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Abstract
Purpose of Review  To explore the advances and future research directions in image analysis and computational modelling 
of human stem cells (hSCs) for ophthalmological applications.
Recent Findings  hSCs hold great potential in ocular regenerative medicine due to their application in cell-based therapies 
and in disease modelling and drug discovery using state-of-the-art 2D and 3D organoid models. However, a deeper charac-
terisation of their complex, multi-scale properties is required to optimise their translation to clinical practice. Image analy-
sis combined with computational modelling is a powerful tool to explore mechanisms of hSC behaviour and aid clinical 
diagnosis and therapy.
Summary  Many computational models draw on a variety of techniques, often blending continuum and discrete approaches, 
and have been used to describe cell differentiation and self-organisation. Machine learning tools are having a significant 
impact in model development and improving image classification processes for clinical diagnosis and treatment and will 
be the focus of much future research.

Keywords  Ophthalmology · Diagnostic image analysis · Mathematical modelling · Human stem cells · Machine learning · 
Agent-based modelling

Introduction

The ability of human stem cells (hSCs) to self-renew and 
differentiate into other human body cell types puts them at 
the forefront of progress in cellular therapies, disease model-
ling, and drug discovery. An area of regenerative medicine in 
which hSC research is particularly driving the development 
of translational research is ophthalmology.

Damage to the eye can be caused by disease or trauma 
and has a major impact on quality of life. The leading causes 
of vision impairment are cataracts, age-related macular 
degeneration (AMD), glaucoma, diabetic retinopathy, cornea 

opacity, and trachoma [1]. Injuries can also cause eye dam-
age and vision loss, through mechanical, chemical, and ther-
mal burns or radiation.

Stem cell-based therapies are being explored to treat 
a wide range of these debilitating eye conditions [2]. For 
example, pioneering limbal stem cell (LSC) therapies have 
been established to restore the sight of patients with unilat-
eral LSC deficiencies, involving transplantation of ex vivo 
cultured LSCs taken from the contra-lateral healthy eye of 
the patient [3, 4].

The development of human pluripotent stem cell (hPSC)-
derived organoids of ocular structures, including the cornea, 
retina, and lens [5–12], has also proved to be a transforma-
tive technology. These in vitro self-organising 3D structures 
which mimic the properties of their in vivo counterparts 
have become frequently utilised as models of human organ 
development [13, 14] and disease [12], to validate gene ther-
apies [15, 16], and have the potential to provide a source 
of cells for cell-based therapy and transplantation [17, 18].

Mathematical and statistical modelling is an indispen-
sable tool in supporting these advancements, deepening 
our knowledge of the fundamental mechanisms of hSC 
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behaviour and providing descriptive and quantitative tools 
for in silico experimentation [19–21]. Increasingly, machine 
learning (ML) techniques are being used to assist with 
in vitro image analysis and in vivo image classification as an 
aid to clinical diagnosis and to assess response to treatment 
and prediction, control, and optimisation of differentiation 
pathways [22, 23].

In this review paper, we provide an overview of the recent 
advancements in the computational, mathematical, and sta-
tistical modelling of hSCs, with particular focus on applica-
tions in regenerative medicine within ophthalmology. We 
consider image analysis and image classification for diag-
nostic testing, the prediction of differentiation pathways, the 
modelling of 3D organoid structures, and the role of param-
eter inference in model development. Finally, we conclude 
and outline directions for future research in the field.

Image Analysis and Classification

Computational techniques are a powerful tool to quantify, 
characterise, compare, and classify both in vitro and in vivo 
cellular images. In the in vitro case, this is essential for deep-
ening our understanding of the fundamental properties of the 
cellular system and optimising in vitro experiments. In the 
in vivo case, computational techniques can be harnessed for 
the automatic extraction of clinically relevant information, 
such as identifying and evaluating diagnostic criteria, grad-
ing disease severity, and monitoring disease progression and 
the response to treatment.

For example, in limbal stem cell deficiency (LSCD) and 
stem cell therapies, the differences between healthy, dis-
eased, and pre- and post-operative corneal cellular micros-
copy are often subtle and not easily discernible and clinical 
manifestations of different corneal diseases may appear sim-
ilar. Thus, automated, quantitative tools capable of identify-
ing objectively individual and collective cell features (and 
their differences between different cell populations) which 
are difficult or impossible to discern by slit lamp biomicros-
copy are new technology that will have a significant impact 
on disease diagnostics and the monitoring of disease pro-
gression and response to treatment [24]. Previous analysis of 
in vivo confocal microscopy (IVCM) images of the cornea 
from patients with LSCD before and after LSC transplanta-
tion allowed the quantification of the size and density of cor-
neal and conjunctival epithelial cell populations, uncovering 
statistically significant morphological differences between 
normal corneal cells and conjunctival epithelial cells and 
suggesting cell size and density (i.e. the average number of 
cells per unit area) not only as possible diagnostic measures 
of LSCD but also as an accurate measure of the surgical suc-
cess [25]. Recent developments focus on automating such 
analysis of LSC images, for example, the development of an 

algorithmic ImageJ software package to automatically detect 
cell locations and provide cell density estimations [26].

The results of computer-based image analysis often con-
firm and quantify diagnostic criteria known to the clini-
cal practitioners. Even then, the quantification provided 
by image analysis techniques provides opportunities for a 
refinement of such criteria and a more objective assessment 
and diagnosis. On the other hand, some diagnostic features 
believed to be a useful discriminator of healthy and dam-
aged cell populations turn out to be unreliable when assessed 
quantitatively. As an example of the former, the average size 
and density of cornea epithelial cells can be used for diag-
nosis and post-operative monitoring of the LSC deficiency 
and regeneration [25]. Moreover, the probability distribution 
of the cell sizes (i.e. the fraction of cells of any given size in 
the population) has been shown to be an even more sensitive 
discriminator of the state of the cell population (see Fig. 1) 
[27]. On the other hand, the well-known hexagonal shape 
(in other words, that each cell has on average six contact 
neighbour cells) was not confirmed to be a reliable signature 
of a healthy cornea epithelium [27].

Even more importantly, quantitative methods, especially 
combined with mathematical modelling, will lead to the dis-
covery of new diagnostic features which are not discernible 
under visual image inspection. Such methods often require 
new approaches to the quantification and statistical com-
parison of images. Of particular importance is the need to 
identify (often subtle) diagnostic features of healthy and 
damaged cell populations through a comparison of many 
images. A promising and rapidly developing tool for this 
is machine learning (ML), an algorithmic approach trained 
on data without explicit instruction, and particularly, deep 
learning [28], a type of machine learning which uses a multi-
layered neural network to automatically extract features from 
an image, allows a more sophisticated approach to cellular 
image analysis problems [29].

ML tools have the potential to aid clinical diagnosis. For 
example, a deep learning technique has been employed in a 
pilot study to diagnose and classify the severity grading of 
LSCD from IVCM images [30••]. A convolutional neural 
network (CNN) was trained first to identify representative 
scans of central basal cells and sub-basal nerves and then 
to classify LSCD severity in each case. Incorporating both 
cell and nerve IVCM images into the model resulted in more 
accuracy upon testing (74%) compared to cell scans only 
(68%) and nerve scans only (69%) [30••]. Although this 
approach shows promise for diagnostic utility, the methods 
do not directly quantify diagnostic markers of LSCD (e.g. 
epithelial thickness, cell morphology, density) which may 
be desirable for clinical interpretability [30••].

The diagnostic potential of ML techniques in ophthalmol-
ogy is broad, with current research exploring the diagnosis 
of neuropathic corneal pain from IVCM images [31], the 
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classification of diabetic peripheral neuropathy from cor-
neal IVCM images [32], the detection of diabetic retinopathy 
from colour retinal fundus images [33], and multi-disease 
models to detect a range of common corneal diseases (dry 
eye syndrome, Fuchs endothelial dystrophy, and keratoco-
nus) [34].

ML approaches can also be employed to further our 
understanding of the inherent properties of a cellular system. 
For example, a deep learning approach was developed and 
implemented to generate a complete morphometric retinal 
pigment epithelium (RPE) map of the human eye [35••]. 
The deep learning software (REShAPE: Retinal Epithelium 
Shape and Pigment Evaluator) helps to recognise and ana-
lyse RPE cell borders from flatmount images, leading to the 
identification of five statistically different RPE subpopu-
lations (with different susceptibilities to aging and differ-
ent types of retinal degenerative disease) using cell area. 
REShAPE uses a trained CNN to segment the images (i.e. 
to outline the cell boundaries) and then extract geometrical 
parameters (e.g. area, perimeter, shape, orientation) and the 
number of neighbours. The results of this RPE segmenta-
tion again point to cell area as a useful diagnostic metric, 
confirming earlier results based on other computational tools 
such as the CellProfiler image processing software [36]. The 
morphometry was also compared to hPSC-derived RPE cells 
to assess the variability of the subpopulation properties. 
Such software has the potential to be further expanded to 
incorporate the extraction of intra-cellular properties, such 
as genomic and transcriptomic markers through fluorescent 
imaging.

Similar ML tools can be applied to the analysis of 
microscopy images of in vitro cell cultures to deepen our 
understanding of their fundamental behaviours, for exam-
ple, the quantitative description of migration and motility, 

key stem cell properties shown to impact differentiation 
pathways [37]. Research in this area traditionally relied on 
manual or semi-automated computer-based approaches to 
extract movement data from in vitro microscopy images 
[38, 39]. Such semi-automated methods often rely on the 
segmentation of the images (and other complex image pre-
conditioning techniques) to identify an individual cell as 
it moves. However, now the deep learning neural network 
approach can be adapted to rely on the identification of a 
target cell in the beginning frame alone [40•]. In this case, 
a transfer learning method (in which the pre-trained model 
is reused) by the neural network facilitates the learning of 
invariant robust features of hPSCs for both tracking and 
mitosis detection [40•].

It is clear that ML approaches are driving significant 
developments in the quantification of in vitro stem cell prop-
erties and in in vivo image classification for diagnostic crite-
ria, but their ‘black box’ nature (e.g. the lack of transparency 
in the reasons for a conclusion suggested by the software) 
and the substantial amounts of training data required can 
pose a challenge [29]. The current increasing interest and 
investment in obtaining, optimising, and managing effi-
cient ‘big data’ for medical imaging will be beneficial in 
the expansion of ML applications [29].

Prediction of Differentiation Pathways

A deeper understanding of pluripotency regulation and 
the prediction of differentiation pathways is required for 
the control and optimisation of ex vivo differentiation tra-
jectories for the generation of retinal [41–44] and corneal 
[45–47] epithelial lineages and ocular organoids [5–9, 11, 

Fig.1   a An IVCM image of a healthy cornea epithelium (5  µm 
depth). b Similar image of the previously damaged cornea in the 
other eye of the same patient (same depth) 6 months after LSC trans-
plantation. The difference from the healthy cornea is subtle and not 
easily discernible. c The probability density function of the cell sizes 

in the image of panel a (blue) and the post-operative cornea at 6 (as 
in panel b, red), 12, 18, and 24 months after surgery (as specified in 
the legend). The probability density at 6–18 months after the opera-
tion is clearly abnormal but recovers 24  months after the surgery 
(green line)
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14, 48], as well as for furthering knowledge of human 
development [49].

Many mathematical and statistical models have been 
explored for describing various aspects of differentiation 
behaviours, including proposed generalised differentiation 
pathways [50, 51], the regulation of intra-cellular pluri-
potency transcription factors [19, 52–56], the impact of 
cell-cell interactions [57], and the colony-scale spatial pat-
terning in cell differentiation [57–60]. Previous models 
have also explored a computational approach to captur-
ing the gene regulatory network (GRN), including a net-
work model which describes 17 pluripotency factors to 
derive a set of components and interaction combinations 
to explain observed embryonic stem cell behaviour [61], 
and a Boolean simulation framework to predict signal-
controlled GRN logic and stem cell fate decisions [62]. 
Similar models have recently been incorporated into multi-
scale models which also describe cell size, position, and 
proliferation, as well as the GRN, allowing the exploration 
of the effects of the GRN on tissue patterning, composi-
tion, and dynamics [63].

Since differentiation is highly variable and influenced 
by a wide range of intra- and extra-cellular factors, many 
of which are hidden or unknown, pluripotency is often 
described using stochastic models, which account for the 
inherent random variations in the system, such as stochas-
tic differential equations (SDEs) and stochastic network 
models. Recent SDE models include the stochastic logistic 
equation for the fluctuation of the pluripotency factor Oct4 
in hPCs [19] and a model based on the stochastic Fokker-
Planck equation model for cell state transitions in induced 
pluripotent stem cells (iPSCs) [64•]. Stochastic network 
models have been used to describe the differentiation of 
mouse embryonic cells [65•] and mapping the epigenetic 
Oct4 gene regulatory network [66]. Further details on the 
methodology of stochastic processes and their applications 
in cellular biology can be found in Refs. [67, 68].

It has been suggested that it is more useful to think of 
pluripotency as a statistical property (macro-state) of a 
stem cell population as a whole, as pluripotency is not well 
defined at the single-cell level [69], leading to models of 
cell fate decisions which use methodologies from statisti-
cal mechanics [70]. For example, analysis of mouse embry-
onic stem cell differentiation through the neuronal lineage 
found cell transition through a chain of unobserved molecu-
lar states in a stochastic, sequential manner, leading to a 
description of cell differentiation as a non-Markovian sto-
chastic process (as opposed to a Markovian process, in which 
such transitions depend on some previous states, which is 
described as a ‘memory effect’) [71]. A recent review of the 
relevant concepts of statistical mechanics, including entropy, 
stochastic processes, and critical phenomena, in relation to 
single-cell biology can be found in Ref. [49].

Developments in ML are also facilitating advancements 
in the mathematical descriptions of pluripotency. CNNs 
have been used to assess the multipotency level of human 
nasal turbinate stem cells from several donors based on 
cell morphology in confocal images with 85% accuracy 
when compared to differentiation efficacy via in vitro and 
ex vivo assessments [72••]. They have also been used to 
predict differentiation in retinal organoids based on bright-
field imaging, before the onset of reporter gene expression 
[73••]. Upon comparison with a human-based classifier, the 
neural network algorithm performed better than an expert in 
predicting organoid fate (84% vs 67%), demonstrating the 
power of neural networks for predicting differentiation in 
retinal organoids.

CNNs have also been applied to the classification of 
iPSC-derived cells to evaluate the differentiation efficiency 
of iPSC retinal pigmental epithelium cells [74••]. The 
model showed capabilities to classify iPSCs, iPSC-RPEs, 
and iPSC-retinal ganglion cells with an accuracy of 97.8% 
and accurately recognised the differentiation of iPSC-RPEs, 
suggesting that such a rapid screening/classification system 
could facilitate the translation of iPSC-based technologies 
into clinical uses. Another CNN has been able to identify 
vascular endothelial cells derived from iPSCs without the 
need for immunostaining or lineage tracing, based purely on 
cell morphology from phase contrast images [75].

The understanding of the cell differentiation pathways 
has developed to involve more and more sophisticated math-
ematical concepts and models. As in other applications of 
mathematical tools in biology, close collaboration between 
mathematicians and biologists, including laboratory experi-
ments targeted to verify and refine theoretical models, is 
essential for further progress.

3D Modelling of Organoids

The development of ocular organoids derived from hPSCs 
has been a crucial advancement in stem cell science, provid-
ing a comprehensive and realistic in vitro model reproducing 
the fundamental properties of its in vivo counterpart and 
facilitating the study of human development and disease. 
Corresponding three-dimensional (3D) computational mod-
els can provide a complementary in silico means of experi-
mentation and prediction.

Computational models for organoids vary in complex-
ity, detail, scale, and the fundamental properties they seek 
to describe. Many models take a mechanistic biophysical 
approach, seeking to describe the cellular self-organisation, 
mechanical forces, and molecular signalling centred on 
known physical and biochemical principles [76–78]. Some 
models are continuum-based, focusing on approximating 
the biophysical properties on a macro-scale level using 
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differential equations (i.e. describing an organoid as a whole 
rather than as a population of individual cells). Continuum 
models are well suited to describing overall mechanical 
behaviours of tissues [79], including self-organisation [60, 
80]. A recent continuum model has been used to explore the 
optimisation of organoid culturing in a bioreactor, describ-
ing the spatio-temporal transport of key metabolites in terms 
of a system of partial differential equations [81•].

An alternative approach is discrete modelling (e.g. agent-
based models (ABMs), individual based models, cellular 
automaton models), encompassing both lattice and lattice-
free models, where the behaviour of each individual cell or 
group of cells is described. Discrete models are a powerful 
tool for modelling 3D cellular structures, including ocular 
organoids, as they reveal how the interactions of individual 
cells (micro-scale features) affect the large-scale processes 
(macro-scale behaviour). Such models are well suited for 
exploring spatial patterning and self-organisation.

ABMs have been suggested as a valuable technique for 
modelling retinal cell transplantation, due to their ability 
to capture a specific spatial architecture (e.g. the colum-
nar structure of photoreceptor cells), incorporate hetero-
geneity (e.g. including a range of cell types with different 
mechanical, migratory, and chemical response behaviours), 
and include the intrinsic stochasticity [82]. Various forms 
of discrete models have also been shown to be capable of 
capturing collective properties that appear in organoids, for 
example, collective cell migration [83].

Combined with the clonal analysis, an ABM was used 
to show that retinal stem cells modulate the proliferative 
parameters that coordinate post-embryonic morphogen-
esis in the eye of fish [84•]. This model, developed in an 
earlier work [85], allows the spherical cells to move freely 
off-lattice, equilibrating their distance to neighbours by 
exerting pressure or adhesion forces, with the movements 
constrained to the hemispherical surface area of a growing 
eye globe. Cell division occurs probabilistically until the 
local cell density becomes too high, with the daughter cells 
positioned to initially overlap but gradually separating by 
displacing their neighbour cells. The model is used to inves-
tigate two synthetic growth mechanisms (‘inducer’ growth 
where cell division drives the growth of the eye radius and 
‘responder’ growth where the growth of the eye globe radius 
stimulates cell division). The simulations showed that the 
inducer and responder growth modes differ in the variability 
of the cell division timing, resulting in distinct clonal pat-
terns that reproduced experimentally observed differences 
between neural retina (described by ‘inducer’ growth) and 
RPE (described by ‘responder’ growth) [84•]. An overview 
of a range of mechanical models for retinal organoid mor-
phological organisation can be found in Ref. [86].

ABMs have also been used to explore the mechanisms of 
corneal wound healing following chemical exposure [87]. 

Using the open-access CompuCell3D software [88], the 
ABM describes the differentiation and proliferation of sev-
eral epithelial cell types throughout the regeneration process 
of the corneal epithelium under homeostasis and varying 
levels of injury severity [87]. The model has the corneal epi-
thelial structure as an emergent feature and recapitulates the 
time of recovery for slight and mild injuries [87] but deviates 
from expected in vivo recovery for moderate injuries due to 
the lack of necessary cell types (e.g. keratocytes) required 
for full restoration. The next step in model development is 
to integrate bioactivity data from in vitro models of cor-
neal toxicity and predict human-relevant adverse outcomes, 
including loss of structural integrity, time to recovery, and 
area and density of opacification [87].

Modelling techniques can also be combined to identify the 
key cell and environment properties of these complex multi-
scale systems. For example, a model for the self-organisation 
of hPSC-derived optic-cup organoids takes an agent-based 
approach to the cellular structure, using a 3D vertex model, 
coupled with a continuum approach to the inter-cellular bio-
chemical signalling based on a reaction-diffusion mechanism 
[89]. This model enabled a quantitative prediction of mor-
phogenesis and suggests that mechanical forces play a key 
role as a feedback regulator in self-organising the 3D optic-
cup formation. Such a synthetic modelling approach deserves 
further development.

It is not surprising that ML is also becoming influential in 
3D organoid modelling through its ability to provide insights 
in differentiation pathways and colony organisation [90, 91] 
and enhance the efficiency of 3D cell-detection software 
[92]. Recent synergies between ML and ABMs have the 
potential to advance the development of biomedical system 
models even further, with ML used as a tool to infer optimal, 
application-specific ABM rules, while ABM simulations 
provide means to generate large amounts of data, which can 
then be fed into an ML framework [93]. A review of ML 
methods in organoid modelling can be found in Ref. [94].

Model Parameter Inference

Maximising the predictive power of any mathematical or 
computational model of a biological system requires the 
inference of representative parameters from both the real 
(e.g. from a laboratory experiment) and modelled data. 
Furthermore, adequate statistical tests must be applied to 
assess the level of agreement between different parameter 
measurements, either experimental or resulting from mod-
elling. However, it is often difficult or impossible to obtain 
experimental data required to understand the biophysical 
properties of each element of a complex, multi-scale model. 
There are also common data quality issues such as incom-
pleteness and biases. Furthermore, the inherent stochasticity 
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and multi-scale complexity of many of these models can 
make the implementation of sophisticated statistical infer-
ence techniques computationally challenging.

For complex, multi-scale models, a combination of 
parameter estimation methods is usually employed based 
on data availability. For example, the earlier discussed model 
for the self-organisation of hPSC-derived optic-cup orga-
noids [89] obtained some parameters from previous litera-
ture and performed specific experiments to measure others 
(e.g. thickness of the epithelial sheet, length of apical and 
basal surfaces, and cell density). The free parameters that 
were not obtained experimentally were constrained through 
multiple computational simulations to obtain those that reca-
pitulated the optic-cup formation.

The Bayesian paradigm provides a natural mechanism for 
handling partially observed datasets, incorporating obser-
vation errors, and quantifying and propagating the uncer-
tainty in the model parameters and dynamic components. 
For mechanistic models formed of systems of stochastic 
differential equations with tractable likelihoods, or suitable 
tractable approximations to the model likelihood, Markov 
chain Monte Carlo methods can be used [95, 96], common 
for applications in systems biology [97, 98]. Such techniques 
have been employed to infer model parameters for stem cell 
methylation patterns in colonic crypts, including cell popu-
lation numbers, niche succession time, and the rate of the 
methylation/demethylation process [99]. Bayesian infer-
ence has also been applied to morphogenesis, treating cells 
as information processing agents, where the driving force 
behind morphogenesis is the maximisation of a cell’s model 
evidence [100]. Furthermore, Bayesian inference techniques 
have also been used in the development of quantitative meas-
ures of corneal transparency [101].

For discrete models, where likelihood-free methods 
are required, approximate Bayesian computation (ABC) 
schemes can be employed [102, 103]. Such techniques 
have been applied to models describing cancer [104] and 
stem cell division [105] in colonic crypts, quantifying 
cell-cell adhesion in cell migration in wound healing 
[106] and stem cell barcoding [107]. Although insightful 
tools, the implementation of inference schemes can be 
computationally demanding. This is driving developments 
in high-performance computing algorithms [108] and 
applications of supervised ML techniques to accelerate 
Bayesian inference techniques [109•].

Experimental data are most often described using the 
properties of a Gaussian random variable (i.e. average val-
ues and standard deviations). Although a variety of experi-
mental datasets indeed have Gaussian statistical properties 
or are closely related (e.g. log-normal), deeper and more 
sophisticated analyses often involve variables that do not 
have Gaussian properties. When such variables are meas-
ured in a laboratory experiment, their statistical properties 

and parameters need to be explored and identified and then 
described in sufficient detail if different experiments are to 
be compared or if the results are to be used for modelling. 
Moreover, there are statistical descriptors of spatially distrib-
uted signals (such as the distribution of cells of various types 
in 3D) that cannot be described in terms of specific numeri-
cal values. For example, the spatial structures in 3D and their 
inter-connectedness can be efficiently described in terms of 
the Betti numbers (see Ref. [110] for an application-oriented 
review) and represented in the form of a cloud of points 
in the plane. Such data requires novel statistical criteria to 
be assessed and compared, and they are an area of active 
research in statistics [111], including their application to the 
analysis of diabetic retinopathy images [112•].

Limitations of Computational Models

Computational methods are driving innovations in diagnos-
tic image analysis and provide a powerful tool for explor-
ing many aspects of hSC behaviour, including the GRN, 
prediction of cell fate, and self-organisation. However, to 
ensure the models developed are representative of the real-
world system, it is essential that they are underpinned by 
experimental data. Computational models are designed to 
complement rather than replace laboratory experiments, 
with in vitro experimental results driving in silico model 
development and in silico model results guiding focused 
in vitro experimentation. Model development also requires 
non-trivial assumptions to simplify the complex multi-scale 
physical system into a distilled selection of behaviours of 
interest, which requires careful navigation using interdisci-
plinary expertise. A balanced appraisal of the capacities of 
computational models using examples from embryogenesis 
is given in Ref. [113].

Conclusions

The recent advances in the development of state-of-the-art 
ocular organoids and stem cell therapies hold great promise 
for translational medical technologies, as well as for deep-
ening our understanding of the fundamental properties of 
hSC systems and human development. Of key importance to 
maximising their potential is an interdisciplinary framework 
that blends sophisticated data analysis and empirical evi-
dence from laboratory experimentation with mathematical 
and computational modelling.

The stochastic, complex, multi-scale nature of hSC 
behaviours, particularly when considering 3D organoid 
structures, makes their quantitative modelling a mathemati-
cal and computational challenge, and thus, models often 
focus on a simplified version of the system or consider a 
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handful of key behaviours to prioritise, based on the research 
question at hand. It is clear that the most insightful mod-
els discussed in this review use computational and in vitro 
experimentation in a complementary manner.

Advances in ML tools are providing new ways to 
approach image processing, image classification, in silico 
model development, and parameter inference. Of particu-
lar importance is the potential of ML tools to aid clinical 
diagnosis and assess response to treatment from IVCM and 
optical coherence tomography images, as has already been 
explored for several eye conditions, including LSCD. Future 
research should expand upon these applications, for exam-
ple, through the study of IVCM on corneal nerves and den-
dritic cells in patients with neurotrophic keratopathy [114].

Future computational work will no doubt continue pri-
oritise the application of ML to predicting hSC differentia-
tion pathways and patterning, describing self-organisation 
behaviours, and enabling diagnostic image analysis and thus 
will facilitate the development of more comprehensive in 
silico models of hSCs and computer-aided diagnostic tools.
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