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Abstract

Purpose of Review Muscular dystrophies (MDs) are a spectrum of muscle disorders, which are caused by a number of gene
mutations. The studies of MDs are limited due to lack of appropriate models, except for Duchenne muscular dystrophy (DMD),
myotonic dystrophy type 1 (DM1), facioscapulohumeral muscular dystrophy (FSHD), and certain type of limb-girdle muscular
dystrophy (LGMD). Human induced pluripotent stem cell (iPSC) technologies are emerging to offer a useful model for mech-
anistic studies, drug discovery, and cell-based therapy to supplement in vivo animal models. This review will focus on current
applications of iPSC as disease models of MDs for studies of pathogenic mechanisms and therapeutic development.

Recent Findings Many and more human disease-specific iPSCs have been or being established, which carry the natural mutation
of MDs with human genomic background. These iPSCs can be differentiated into specific cell types affected in a particular MDs
such as skeletal muscle progenitor cells, skeletal muscle fibers, and cardiomyocytes. Human iPSCs are particularly useful for
studies of the pathogenicity at the early stage or developmental phase of MDs. High-throughput screening using disease-specific
human iPSCs has become a powerful technology in drug discovery. While MD iPSCs have been generated for cell-based
replacement therapy, recent advances in genome editing technologies enabled correction of genetic mutations in these cells in
culture, raising hope for in vivo genome therapy, which offers a fundamental cure for these daunting inherited MDs.

Summary Human disease-specific iPSC models for MDs are emerging as an additional tool to current disease models for
elucidating disease mechanisms and developing therapeutic intervention.

Keywords Induced pluripotent stem cells - Muscular dystrophy - Model - Cell-based therapy - Genome editing

tissues. There are autosomal dominant, autosomal recessive,
and X-linked muscular dystrophy. Dominantly inherited MDs

Introduction of Muscular Dystrophies

Muscular dystrophies (MD) are a spectrum of inherited, pro-
gressive muscle diseases. The terminal pathology often shows
necrosis of muscles and replacement by fibrotic or fatty
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are largely caused by gain-of-function mechanisms, while re-
cessive MDs are primarily caused by loss of function. The
proteins that are involved in MDs are localizable to extracel-
lular matrix, sarcolemma, sarcomere, and myonuclei as well
as nonstructural enzymes. The current trend is to classify MDs
by the responsible genes, for example, sarcoglycanopathies,
dystrophinopathies, dysferlinopathies, caveolinopathies,
desminopathies, calpainopathies, and dystroglycanopathy.
The most common MD is Duchenne muscular dystrophy/
Becker muscular dystrophy (DMD/BMD) with a prevalence
of 1.52 per 10,000 boys ages 5-9 from 2006 to 2010 [1].
Myotonic dystrophy type 1 (DM1) is the most common
adult-onset MD with a prevalence of 10/100,000 [2—4].
Within limb-girdle muscular dystrophy (LGMD), the relevant
prevalence is 12% calpainopathy, 18% dysferlinopathy, 15%
sarcoglycanopathy, 15% dystroglycanopathy, and 1.5%
caveolinopathy [5]. The spectrum of MD is well-
summarized in a recent review [6].
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In genotype-phenotype correlations in MDs, we should
note two types of heterogeneities: (1) the same pattern of
muscular dystrophies can be caused by mutations in different
genes and (2) the different mutations in the same gene may
cause different patterns of muscular dystrophy. In terms of
pathogenic mechanism, myotonic dystrophy type 1 (DM1)
and type 2 (DM2) and oculopharyngeal muscular dystrophy
(OPMD) belong to a distinct group of muscular dystrophy
caused by RNA gain-of-function from trinucleotide repeat
expansion [2—4, 7-10], while facioscapulohumeral muscular
dystrophy (FSHD) is caused by the contraction of microsatel-
lite D4Z4 repeats [11], and the remaining MDs are caused by
point mutations, deletions, duplications, and inversions [6].
Patents with MDs are often succumbed to a long arduous
clinical course of progressive muscle weakness and wasting
often resulting in significant disability and various complica-
tions. There is currently no cure for MDs, and available treat-
ments are supportive care or of limited efficacy. Appropriate
disease models are important for elucidation of disease mech-
anism and identification of treatment target.

Models for the Study of Muscular Dystrophies
Before the Emerging of iPSC Technology

Drosophila, zebrafish, and mammalian models (mouse, rat,
hamster, and canine), including non-human primates, have
all been adopted for the studies of muscular dystrophies. A
large number of models have been developed and were
reviewed elsewhere [6, 12, 13]. Taking DM1 as an example,
approximately 20 mouse lines have been generated [9, 14,
15]. All these models have greatly enhanced our understand-
ing of MDs and testing therapeutic approaches. However, they
all have a common limitation; they are fundamentally non-
human models with different genomic backgrounds.
Furthermore, making animal models for each mutation that
causes a particular MD for all MDs is not easily achievable
due to time, effort, and cost. Human induced pluripotent stem
cell (iPSC) model may fill these gaps. In this short review, we
will summarize recent progress of using iPSCs as models for
the studies of MDs.

Human iPSC as Models for Disease
Mechanism Studies and Drug Discovery
of Muscular Dystrophies

The human iPSCs are generated by direct reprogramming of
human somatic cells. These human iPSCs possess many of the
properties of human embryonic stem cells (ESCs) and have
the potential to differentiate into any type of cell or tissue in
the body, including skeletal muscle cells and cardiomyocytes
[16, 17+, 18-29]. The most anticipated clinical application of
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iPSC technology has been personalized cell therapy. While
possible in principle, there are many hurdles to overcome
(tumorigenicity, immunogenicity, immaturity, integration with
existing cells in the tissue, and functional restoration) [29-31].
An immediate and practical application of iPSCs is to generate
in vitro isogenic disease models. Disease-specific iPSCs will
preserve the genetic mutations carried by the patient with the
functional human genomic background, which cannot be ac-
complished in animal models. Disease-specific iPSCs can re-
capitulate disease features and potentially become a platform
for drug development [32, 33]. Indeed, effective disease
modeling with human iPSCs has been demonstrated in many
inherited neurodegenerative disorders [32, 34-38], including
MD (Table 1).

Acquiring disease-specific iPSC is just the first step to
model MDs. To successfully model the disease, iPSC will
need to be differentiated into skeletal muscle progenitor cells
(SMPCs) (satellite-like cells) and muscle fibers for study of
muscle development and degeneration of a specific MD. The
current limitation is to generate homogeneous SMPCs and to
differentiate them into mature myofibers. Initially, the induc-
tion of skeletal muscle fibers from ESCs or iPSCs used spon-
taneous differentiation of embryoid bodies with conditional
transgene overexpression of key myogenic factors (PAX7,
PAX3, and MYOD1) [18, 22, 56, 57]. This strategy is not
applicable for clinical application of cell-based therapy due
to random integration of the exogenous DNAs, often using
viral vectors, which raises an issue for potential insertional
mutation [58]. More recently, serum-free and chemically de-
fined induction by activation of Wnt signaling and/or inhibi-
tion of bone morphogenetic protein (BMP) signaling has been
introduced and generated favorable results [16, 17, 20, 21, 59,
60]. In embryogenesis, Wnt-{3-catenin activation specifies
early paraxial mesoderm development, which subsequently
gives to skeletal muscle, whereas BMP inhibition can prevent
the newly specified paraxial mesoderm cells from drifting to a
lateral plate mesoderm, which is a tissue that contributes to the
long bones of the limbs but not skeletal muscle [61]. Wnt
signaling drives the symmetric expansion of satellite stem
cells [62]. Wnt-[3-catenin signaling is negatively regulated
by GSK3 [63]. GSK3 inhibitor (CHIR99021) is frequently
used to activate Wnt signaling. With the understanding of
above mechanism and the availability of cell signaling mole-
cules, skeletal muscle differentiation protocols are becoming
well established to acquire more homogeneous skeletal mus-
cle progenitor cells and muscle fibers.

Even though skeletal muscle is the affected tissues for most
muscular dystrophies, some MDs have multiple tissues and
organs affected, for example, cardiomyopathy in DMD
[64-66], EDMD [67, 68], and LGMD?2I [69-71] and
multisystemic involvement in DM1 and DM2 with progres-
sive muscle wasting, myotonia, cardiac conduction defects,
diabetes, gastrointestinal malfunction, and central nervous
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Table1 MD iPSC lines discussed in this review

ref

Muscular dystrophy Study type Published journal First author (year)

DMD Disease modeling Cell. 134:877-886 Park et al. (2008) [39]
DMD Therapeutic genome editing Stem Cell Reports. 4:143—154 Li et al. (2015) [40]

DMD Therapeutic genome editing Mol Ther. 18:386-393 Kazuki et al. (2010) [41]
DMD Disease modeling/cardiomyocytes Int Heart J. 57:112-7 Hashimoto et al. (2016) [42]
DMD Mechanistic study Sci Rep. 5:12831 Shoji et al. (2015) [43]
DMD Drug discovery Stem Cells Transl. Med. 3:149-160 Abujarour et al. (2014) [44]
DMD Mechanistic study/cardiomyopathy Dis. Model. Mech. 2015 Lin et al. (2015) [45]
LGMD2B Therapeutic genome editing Mol Ther. 24:685-96 Turan et al. (2016) [46°]
LGMD2B Disease modeling PLoS One. (4):¢61540 Tanaka (2013) [47]

FSHD Mechanistic study PLoS Genet. 6:¢1001181 Snider et al. (2010) [48]
FSHD Disease modeling Stem Cells Transl Med. 5:1145-61 Caron (2016) [49]
LGMD2D Cell-based therapy Sci. Transl. Med. 2012;4 Tedesco et al. (2012) [50]
LGMD2D Therapeutic genome editing Mol Ther. 24:685-96 Turan et al. (2016) [46°]
LGMD2Z Disease modeling Stem Cell Research. 24:102—105 Wu (2017) [51]

LGMD2I Mechanistic study/cardiomyopathy Circ Genom Precis Med. 11:¢001893. El-Battrawy et al. (2018) [52]
DMI Disease modeling Cell Reprogram. 15:237-48 Xia (2013) [53]

DM1 Therapeutic genome editing Stem Cells. 33:1829-38 Xia et al. (2015) [54]

DMI Therapeutic genome editing Mol Ther. 24:1378-87 Gao et al. (2016) [55]

system impairment [4, 72—74]. The pluripotency of iPSC to
differentiate to all somatic cell types makes it an attractive
model. Neural and cardiac systems are tissues developed early
in embryogenesis, and induced differentiation is relatively
easy. The induction protocols are well-defined, and commer-
cial kits are readily available. We routinely differentiate DM1
iPSCs into neural cells and cardiomyocytes, which show the
typical hallmarks of intranuclear RNA foci in DM1 (Fig. 1).
Other cells and tissue can also be generated from iPSCs to
unveil the mechanism of the disease in different tissues.
Owing to this advancement, iPSC models have shed light
on the pathogenesis of some MDs. DMD has been the focus of
iPSC-based studies, from mechanistic studies and drug dis-
covery to therapeutic genome editing and personalized cell-
based therapy. The first DMD iPSC line was established in
2008 [39], which was generated from skin fibroblast carrying
deletion of exon of 45-52 in the dystrophin gene. This iPSCs
are confirmed to carry the disease-specific genotype of their
parental cells. Since then, additional DMD iPSC lines have
been established [40—42, 75]. The early pathogenic events in
DMD can be effectively studied in skeletal myotubes induced
from patient-derived iPSCs. In one study using iPSC-derived
skeletal myotubes, the authors found control, and DMD
myotubes derived from iPSCs were morphologically and
physiologically comparable. However, electric stimulation of
these myotubes caused pronounced calcium ion (Ca®*) influx
only in DMD myocytes. Restoration of dystrophin by the
exon-skipping technique suppressed this Ca>* overflow and

reduced the secretion of creatine kinase (CK) in DMD
myotubes, suggesting the early pathogenesis of DMD can be
effectively modeled in skeletal myotubes induced from
patient-derived iPSCs [43]. Cardiac function is affected in
all patients with DMD over 18 years of age and is becoming
the most frequent cause of death [76]. The underlying mech-
anism of DMD-associated cardiomyopathy is not fully clari-
fied due to the infeasibility to acquire live cardiomyocytes
from the patients. Most of the studies were based on mdx
mouse model. Various abnormalities have been reported in
mdx mice [77-79]. However, mdx mice do not develop typical
cardiac presentation in DMD patients [80, 81]. DMD patient-
specific iPSCs can be successfully differentiated into contrac-
tile cardiomyocytes, which may recapitulate some of the
human-specific abnormalities underlying the patient pheno-
type such as arrhythmias and conduction block [42]. In addi-
tion, further mechanistic studies could be attempted using the
live DMD iPSC-derived cardiomyocytes for the understand-
ing of DMD cardiomyopathy. Currently, there is no curative
treatment for DMD cardiomyopathy. The unveiling of its
pathogenesis will enable the development and evaluation of
drug discovery.

LGMD2I is a dystroglycanopathy, caused by homozygous
or compound heterozygous mutation in the FKRP gene
(fukutin-related protein) [82]. Over 50% of patients had car-
diac involvement (progressive dilated cardiomyopathy and
ventricular tachycardia) [69-71]. The detailed molecular or
electrophysiological mechanism is not defined because of
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Fig. 1 DMI iPS cells derived neural stem cells, astrocytes, neurons, and cardiomyocytes

the difficulties of accessing live human cardiac cells and ani-
mal models failed to demonstrate cardiomyopathy [83]. A
recent study using human iPSC model shed light on the path-
ogenesis [52]. The author found that human iPSC-derived
cardiomyocytes from a patient with LGMD?2I (patient also
has dilated cardiomyopathy associated with recurrent ventric-
ular tachycardia) exhibited sodium, calcium, and K+ channel
dysfunction, leading to reduced amplitude and upstroke ve-
locity of action potentials as well as diminished Ca®* release.
The reduced upstroke velocity of action potentials may impair
the conduction of the excitation in the heart and the rhythm.
The diminished Ca®* release may reduce contraction force of
cardiomyocytes and cause dilated cardiomyopathy. This
disease-specific human iPSC cardiomyocytes can thus pro-
vide a platform for studies on the cardiac events in LGMD2I
and for drug discovery targeting cardiac myopathy.

The advantage of iPSC over primary culture of muscle cells
is that it will mimic the developmental stage of muscle devel-
opment and will help to understand whether the disease arises
from developmental process or degenerative process.
Facioscapulohumeral dystrophy (FSHD 1) is an autosomal
dominant muscular dystrophy caused by the deletion of a
subset of D474 macrosatellite repeat units in the subtelomeric
region of 4q on the 4A161 haplotype (FSHD 1). FSHD 1
iPSC lines were established for the disease mechanism studies
[48]. Using the disease-specific human iPSCs, the key func-
tion and implication of mRNA and protein of DUX4 in FSHD
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1 were able to be studied from the early development. The
author was able to confirm their findings in other model sys-
tem of the developmental regulation of DUX4 and their role in
FSHD. They found that the transition between DUX4 full-
length and DUX4 short-length expression is developmentally
regulated. DUX4 short-length, but not DUX4 full-length, was
detected in control fibroblasts. iPSCs derived from the control
fibroblasts expressed DUX4 full-length, whereas differentia-
tion of these cells to embryoid bodies resulted in a switch to
the expression of DUX4 short-length and loss of DUX4 full-
length. In contrast, DUX4 full-length was detected in FSHD
fibroblasts and the iPSCs and embryoid bodies derived from
FSHD fibroblasts. DUX4 full-length was detected in some
human ES cell lines, but at much lower levels compared to
the iPSCs. They concluded that full-length DUX4 mRNA is
normally expressed early in development and is suppressed
during cellular differentiation, whereas FSHD is associated
with the failure to maintain complete suppression of full-
length DUX4 expression in differentiated skeletal muscle
cells.

The disease mechanism in skeletal muscle in MDs has been
well-studied by mouse models and fibroblast/myoblast cell
cultures (see reviews) [2, 4, 7-9]. However, some MDs have
multiple systems affected as mentioned above. For example,
the CTG repeat expansion in DM1 also caused symptoms in
the central nervous system (CNS) and the mechanism is less
defined. A major obstacle is difficulty in obtaining viable
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tissues in the CNS. The clinical studies have been largely
restricted to investigations of clinical findings, neuropsychia-
try, neuroradiology, and neuropathology [84-98]. And the un-
derlying molecular mechanism for CNS involvement in DM1
has been explained as a “spliceopathy.” Abnormal splicing of
microtubule-associated protein tau (MAPT) gene has been
identified in DM1 brain with corresponding pathological find-
ings of neurofibrillary tangles [98—104]. Studies of transgenic
and knockout mouse models suggested that sequestration and
loss of function of mbnl 2 appears to play a major pathogenic
role in the DM1 brain pathology [105]. To further advance
these studies, iPSCs can provide an unlimited resource suitable
for electrophysiological and interventional mechanistic exper-
iments in the human genomic environment in many different
cell types, including neuronal and glial lineages. We have gen-
erated disease-specific DM 1 iPSC lines. These cells harbor the
naturally mutated gene in the same genomic background. We
have been able to differentiate these iPSC lines into neural
stem cells, neurons, astrocytes, and cardiomyocytes and skel-
etal muscle fibers, which all showed intranuclear RNA foci
and aberrant splicing, faithfully representing DM 1 phenotypes
[54, 55]. We think this is an isogenic cellular model for mech-
anistic study for this multisystemic disease and for therapeutic
drug discovery.

Drug screening for MDs was traditionally conducted in
primary culture of myocytes or immortalized myoblast cells.
iPSC as models for high-throughput drug screening has been
conducted in many other diseases. Methods for the differenti-
ation of iPSCs into skeletal muscle fibers and cardiomyocytes
have been developed as reviewed above. The advantage over
other cell types is to generate consistent cell population un-
limitedly. The results are more translatable to clinical applica-
tion. DMD iPSC is a good example for drug discovery. iPSC
from DMD patients have been differentiated into dystrophic
myotubes and cardiomyocytes, and therapeutic drug has been
tested [44, 45]. Methodology has also been developed for
high-throughput drug screening [106].

One other advantage of iPSC is to establish isogenic cellu-
lar model by incorporating genome editing to correct the mu-
tation. With the development of deep sequencing, RNA se-
quencing, and bioinformatics, more valuable information can
be extracted from the pairwise comparison of the big sequenc-
ing data among normal iPSC, disease-specific iPSC, and
genome-corrected iPSC-derived specific cell types. We have
also endeavored to create this isogenic cellular model for
DM1 [107].

Moreover, toxicity can also be evaluated in these isogenic
DMI cellular models. Cardiotoxicity and neurotoxicity are the
main reasons for some drugs to fail clinical trials. These are
traditionally tested in animal models due to the hard-to-get
live human cardiomyocytes or neurons. This is changing with
the advancement of iPSC technology and may affect regula-
tion for drugs to get into clinical trials. The efficacy on iPSC-

derived specific cell types and toxicities may be listed as a key
step before moving a therapeutic drug to clinical human trials.

New iPSC models for MD are quickly emerging. Recently,
an iPSC line from a new type of LGMD (LGMD2Z,
OMIM#617232), which is caused by a missense mutation in
POGLUTI [108], has just been established [46°]. We are
expecting more muscular dystrophies will be developed to
serve as in vitro disease models for identification of pathogen-
esis and therapeutic targets.

iPSC as Models for Development
of Personalized Cell-Based Therapy for MDs

Skeletal muscle cell transplantation for muscular dystrophy
was previously tested on DMD. However, the results were
disappointing. The main issue was the source of the
transplanted cells. All early studies used allogenic myoblasts
derived from muscle biopsy tissues. The initial immune reac-
tion killed 75-80% of the transplanted cells [109—115].
Besides, myoblasts have their own intrinsic defects for cell-
based therapy. Myoblasts are acquired from in vitro culture of
isolated satellite cells from the muscle tissues. These myo-
blasts can only proliferate for a limited number of passages,
and further ex vivo expansion degrades their myogenic capac-
ity [116]. Upon transplantation, survived myoblasts migrated
poorly and failed in replenishing the satellite compartment and
the effect cannot be sustained [116, 117]. Other human muscle
stem cells have been investigated for cell-based therapy
[118-124], but they need to be isolated from live human mus-
cle tissues. Large quantities of cells are needed for autologous
cell transplantation therapy. Unfortunately, to manufacture a
therapeutic quantity of muscle stem cells from a MD patient’s
muscle tissue is almost impossible without causing severe,
permanent damage to the already-atrophied muscle.

With the emergence of iPSC technology, the above issues
are being resolved [24, 25, 125]. There has been increasing
enthusiasm about applying iPSC technology to generate au-
tologous cells for therapeutic purposes [126—133], and the
first human trial for macular degeneration has been conducted
with encouraging results [134]. The advantage of iPSC is the
prospect of generating unlimited quantities of specific cell
population for regenerative purposes. iPSCs are derived from
somatic cells and do not involve the use of embryo, and there
is no ethical concerns. iPSCs generated from the same patient,
termed patient-specific iPSCs, can theoretically avoid immune
rejection [24, 25, 125]. Cell transplantation has been conduct-
ed in mouse models of DMD and LGMDs. These cells are
able to fuse to host myofibers and exhibit good strength.
These cells were also able to seed the muscle satellite cell
compartment [20, 50, 56]. This is of in particular importance
as continuous cycles of myofiber degeneration and regenera-
tion in advanced degenerative muscular dystrophy may
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exhaust the satellite cell reserves and thus lose their regenera-
tive capacity [135—137]. Restoration of the satellite cell pool
will restore the regenerative capacity of the muscle and main-
tains sustained effects.

However, patient-derived iPSCs still carry the mutation
that is causative for MDs, and myogenic cells derived from
these iPSCs may undergo the same degenerative process
after transplantation. To overcome this, approaches have
been developed to correct the mutation to restore the ex-
pression of lost proteins for the purpose of cell transplan-
tation [40, 41, 50, 138].

Genome Correction for Autosomal Recessive Point
Mutation Genes

Limb-girdle muscular dystrophy 2D (LGMD2D) is caused by
mutations in the gene encoding «-sarcoglycan. Four iPSC
lines have been established form patient fibroblasts and myo-
blasts [50]. The authors differentiated iPSCs into
mesoangioblasts-like mesodermal progenitor cells, which
can be further differentiated into muscle fibers. To genetically
correct LGMD2D iPSC-derived mesoangioblasts, the authors
developed a new lentiviral vector carrying the human o-
sarcoglycan cDNA under transcriptional control of the
muscle-specific myosin light chain 1F promoter and enhancer.
The transgene is selectively expressed in myotubes generated
from genetically corrected LGMD2D mesoangioblasts. They
showed that it is possible to reprogram adult somatic cells
from LGMD2D patients to pluripotency and to genetically
correct mesoangioblasts derived from LGMD2D iPSCs.
They also showed that the genetically corrected
mesoangioblasts derived from LGMD2D iPSCs undergo ter-
minal myogenic differentiation with correct and specific ex-
pression of the therapeutic transgene. When these genetically
corrected human iPSC-derived mesoangioblasts were
transplanted into «-sarcoglycan-null immunodeficient mice,
they generated muscle fibers that expressed o-sarcoglycan.
Finally, transplantation of mouse iPSC-derived
mesoangioblasts into «-sarcoglycan-null immunodeficient
mice resulted in functional amelioration of the dystrophic phe-
notype and restoration of the depleted progenitors. This is not
a true therapeutic genome editing. The original mutation in the
genome remains unchanged. The current technology now al-
lows us to correct the mutation in situ in the mutated gene
(SGCA in LGMD2D) [46¢]. This disease-specific iPSC model
will be ideal to test the correction strategies.

In a recent publication, a research group from Stanford
University reported strategies to correct the mutation in MD
iPSC lines [46¢]. They successfully corrected dysferin non-
sense mutation in LGMD2B ¢.5713C>T; p.R1905X and the
most common alpha-sarcoglycan mutation in LGMD2D, mis-
sense ¢.229C>T; and p.R77C, by homology-directed repair
enhanced by a site-specific double strand break using
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CRISPR/Cas9 gene-editing system. For each mutation in the
same gene that caused the loss of gene function, a specific
correction needs to be investigated and validated, which de-
creases its feasibility in clinical application. As an alternative
approach for these MDs mediated by protein loss-of-function,
the authors suggested insertion of wild-type gene into the H11
safe harbor or AAVSI site using dual integrase-assisted ex-
change (DICE) or TALEN/CRISPR/Cas9-assisted homolo-
gous recombination may offer a more versatile approach.

Genome Correction for Autosomal Dominant
Muscular Dystrophy

We also explored strategies to correct the mutation in an au-
tosomal dominant MDs, DM, a disease of RNA gain-of-
function. In DM1, the abnormal myogenesis of myoblasts
from DM patients [139—147] prevents them from being used
as an ideal source for cell transplantation therapy. To circum-
vent this hurdle, we have succeeded in editing the genome to
eliminate the expanded CUG mutant transcripts via precise
incorporation of polyadenylation signal upstream of the
DMPK CTG repeats. The polyadenylation signals premature-
ly terminate the transcription upstream of the expanded CTG
repeats. Genome-edited human DM1 iPSCs maintain their
pluripotency, and their neural and cardiomyocyte derivatives
all lost nuclear RNA foci and demonstrated reversal of aber-
rant splicing [54, 55]. We have further improved the strategy
by insertion of polyadenylation signals in the 3'-UTR between
the stop codon and expanded CTG repeats, which generated
full-length DMPK protein. These genome-edited human DM 1
iPSCs can be differentiated into skeletal muscle progenitor
cells (SMPCs). We hypothesize that these SMPCs can engraft
and repopulate the muscle tissue to restore muscle function.
Other groups have tried to delete the disease-causing CTG
repeats by dual sgRNA/CRISPR-Cas9 flanking the CTG re-
peats [148, 149]. However, we found frequent inversion of the
flanked CTG repeats (our unpublished data). This approach
may be used to establish isogenic cell model by selecting
clones which have pure deletion, but will not be a viable for
in vivo therapeutic therapy.

Genome Correction for X-Linked DMD/BMD

Approaches to restore dystrophin expression in DMD iPSC
lines have been established [40, 150]. Dr. Akitsu Hotta’s and
Shinya Yamanaka’s group in the Center for iPS Cell Research
and Application did the first pioneering work published in
2014. They tested exon skipping, frameshifting, and exon
knock-in in DMD-patient-derived iPSCs using TALEN and
CRISPR technologies and found that exon 44 knock-in was
the most effective approach. The corrected iPSCs were differ-
entiated toward skeletal muscle cells and successfully detected
the expression of full-length dystrophin protein [40]. DMD
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has a wide range of over thousand mutations, and designing
individual correction method seems impractical. Recently, a
group in UT Southwestern used CRISPR/Cas9 with single-
guide RNAs to destroy the conserved splice acceptor or donor
sites preceding DMD mutations or to bypass mutant or out-of-
frame exons, thereby allowing splicing between surrounding
exons to recreate in-frame dystrophin proteins lacking the mu-
tations and was able to rescue dystrophin function in up to
60% of DMD patients [151]. In this study, they also tested the
efficacy on engineered heart tissue from human iPSCs. They
were able to demonstrate that correcting only a subset of
cardiomyocytes (30 to 50%) was sufficient to rescue the mu-
tant phenotypes to near-normal control levels.

Challenging Issues of iPSC Models

Our musculature is composed of many types of muscle in the
body: cranial muscle, trunk muscle, and limb muscle. They
have different developmental origins and programs. Each
muscle is composed of slow or fast myofibers expressing dif-
ferent types of myosin heavy chain genes. To faithfully mirror
the physiology and pathology in vivo, such differences should
be considered. However, an induction method for diverse
types of myofibers is at present challenging. Maturation of
skeletal muscle fibers derived from human iPSCs using cur-
rent in vitro protocols is generally limited. We have tried mul-
tiple published differentiation protocols, including direct in-
duction by transfection of key myogenic factors and chemi-
cally induced protocols. We were able to get MHC-expressing
myofibers, but we have not been able to generate mature mul-
tinucleated myofibers as we can normally see with myoblasts
isolated from muscle biopsies (unpublished data). This is part-
ly due to lack of innervation to the myofibers. This is an issue
to model disease, but these nascent myofibers could be a good
cell source for cell transplantation therapy. As disease models,
the most significant limitation is that iPSC offers a cellular
models but not in vivo models. The development of organoids
using iPSC technology will allow us to study the disease in
tissue or organ level, but they are still not recapitulating the
entire organism. In terms of the use of iPSC in cell transfer
therapy, challenge issues include delivery of iPSC-derived
genome-edited cells to a large mass of muscles, GMP produc-
tion of a therapeutic amount of these cells, immunological
reactions for transferring cells expressing the deficient protein
in loss-of-function MDs, and the frequency of cell transfer
therapy to replenish therapeutic cellular populations.

Conclusions

In this short review, we first introduced the background of
MDs and iPSC. We reviewed briefly the methodology of

myogenic differentiation from iPSCs. We then reviewed the
application of human disease-specific iPSC models in mecha-
nistic studies, drug screening, and personalized cell-based ther-
apy. In summary, human disease-specific iPSC models for
MDs are great addition to our current armamentarium for elu-
cidation of disease mechanism and therapeutic development.
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