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Abstract
Purpose of review Hematopoietic stem cells (HSCs) drive blood-cell production (hematopoiesis). Out-competition of HSCs 
by malignant cells occurs in many hematologic malignancies like acute myeloid leukemia (AML). Through mathematical 
modelling, HSC dynamics and their impact on healthy blood cell formation can be studied, using mathematical analysis 
and computer simulations. We review important work within this field and discuss mathematical modelling as a tool for 
attaining biological insight.
Recent findings Various mechanism-based models of HSC dynamics have been proposed in recent years. Key properties of 
such models agree with observations and medical knowledge and suggest relations between stem cell properties, e.g., rates 
of division and the temporal evolution of the HSC population. This has made it possible to study how HSC properties shape 
clinically relevant processes, including engraftment following an HSC transplantation and the response to different treatment.
Summary Understanding how properties of HSCs affect hematopoiesis is important for efficient treatment of diseases. 
Mathematical modelling can contribute significantly to these efforts.
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Introduction

To understand cell dynamics in a living organism, it is cru-
cial that any tool for observation—be it an experimental, 
theoretical, or metaphorical tool—interferes as little as pos-
sible with the system being observed. The heat of a lamp or 
the disturbance of a needle might perturb the behavior of the 
biological system and lead to erroneous conclusions about it. 
In fact, it is well-known from fundamental physics that any 
observation perturbs the observed system, and hence that 
any experiment should minimize such unwanted perturba-
tions [1]. Hence, it can be preferable to deduce biological 
insights, not only from direct measurements, but also indi-
rectly based on non-invasive observations. One particular 

tool for such a task is mathematical modelling. By math-
ematically representing key components and mechanisms 
of a biological system, it is possible to carry out calcula-
tions and mathematical analysis, granting insight about the 
mathematical representation which may also hold for the 
biological system being modelled.

Simultaneously, mathematical modelling can be a tool 
for verifying if observed phenomena follow naturally from 
a particular proposed biological mechanism, or if some other 
explanation agrees better with observed data.

An area of research where mathematical modelling has 
been used recently is in understanding hematopoiesis, the 
process of blood cell production. Hematopoiesis arises from 
hematopoietic stem cells (HSCs), which are typically found 
within the bone marrow (BM). While the observation of blood 
cells and their abundance can be informative about hemat-
opoiesis, the specific properties and dynamics of HSCs in their 
natural setting remain elusive. Mathematical modelling is one 
method for investigating HSCs via indirect observations from 
blood samples and for verifying or proposing novel ideas and 
hypotheses about the mechanisms underlying HSC regulation.

In this article, we give an overview of the role mathemati-
cal modelling has played in understanding the behavior of 
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HSCs. Some of the approaches and concepts are illustrated 
in Fig. 1 for reference.

The Benefit of Mathematical Modelling

Mathematical modelling has long been used to investigate 
biological systems, particularly the human body. In a recent 
overview, Mackey and Maini [2] address the question “What 
has mathematics done for biology?” and discuss significant 
results about biology arising from mathematical investiga-
tions, with examples from diverse areas like pattern forma-
tion during embryonic development, atherosclerosis and 
neuro-oncology, among others.

In addition to the challenge of obtaining data without  
disturbing the biological system, as discussed above, ethi-
cal concerns may result in additional restrictions on which 
type of investigation is possible. Hence, mathematics is not 
simply a tool for making forecasts from existing data but can 
also contribute—as a “mathematical microscope”—to access 

otherwise hardly accessible properties of a biological system 
[3]. Using mathematical modelling, the relation between bio-
logical mechanisms and observations can be quantitatively 
understood, and novel ideas can be studied mathematically 
before doing costly experiments or clinical trials.

Most malignant hematological diseases are driven by 
(cancer) stem or progenitor cells, but only limited informa-
tion about their dynamics can be derived from clinical meas-
urements, e.g., bone marrow biopsies. Due to the discomfort 
imposed on the patient and potential risks, marrow biopsies 
are acquired at a lower frequency compared to blood sam-
ples. Mathematical modelling makes it possible to extract 
additional information from blood samples compared to 
current clinical practice. In particular, mathematical mod-
els can link peripheral blood cell counts to processes in the 
bone marrow and can, therefore, be used to make implica-
tions about stem and progenitor cell abundance and dynam-
ics based on the blood samples which are routinely taken 
during follow-up examinations. This is clinically relevant  
since it illuminates the stem cell dynamics and their role 

Fig. 1  Mathematical modelling of hematopoietic stem cells covers 
a wide range of approaches and ideas. In the figure, some example 
concepts are illustrated. These illustrations do not reflect any particu-
lar model described in this paper but are only conceptual. Left panel: 
Starting from biological knowledge, the first step in mathematical 
modelling is to construct an abstract representation of the system 
considered. Such abstract representation could, as an example, be 
a diagram of cell behavior. A different abstraction is the compart-
ment diagram, in which each group of cells is illustrated as a com-
partment, with arrows representing flows of cells from one com-
partment to another. In such diagrams, compartments do not need 
to correspond to biological compartments but can resolve more or 

less details of cellular sets or populations. Middle panel: There exist 
multiple mathematical or computational frameworks to represent a 
model. Common examples are systems of ordinary or stochastic dif-
ferential equations, or individual-based/agent-based models, but a 
multitude of other frameworks has emerged. Right panel: Through 
analysis and simulation of a mathematical model, it is possible to 
investigate different aspects, and in turn provide potential insights 
into the real system being modelled. At the top, we illustrate how 
a model could investigate the effects of hypothetical medical inter-
ventions, while the bottom figure illustrates how differences in cell 
properties can yield different outcomes of some, here unspecified, 
outputs of interest
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in disease progression [4–8, 9••]. Similarly, mathematical 
models can extract complementary information about stem 
or progenitor cell kinetics by combining marrow and blood 
samples [8, 9••, 10, 11].

A broad range of quantitative methods in biology and 
medicine rely on mathematical models. However, most often 
the mathematical models are hidden in lab equipment or 
protocols of data analysis. Well-known examples encom-
pass CT-, MR-, MRI-, ultrasound scanners, measurement of 
blood pressure by plethysmography and cuffs, administration 
of anesthesia [3, 12–15], or regression models establishing 
correlations between biomarkers and quantities of interest.

Mathematical Models of HSCs

In this section, we supplement recent reviews of mathe-
matical modelling of stem cell function written by Stiehl 
and Marciniak-Czochra [16], and Brunetti, Mackey, and 
Craig [17].

In 1978, Mackey proposed a mathematical model [18] 
which inspired many of the mathematical models of blood 
cell formation that we describe in this article. The model 
proposed by Mackey describes the dynamics of a popula-
tion of pluripotent stem cells, explicitly considering the cell 
cycle with HSCs shifting between a proliferating phase and 
a G

0
 resting phase. Analyzing the model, the author con-

nects changes in stem cell proliferation with the production 
of blood cells. The author focuses on a group of specific dis-
orders characterized by periodic oscillations of mature blood 
cell counts. Mathematical models of this class of diseases are 
also reviewed by Dale and Mackey in 2015 [19]. The early 
paper by Mackey is an illustrative example of how math-
ematical modelling can be used to relate cell properties, e.g., 
the rate of apoptosis to dynamics of the entire pool of HSCs.

In a later paper [20], Mackey shows that the equivalent  
of the total human body weight worth of blood cells is pro-
duced about every 7 years in the typical human adult. In 
the same paper, the author relates an extended version of 
his previous model to data from an HSC-labelling experi-
ment, estimating the differentiation rate of HSCs in humans 
to be between 0.01 and 0.02  days−1 and the apoptosis rate 
between 0.07 and 0.23  days−1 in a steady-state situation, i.e., 
in a situation where cell counts remain constant. In a simi-
lar effort to understand HSC processes, Abkowitz and col-
leagues [21–24] relate stochastic models of HSCs to in vivo 
data of murine, feline, and human origin, and are able to 
obtain estimates of, e.g., the replication rate of human HSCs. 
Furthermore, the authors suggest that the number of HSCs 
is comparable across different mammals, with estimates 
for humans observed in the blood, the success is onlyin the 
range of 11,400 to 22,400 [23]. Based on this work and [22],  
Catlin et al. [24] use 11,000 HSCs as an estimate for the 

steady-state size of the HSC pool, a number which has been 
used subsequently in several other models of HSC dynam-
ics. Further examples of the application of mathematical 
models to infer cell kinetics based on labelling experiments 
in animals can be found in [25••] and [26].

Another early approach to model HSC dynamics is pro-
posed in the work of Dingli and Michor [27]. In this model, 
hematopoiesis is described by a system of ordinary differ-
ential equations, in which one of the variables represents the 
pool of HSCs. The authors consider a rate of self-renewing 
production of HSCs, a rate of apoptosis as well as a rate of 
production of differentiated mature blood cells. The model 
is then extended for a population of leukemic stem cells 
(LSCs) with similar behavior, where division rates of the 
healthy HSCs and the LSCs are negatively regulated by the 
total number of stem cells. The resulting model captures how 
healthy hematopoiesis is suppressed by an increase in LSCs 
as hematologic malignancy progresses. The most significant 
result of the mathematical analysis is provided in the title: 
“Successful therapy must eradicate cancer stem cells” [27]. 
The high genetic similarity of diagnosis and relapse samples 
in acute myeloid leukemia, a severe blood cancer, supports 
this claim. Observations in sequencing studies are in line 
with the concept that the relapse is either triggered by can-
cer stem cells which have survived therapy or by malignant 
or pre-malignant stem cells which have acquired additional 
mutations [54]. This suggests that while some leukemia 
therapies may be successful at reducing the disease burden 
observed in the blood, the success is only temporary if they 
do not act on the population of HSCs and LSCs. This con-
clusion has later been confirmed by related models [6, 28]. 
In their later work, Dingli and coworkers propose models 
of hematopoiesis which account for multiple immature cell 
states [29, 30]. These models are used to predict the number 
of mitotic events linking the stem cell state to the mature cell 
compartment and to infer the phenotypic consequences of a 
mutation linked to oscillating blood cell counts.

Another approach to the mathematical modelling of HSCs 
is described in the model proposed by Roeder and Loeffler 
[31] and further investigated together with coworkers [32–34]. 
In the model, cells are assumed to move between two dis-
tinct growth environments, named GE-A and GE-Ω. In one 
of these abstract environments, GE-Ω, the cells are actively 
cycling and dividing while they are quiescent (non-dividing) 
in the other environment, GE-A. Each cell is characterized 
by its cycling status and its affinity to the GE-A environment. 
In contrast to other HSC models where a predefined pool of 
HSCs divides according to a model recapitulating the clas-
sical cell cycle phases, the model of Roeder and Loeffler 
[31] considers stemness and cycling activity as a property 
that emerges from cells dynamically switching between the 
two environments. The switching of a given cell between the 
environments is described as a function of its affinity to the 
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GE-A environment and of the cell counts. Affinity is pre-
served or raised during quiescence while division degrades 
affinity. When affinity is sufficiently small, the cell is con-
sidered as terminally differentiated and unable to return to 
quiescence. Roeder and Loeffler [31] show through model 
simulations that the model is consistent with various experi-
mental results from the literature, including those discussed 
by Abkowitz et al. [21]. Hence, the model provides a frame-
work to understand experimental data, with the perspective 
that one should not only consider cell stemness as intrinsic 
to the cells but rather consider the interaction between HSCs 
and their environment. The notion of HSC reversibly exiting 
and re-entering quiescence, possibly adapting dynamically to 
external signalling, is in agreement with the notion of bone 
marrow stem cell niches, i.e., specific micro-environments 
supporting HSC quiescence and repair. A thorough review 
of the biological research on HSC niches is given by Wilson 
and Trumpp [35]. Trumpp, Essers, and Wilson [36] suggest 
that hematologic malignancies could be efficiently treated by 
combination therapy in which one drug stimulates the activa-
tion of quiescent HSCs while another drug then eradicates the 
newly activated non-quiescent HSCs. This is later investigated 
in the work of Glauche et al. [37] by adapting the model from 
[31], providing a mechanistic explanation behind the efficacy 
of combination therapy of chronic myeloid leukemia (CML).

A recent study by Ashcroft and colleagues models the 
binding of HSCs to HSC-specific niches in the bone marrow 
[38••]. In the model, HSCs detach from the niche and enter 
the peripheral blood at a certain rate. Upon returning to the 
bone marrow, the HSCs can reattach to unoccupied niches. 
Natural death of HSCs is assumed to occur more frequently in 
the peripheral blood, while only niche-bound HSCs divide. In 
the model, the majority of HSCs are assumed to be attached 
to a niche and quiescent, with a low number of unoccupied 
niches available in steady-state hematopoiesis. While Ash-
croft et al. specifically relate the model to murine data, the 
model and related results should be valid for human HSCs as 
well. By using ordinary and stochastic differential equations, 
the authors investigate the prerequisites for clonal dominance 
in the stem cell niche. They conclude that clonal dominance 
in mice requires a selective advantage and cannot be the result 
of neutral drift. Furthermore, their model is used to investi-
gate HSC dynamics after bone marrow transplantation. In 
this context, transplantation with and without prior emptying 
of the niches by chemotherapy (so-called preconditioning) is 
considered. Following the transplantation of HSCs without 
selective advantage into the blood stream, the engraftment 
of the transplanted cells in the bone marrow is limited by the 
number of unoccupied niches. The model can explain the 
experimental observation from Bhattacharya et al. [39, 40] 
that multiple smaller transplantations over a few days can 
lead to higher uptake of HSCs into the murine bone marrow 
compartment compared to a single-bolus transplant [38••]. 

The authors also use the model to predict the chimerism 
(abundance of donor-derived cells) after the transplantation 
of cells without selective advantage. Furthermore, Ashcroft 
et al. [38••] investigate how the probability of reconstitution 
after preconditioning depends on the transplanted stem cell 
dose. Special attention is paid to the scenario where only a 
single cell is transplanted. Experimental verification of such 
scenarios can be challenging, although not entirely impossi-
ble [41]. This is an example of an experiment that can easily 
be carried out in silico in a mathematical model. A related 
example is how patients, which in reality can only receive 
one treatment at a time, would have responded to a different 
treatment protocol or a different stem cell dose [42]. Other 
models of bone marrow transplantation include [43, 44] for 
the human and [45••] for the murine case.

Based on the observation that HSC counts are reduced in 
many acute myeloid leukemia (AML) patients [46], Stiehl 
et al. and Wang et al. [9••, 46] propose a model where HSCs 
and LSCs share a joint stem cell niche. This model is an 
extension of previous models which have been shown to 
recapitulate clinical blood sample data over time following 
bone marrow transplantation [42, 43] and the growth of leu-
kemic cells [8, 9••, 10]. The model is given by a system of 
ordinary differential equations. Stem cell dynamics in the 
niche are coupled to the time evolution of progenitor, pre-
cursor, and mature cells as well as leukemic blasts. Clonal 
heterogeneity of HSCs and in turn the expansion of, e.g., 
a leukemic clone in the model of [38••] requires the pres-
ence of unoccupied niches and spontaneous detachment of 
HSCs from the niches. The model proposed in [9••, 46] 
considers a scenario where LSCs can actively dislodge 
HSCs from the niche. Since stem cells require the niche to 
maintain stemness properties, an invading clone has to con-
quer niche spaces to expand. Upon division of a LSC one of 
the two progeny occupies the niche of the parent, whereas 
the other attempts to dislodge an HSC from the niche. If 
this is successful, the dislodged HSC differentiates and the 
LSC maintains its stemness. In the opposite case, i.e., after 
a certain number of futile dislodgement attempts, the LSC 
differentiates. Similar assumptions hold for HSCs; however, 
to observe the expansion of leukemic cells, the probability 
that LSCs dislodge HSCs must outweigh the probability that 
HSCs dislodge LSCs. A leukemic clone with a sufficiently 
pronounced ability to dislodge HSCs is able to take over the 
niche, while the blood production might initially only show 
minor signs of the disease since it is transiently maintained 
by long-term progenitors. This model can explain the obser-
vation from [46] that AML patients with low HSC frequen-
cies (in [46] defined as HSC frequencies below 15% of the 
median HSC frequency of healthy human individuals) have 
a poor survival. Furthermore, it is in line with the observa-
tion that HSC counts decrease before overt relapse of the 
AML [46]. Models assuming that HSCs and LSCs reside 
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in separate niches and interact via systemic feedbacks that 
depend on the mature cell and leukemic blast counts cannot 
reproduce these observations [46]. A quantitative version of 
this model can be used to understand how the competition 
of stem cells for niche spaces impacts the clinical course 
of AML [9••, 11]. The authors develop a model-based risk 
stratification which uses HSC and blast counts at the time of 
AML diagnosis [9••] and show that this approach allows to 
refine the prognostic scoring of the patient cohort from [46].

In most of the models discussed above, the number of HSC 
niches is assumed to be independent of the dynamics of the 
HSC pool. To investigate the effect of feedback from HSCs to 
the niche-forming cells, [47] explicitly model the population 
of niche cells. Under the assumptions that niche cells undergo 
apoptosis in the absence of HSCs and that contact of HSCs 
to niche cells induces quiescence of HSCs but proliferation 
of niche cells, the model exhibits a homeostatic state. After 
perturbations, the model returns to homeostasis in a dampened 
oscillatory manner reminiscent of integral feedback control. 
The work of [47] illustrates that explicit modelling of the cells 
constituting the BM-niche can provide additional insights into 
the regulations of HSC dynamics.

Finally, recent work by the authors of this review aimed to 
model competition between HSC clones through niche occu-
pation. Inspired by many of the models described above, a 
model was proposed in which competition for a limited pool 
of niches naturally leads to an expression of HSC fitness 
[48]. When two clones compete for the same niche space, 
e.g., in a situation where a leukemic clone has arisen due to 
mutations, the clone-specific fitness determines which of 
the two clones will eventually out-compete the other. In a 
scenario where the two clones have the exact same fitness, 
the clones will co-exist indefinitely. The model provides an 
expression of clonal fitness in terms of stem cell proper-
ties such as rates of proliferation, differentiation, and niche 
attachment. Combining this HSC model with a previous 
model of myeloproliferative neoplasms (MPNs) developed 
by Andersen et al. [49] suggests that differences in HSC 
fitness can explain both the disease-progression of MPNs 
as well as the efficacy of certain treatment protocols [50].

As approximations of reality models naturally have limi-
tations. Besides limitations originating from the mathemati-
cal assumptions of the used modelling frameworks such as 
the high computational costs in the case of individual-based 
models or the neglect of random events in ordinary differ-
ential equation, there exist limitations coming from gaps in 
biological knowledge or from simplifying assumptions made 
during model design. One common source of limitations is 
the sparsity of in vivo data, especially in the human case. 
This sparsity originates from the inaccessibility of relevant 
quantities, such as kinetic parameters of stem cells, or the 
small number of follow-up time points. The sparsity of the 
data can lead to the unidentifiability of model parameters 

and, therefore, make it impossible to quantify important 
processes. Due to the sparsity of the data, it can also be 
challenging to distinguish between competing models. Since 
most human cancers require an instantaneous start of the 
therapy, longitudinal data of untreated cancers is practi-
cally unavailable. This makes it challenging to validate or 
to parameterize models of cancer dynamics. In most cases, 
invasive sampling techniques such as biopsies are required 
to extract the relevant information about a cancer. Since usu-
ally healthy individuals are not subjected to these invasive 
procedures, data on cancer evolution before clinical disease 
manifestation is rarely available. Therefore, a large part of 
our knowledge on tumor evolution is derived from experi-
mental data or has been obtained by applying modelling 
or heuristic techniques to samples obtained at the time of 
diagnosis. Furthermore, important parts of our pathophysi-
ological and pharmacological knowledge have been gained 
using animal or in vitro models, which do not necessarily 
reflect the human system [51, 52]. Although the latter may 
improve in the future due to advanced organoid or microflu-
idic systems, it has to be taken into account that human dis-
eases are more complex than specific experimental systems 
[51, 52]. These limitations make it vital to validate models 
using real-world data and to be aware of the simplifying 
assumptions that have been applied during model develop-
ment. In the context of personalized medicine, the applica-
bility of models in clinical routine is further limited by the 
large inter-individual heterogeneity of the disease evolution, 
which is impacted by potentially unknown disease-specific 
factors (e.g., key mutations), patient-specific factors and 
environmental factors. Partially, this heterogeneity can be 
incorporated by the choice of individual model parameters 
for each patient [8, 9••, 11]. This, however, requires that the 
individualized parameters can be estimated based on patient 
data or derived from statistical or other approaches. Integra-
tion of mechanistic and artificial intelligence models is a 
promising direction to improve personalized medicine [53].

Conclusion

Through mathematical modelling, a range of significant 
insights into the otherwise hidden in vivo dynamics of HSCs 
has been obtained.

While cell division, apoptosis, and differentiation of indi-
vidual cells are assumed to occur in response to a complicated 
system of regulatory processes, the average rates at which such 
events happen can often be estimated by relating mathematical 
models to experimental data. As an example, mathematical 
models can be used to understand how changes in such rates 
affect the production of blood cells. Such insight is particu-
larly useful when investigating hematologic malignancies, 
where a disease may be caused by mutations which alter the 
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rate at which a given biological process occurs. Mathematical 
modelling helps relate mutation-induced changes of stem cell 
properties to changes on the clinically accessible scale which 
are used to define disease entities. Furthermore, mathematical 
terminology and formalisms can substantially contribute to 
make more vaguely defined concepts rigorous whereby ambi-
guity may be avoided.

Naturally, there exist questions which are inaccessible to 
mathematical models and require in vivo experiments. Never-
theless, the methods of quantitative modelling provide a very 
useful starting point for investigating relevant hypotheses 
involving HSCs. Model selection techniques allow for falsify-
ing of hypotheses by comparing model dynamics to available 
data. If a model of HSC dynamics does not agree with clinical 
or experimental data, at least one of the hypotheses underlying 
the model has to be incorrect.

The works reviewed here show different approaches to 
model HSC dynamics mathematically. Although some aspects 
of different models might be inconsistent with each other, the 
variety of proposed models that agree with experimental data 
illustrates the enigmatic nature of HSC behavior. Furthermore, 
it underlines an important aspect of mathematical modelling: 
Although a particular mathematical model might not describe 
all components of a biological system in detail, the model 
dynamics can still be sufficiently accurate to provide valuable 
insight and forecast how the system would behave under cer-
tain circumstances. Hence, the current state of mathematical 
modelling of HSC dynamics is a useful part of bio-medical 
research. Further work on current models and the development 
of new models will be necessary to understand and interpret 
novel experimental findings.
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