cell fate models can be 
categorised in only two universality classes, one predicting an exponen-
tial distribution in the long term limit and the other one a normal distri-
bution if mean clone sizes are large (plots reprinted on CC-BY license 
from [32••]). The two classes are distinguished by only one predictive 
relevant property, namely, whether the number of stem cells is strictly 
conserved or not

3 The number of parameters that can be fitted without over-fitting 
should normally scale with the number of data points, but as described 
in the “Universality: Curse and Opportunity” section, the phenomenon 
of “universality” can render parameters irrelevant which means that 
many instances of those parameters—and not only the “true” param-
eter values of the underlying real system—can yield a good fit, thus 
mimicking over-fitting.
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in a possibly very complex biological process, the only rea-
sonable option is to simplify the model so far that the num-
ber of parameters is low enough to avoid over-fitting. Thus, 
many aspects of an initially complex model may need to be 
neglected (for stochastic models, this simplification means 
essentially that neglected features are assumed to be random 
and unbiased, which is covered by a stochastic model’s ran-
dom noise). On the other hand, often more than one model 
can fit the data, even if the number of parameters is suf-
ficiently low, since some features that distinguish models 
may not affect the predictions at all. This phenomenon is 
often called “universality”, which we discuss in the follow-
ing section.

Universality: Curse and Opportunity

Universality is the phenomenon that different models can 
sometimes generate the same predictions with respect to a 
certain type of data, if some quantities, like mean values or 
passed time, are sufficiently large [27]. Models which yield 
the same predictions have some common features, called 
“predictive relevant”, but may differ substantially in others, 
called “predictive irrelevant” features (notably, predictive 
irrelevant features may yet be biologically relevant). Models 
that differ only in predictive irrelevant features, i.e. yielding 
the same predictions, can be categorised in one “universality 
class”, while those that differ in predictive relevant features 
belong to different universality classes. This has the unfortu-
nate consequence that hypotheses that correspond to models 
of the same universality class will fit the data equally well 
and thus cannot be distinguished when the corresponding 
models are tested against that data. From this also follows 
that a fitting model does not mean that it is the “correct” 
model if any of the predictive irrelevant features are bio-
logically relevant for the posed biological question, since 
any other model of the same universality class, but which 
may differ in biologically relevant, yet predictive irrelevant 
features, could fit the data as well.

Universality can have several origins:

• Weak convergence [33]: for stochastic processes—which 
model some degree of randomness—the phenomenon of 
“weak convergence” means that they generate statistics 
that converge over time, or if mean numbers are large, to 
the same limiting distributions, if the predictive relevant 
features are the same. The most common of these uni-
versal limiting distributions is the normal distribution.  
There is a vast number of random numbers and stochastic 
processes which all produce a normal distribution and 
thus are of the same universality class; only few predictive  
relevant features must be fulfilled for this: (1) the final out-
come of the process is a sum of individual steps/random  
quantities, and (2) the mean value and variance of each 

step are bounded [34]. Furthermore, the number of steps 
(interpreted as time steps in a stochastic process) must be 
large. Notably, any statistical features of individual step 
sizes, beyond the boundedness of mean and variance, are 
predictive irrelevant and do not affect outcomes, if the 
number of steps is large.

• Non-dimensionalisation: in both stochastic and determin-
istic models, quantities and parameters contain physi-
cal units, and these units can be arbitrarily chosen. For 
example, instead of using “seconds” as time unit, one 
may want to choose the inverse of the cell division rate 
as time unit, whereby the cell division rate becomes trivi-
ally “one division per time unit”. This can be done with 
other parameters as well, which thus become predictive 
irrelevant. By non-dimensionalisation,4 several different 
models may actually map to the same non-dimensional-
ised model, with a common prediction, and those thus 
form the same universality class.

• Universality of critical phenomena5: complex systems 
with many interacting components may display critical 
phenomena, like phase transitions, (e.g. liquid to gas or 
liquid blood that becomes a solid blood clot). Sufficiently 
close to the critical points, many models that differ in 
some features—i.e. the predictive irrelevant features—
predict the same functional behaviour of the quantities 
describing the collective properties of those systems [35, 
36]. The predictive relevant features are usually very few 
and often categorical, for example, which quantities are 
conserved, what symmetries prevail, and whether the 
configurations of the system are continuous or discrete 
(countable in integer numbers).

As an example, consider two cell fate models in homeo-
stasis, as depicted in Fig. 1C. In model 1, a stem cell (S) 
divides, and upon this division, the daughter cells irrevers-
ibly choose their fate, to either remain a stem cell until the 
next division or to commit to differentiation (C). In model 
2, cell divisions are constrained to be always asymmetric, 
with one cell remaining a stem cell (S) and the other one 
being primed for differentiation (D), while the cell types 
may also change independently of cell division, in a revers-
ible way, that is, an S-cell can become a D-cell and a D-cell 
can reverse to become an S-cell again [30]. Despite these 
fundamental differences, both models predict the same clone 
size distribution (Fig. 1C, bottom). Why is this, and what 
are the predictive relevant features those models share? To 
answer these questions requires some mathematical analysis, 

4 Since quantities which bear physical units are also called “dimen-
sions”.
5 This is the context in which the term “universality” has been his-
torically introduced and canonically defined. The adaptation of this 
term to the other situations where predictive irrelevant features exist 
is non-canonical and not generally used as such in the literature.
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on which we will elaborate later (see also a detailed analysis 
in Ref. [32••]).

Besides structural features of models, the parameters of 
a model can be predictive relevant or irrelevant. (Predic-
tive) Irrelevant parameters are those which do not change 
the model predictions at all when changed under conditions 
where universality prevails; relevant parameters are those 
which affect the model predictions. However, a minimal set 
of relevant parameters does not necessarily include the plain 
model parameters; often, predictive relevant parameters are 
the product or ratio of plain model parameters rather than the 
parameters themselves. For example, in model 1 of Fig. 1B, 
the predicted distribution of C-cells depends only on the 
ratio of division rate and terminal differentiation rate, not 
explicitly on the individual parameters themselves[20•].6 If 
one has found a best set of parameter values, then doubling 
both the division rate and the terminal differentiation rate 
leads to the same best fit, and thus, the “true” best set of 
parameters is not identifiable [37].

But universality also provides opportunities and thus may 
be a desired property: if we only wish to distinguish predic-
tive relevant features, and accept for now that we cannot 
distinguish the predictive irrelevant ones, we do not need 
to test all models of a universality class but can choose the 
simplest model—having the lowest number of parameters 
and being the easiest one to evaluate and analyse—as a rep-
resentative of that class and thus simplify the whole model-
ling campaign substantially. Since the predictive features 
are often categorical, the number of universality classes is 
usually very small, and thus, only a small number of mod-
els, one representative of each universality class, need to be 
tested. Furthermore, universality is to some extent essential 
for model testing: models always require some degree of 
simplification. Universality allows simplifications, that is, 
negligence of predictive irrelevant features, without com-
promising the predictive accuracy of a hypothesis/model. 
Without universality, that is, if all features were predictive 
relevant, every simplification would lead a model to deviate 
in its predictions from the data, and even a reasonably “true” 
model—when subject to some technically necessary simpli-
fications—would not fit the data. This is usually not desired, 
since simplifications, and be it just for technical reasons, are 
often essential to evaluate models properly.

Could we overcome the limitations posed by universal-
ity? Universality emerges in view of the type of data and 
the circumstances under which it is collected; other types of 

data or a change of experimental settings may render certain 
predictive irrelevant features relevant and thus distinguish-
able. One could therefore try to obtain richer data with more 
features. For example, when assessing cell fate choices, one 
could try to directly observe them through intra-vital live 
imaging, to gain the time dimension as feature of the data, 
and with this, further details of the cell fate choices could 
be distinguished. While such experiments are possible in 
some circumstances (for example, to observe live cell fate 
choices in mouse epidermis [38]), they are more expensive 
in terms of money and effort, more invasive, or not possible 
in many tissues and situations. On the other hand, universal-
ity does not always emerge: usually only in limiting cases, 
e.g. when experiments are run over longer time scales or 
when numbers (such as clone sizes) are large, properties 
are genuinely universal [33]. When data is collected from 
experiments after shorter time scales or when numbers are 
smaller, for example, short-term cell lineage tracing after 
few cell divisions [28, 39], the data, and related model out-
puts, are not universal, and more features could, in principle, 
be distinguished. However, this may lead to a trade-off one 
wishes to avoid: while model details are easier to distinguish 
for short-term data, reasonable and necessary simplifications 
to the model may lead to undesired deviations.

To summarise, there is no one-size-fits-all solution, and 
a lot of intuition is needed to balance the trade-offs between 
the opportunities and limitations of universality: on the one 
hand, one wishes to distinguish a sufficient number of fea-
tures, i.e. having them predictive relevant; on the other hand, 
one wishes to simplify the models as much as possible, by 
neglecting predictive irrelevant features. Ideally, the predic-
tive relevant features are the same as the ones relevant to the 
biological question; this cannot be assured, but appropriate 
choices of experimental settings can adapt universal features 
for our purposes, at least to some extent. Unfortunately, the 
predictive (ir-)relevant features which define the universal-
ity classes are often not known beforehand. Then, we may 
need to travel down the rocky route and follow the classical 
scientific method, according to K. Popper: come up with a 
set of all plausible hypotheses and test the corresponding 
models for all of them; reject those hypotheses which can-
not be brought in accordance with the data through fitting, 
while those that fit (possibly more than one model) may then 
constitute the universality class of the “true” model. With-
out prior knowledge about universality classes, however, 
the number of candidate models to test could be extremely 
large and arbitrarily complex. Hence, in order to optimise 
a modelling approach, it is essential to gather some a priori 
knowledge about the universality classes and their predictive 
relevant features. This can only be obtained by a mathemati-
cal analysis of candidate models’ properties beforehand, as 
described in the following section.

6 The reason is that the probability distribution of cell numbers is a 
Poisson distribution, which is entirely determined by a single parame-
ter, the mean value, which in this case is the cell division rate divided 
by the terminal differentiation rate.
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Data‑Free Model Analysis

Commonly, quantitative models are used in view of experi-
mental data. The study of intrinsic properties of models from 
a plainly theoretical standpoint, without explicitly taking into 
account data, is often seen as a mere academic exercise. None-
theless, studying the intrinsic properties of models, through 
mathematical and computational tools, can yield impactful 
insights irrespective of the particular data and can guide and 
boost experimental campaigns substantially. The crucial ben-
efit of theoretical, data-free model analysis is that it can assess 
the intrinsic consistency of models and connections between 
them (that is, between hypotheses), yielding shortcuts for the 
modelling campaign and guiding experiments. For example, 
by studying models theoretically, one can:

1. discard some hypotheses a priori, by finding that they 
are intrinsically not consistent, or are not consistent with 
the circumstances of experiments.

2. find that some hypotheses imply each other or contradict 
each other.

3. identify Universality classes and their predictive (ir-)
relevant features.

This means that many candidate hypotheses may be 
redundant, be it because they are intrinsically inconsistent, 
or follow from/ contradict other hypothesis, or are indistin-
guishable from others. Needless to say that this may guide 
towards those experiments that are really needed, and one 
can identify experiments that are redundant before one starts 
designing them, thus saving a large amount of effort and 
costs. An example how hypotheses can be excluded is our 
study of generic models for tissue cell population dynam-
ics that includes all types of cell fate choice dynamics, in 
homeostasis [40]. There, it is shown, by introducing rig-
orous definitions of the concepts of a stem cell type, self-
renewal, and homeostasis, that in a homeostatic state, only 
models where self-renewing cells are at the apex of a line-
age hierarchy can prevail; others can be discarded without 
an expensive model testing campaign. Hence, by using this 
knowledge, coming from purely theoretical, data-free model 
analysis, both a lot of modelling and experimental work can 
be saved. Consequently, data-free model analysis can yield 
highly valuable information about a biological system that 
can save a lot of experimental and computational work and 
thus a lot of money, since the theoretical work is often much 
cheaper to be done.

Finally, theoretical model analysis can be used to reduce 
the number of potential candidate hypotheses that need to 
be tested dramatically, by finding the possible universality 
classes and identifying the predictive relevant features that 
associate a model with a universality class. Numerically, this 
can be done by varying parameters and structural features 

randomly and test under which circumstances model predic-
tions change and when not. If an appropriate mathematical 
formulation of the model is available, this can also be done 
by mathematically taking the limits under which the emer-
gence of universality is suspected (for large times, system 
size, or close to bifurcations or phase transition points), or 
taking a coarse-graining process such as “renormalisation” 
to identify the model behaviour under large scales of time 
and space [41, 42]. For example, in Ref. [32••], it was shown 
that in homeostasis, all cell fate models can be categorised in 
only two universality classes (with further sub-classes when 
different limits of parameters are considered7). The only pre-
dictive relevant feature is a binary characteristic: whether 
the number of cells which retain self-renewal potential is 
strictly conserved over time, or not (see Fig. 1D). This also 
explains why model 2 in Fig. 1C, involving cell fate priming 
and reversibility, predicts the same clone size distribution 
as model 1: in both cases, the number of stem cells is not 
conserved, in model 1 via symmetric divisions; in model 
2, if upon a division S → S + D, the D-cell turns into an 
S-cell. Hence, model 2 shares the (only) predictive relevant 
characteristic with model 1. Another example is the clas-
sification of models for cell differentiation via catastrophe 
theory [19, 43]: many different dynamical systems behave 
in the same way close to points where the stability of the 
system changes (“bifurcations”), such as cells when they 
differentiate. Catastrophe theory was used to show that there 
are only few possibilities how cells can progress through 
differentiation [19], which again reduces the number of can-
didate models to be tested.

Conclusions

Quantitative modelling can aid biological research in many 
aspects, but one needs to take into consideration a few things 
before embarking onto a modelling campaign, in order to 
make optimal use of it and avoid wrong results. One risk of 
quantitative modelling, when the exact model is not known 
a priori and is to be tested on the data, is over-fitting: it is 
tempting to include a large number of biological details in 
a model, but this often comes at the cost of additional free 
parameters, which leads to the phenomenon that an over-
fitted, wrong model can seemingly match the data with its 
output. This can lead to wrong conclusions about the under-
lying biological hypotheses. Hence, if one wishes to test a 
model, and thus any underlying hypotheses, the number of 

7 The universality class corresponding to strictly conserved stem cell 
numbers can yield different predictions in different limits: a normal 
distribution in the limit of fast stem cell divisions and an exponen-
tial distribution for slow stem cell divisions. Thus, this class can be 
divided into two sub-universality classes.
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free parameters needs to remain low, which requires to keep 
a model lean, stripping it to the core features that are needed 
to test the underlying hypothesis.

However, even when a model contains sufficiently few 
parameters to avoid over-fitting, a matching model might not 
be the correct one. The reason behind this is “universality” 
the phenomenon that different models can yield the same 
predictions, if they possess the same “predictive relevant” 
features, even if they might differ in other, “predictive irrel-
evant” features—some of them which may yet be biologi-
cally relevant. This means that others than the “true” model 
may match the data as well. Thus, without prior knowledge 
about the predictive relevant features of universality classes, 
a match of model and data does not mean that the model is 
correct, and the only way to test hypotheses through mod-
elling is by testing all reasonable candidate models and 
exclude those which do not fit.

While the prospect of testing all reasonable models, in 
conjunction with the rather discouraging fact that many may 
not be distinguishable at all, seems daunting, the existence 
of universality classes also provides opportunities, when the 
universality classes (which are usually very few) and their 
predictive relevant features are determined beforehand. In 
that case, only the simplest model, as representatives of each 
universality class, needs to be tested. If in addition, the fea-
tures we wish to distinguish biologically are the same as the 
predictive relevant features, universality is not a problem, 
yet can simplify the modelling campaign a lot. However, 
this requires a thorough theoretical, data-free mathematical 
or computational analysis of the models in question, in order 
to identify the predictive features and universality classes of 
relevant models beforehand. In general, data-free theoretical 
analysis can simplify modelling and experimental research 
in multiple ways: apart from identifying universal features, 
one can find criteria to exclude certain models a priori and 
find connections between models/hypotheses that allow to 
imply some hypotheses from others, whereby experimental 
and modelling work can be reduced.

When the aim of modelling is to predict the outcome of 
a biological process, over-fitting and universality are not 
problems per se: if one has rich data, e.g. as provided by 
high-throughput assays, machine learning, together with 
appropriate tuning of hyperparameters and regularisation, 
can be used to achieve great predictive power, without nec-
essarily correctly reflecting the underlying biology. How-
ever, due to this reason, machine learning does not provide 
understanding of underlying biological processes and can 
only make predictions under the conditions where the data 
was collected. Alternatively, mechanistic models—which 
directly reflect the underlying biology—can also be used to 
yield predictions, if almost all parameters are well known 
beforehand. Such models can in principle be adjusted to 
make predictions beyond the narrow setup of performed 

experiments, to perform “in silico” experiments. However, 
making use of mechanistic models for prediction is very 
challenging, not only due to the risk of over-fitting but also 
since, in particular when the situation is not universal (i.e. 
away from limiting situations), it is difficult or even impos-
sible to find all relevant features. Thus, mechanistic models 
are rarely used in cell and developmental biology to make 
de novo predictions but are used in other realms of biology, 
for example, in epidemiology to predict the spread of infec-
tious diseases [44].

To summarise, mathematical modelling can, when cor-
rectly done, provide plenty of added value to biological 
research. But care needs to be taken when drawing conclu-
sions, since over-fitting or the existence of universality can 
mislead the model finding process.
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