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Abstract Genetic engineering of stem cells is a strategy that
holds promise for realizing the potential therapeutic benefits
of stem cell therapy. Through precise control of the stem cell
genome, stem cells can replace or repair damaged tissues as
well as serve as a depot for the sustained delivery of therapeu-
tic molecules. Various individual genes, genome editing tech-
niques, and transfection agents have been studied and devel-
oped for use in stem cell gene transfection. The goal for this
review is to introduce specific genes and editing techniques
used in stem cell therapy. Diverse gene transfection agents
such as liposomes, polymers, dendrimers, peptides, inorganic
nanoparticles, and physical transfection agents are also
discussed with particular focus on stem cell considerations.
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Introduction

Stem cell therapy has become one of the fastest growing fields
of research in the world following the first isolation of human
embryonic stem cells (hESCs) in 1998. Several adult stem
cells, progenitor cells, and induced pluripotent stem cells
(iPSCs) have since been isolated and characterized with re-
spect to their potential clinical benefit. Due to the unique char-
acteristics of stem cells, namely self-renewal and differentia-
tion potential, stem cell therapy has the potential to treat car-
diac diseases, superficial wounds, neurologic diseases, and
type I diabetes [1–3]. Transplanted stem cells can rebuild or
replace dead tissues and recover existing cells through para-
crine effects. However, stem cell therapy has several limita-
tions that must be resolved prior to clinical use. The stem cell
differentiation process in most cases is still necessarily hetero-
geneous, and ensuring uniformity is critical for preventing
tumorigenic potential. The activation of an immune response
along with an otherwise inhospitable host environment results
in a low viability for the majority of transplanted cells [4].
Many research groups have approached these problems
through the development of molecular delivery systems, com-
posed of particles and scaffolds, for inserting useful proteins
and genes into stem cells.

Through the use of double-stranded DNA that is integrat-
ing or not into the host genome as well as double or single-
stranded RNA techniques, biological states of stem cells such
as differentiation, self-renewal, and growth can be controlled
[5, 6]. Numerous stem cell genetic engineering strategies have
been employed to increase cell survival rate, control differen-
tiation, and produce therapeutic factors with exciting results.
Despite positive reported outcomes, the genetic manipulation
of stem cells faces several problems for ultimate clinical trans-
lation, some of which are common across many applications
and some of which are unique. Not only are there challenges
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with increasing the efficiency of transfection, controlling
targeting, limiting mutagenic potential, and reducing cytotox-
icity, but also whatever delivery system is employed must
maintain stem cell differentiation status and viability.
Research has therefore largely been on the materials and
methods for delivering DNA and RNA in order to improve
the therapeutic potential of stem cell therapy.

Gene transfection agents are generally categorized as either
viral or non-viral. Viral vectors dominate because of high
efficiency and long-term maintenance of expression, but con-
cerns including immunogenicity, carcinogenicity, restricted
DNA loading capacity, and high cost for mass production
impede their commercialization and clinical use [7–9]. In con-
trast, non-viral vectors avoid the shortcomings of viral vec-
tors, but the efficiency of transfection is compromised. In the
case of stem cell transfection, the rate of successful modifica-
tion (40 % by electroporation, ∼20–35 % by cationic polymer
and liposome, 80 % by efficient viral vectors) is lower than
that for differentiated cells [10]. To optimize the transfection
efficiency of stem cells, research into making an ideal non-
viral vector which has high efficiency and low cytotoxicity is
currently underway.

Herein, we discuss several DNA and RNA agents for stem
cell therapy and various non-viral methods for stem cell
transfection.

Genes for Stem Cell Therapy

In order to increase the utility of stem cells as therapeutic
agents, various genes encoding transcriptional factors for cel-
lular reprogramming, control of differentiation, or the produc-
tion of therapeutic proteins can be transfected into stem cells.
Genes for increasing the survival rate of transplanted stem cell
or to control stem cell homing to sites of therapeutic interest
have also been studied (Fig. 1).

Genes for Reprogramming and Directing Differentiation
of Stem Cells

Stem cells for therapeutic purposes can include pluripotent
stem cells such as iPSCs and embryonic stem cells (ESCs)
as well as multipotent stem cells such as mesenchymal stem
cells (MSCs) and tissue-specific progenitor cells. The ground-
breaking discovery of iPSCs raised the hope for personalized
medicine [11]. IPSCs are a particularly attractive therapeutic
cell source because they possess the desirable properties of
ESCs including unlimited self-renewal and pluripotency
while potentially circumventing immune rejection and ethical
issues that are roadblocks to clinical translation. The original
reprogramming cocktail contained four genes encoding tran-
scriptional factors: Oct3/4, Sox2, c-Myc, and Klf4 [11]. Later
studies revealed that some of these factors are not absolutely

required. Yamanaka’s group showed that reprogramming can
be achieved without c-Myc, and the resulting iPSCs were of
high quality and minimally tumorigenic [12]. Another study
reported that a single gene, Oct4, is sufficient to achieve
reprogramming when supplemented with certain small mole-
cules [13]. Generally, the choice of reprogramming genes
needs to be carefully considered since the genes not only
determine the reprogramming efficiency and the subsequent
quality of iPSCs, but also have an effect on the safety of the
cells.

While direct injection of adult stem cells like MSCs into
circulation or damaged tissue has achieved positive results
[14] and, in some therapeutic applications, has reached ad-
vanced clinical trials, pluripotent stem cells (ESCs and
iPSCs) require appropriate differentiation, specifically to elim-
inate the risk of tumorigenesis. Generating relevant cell types
can increase the specificity and outcome of both adult and
pluripotent stem cell-based therapies. To guide differentiation,
various transcription factors for inducing cardiogenesis
(Gata4, Mef2c, and Tbx5), osteogenesis (bone morphogenetic
proteins, bone morphogenetic protein-2 (BMP2) and BMP7),
chondrogenesis (SOX-5, SOX-6, SOX-9), and neurogenesis
(SOX-1, SOX-2, SOX-3, miR-124, miR-137, miR-184, and
MBD1) are used for stem cell transfection to the respective
tissue of interest [15–23]. Differentiated stem cells can then be
injected to target tissues and replace damaged cells. Yet, since
the differentiation process usually requires sequential and tem-
poral expression of specific gene groups (as was shown for
iPSCs generation), the clinical applicability of genetic engi-
neering for directing stem cell differentiation remains an open
question, unless the role and specificity of additional master
key gene switches can be identified (like MyoD for skeletal
muscle).

An alternative approach to stem cell differentiation based
on overexpression of transcriptional factors is through gene
silencing. Toward this aim, microRNAs are prime candidates
for genetic engineering considering their role in controlling
the expression of multiple transcription factors and in regulat-
ing key biological process including cell differentiation. For

�Fig. 1 Application of genetically engineered stem cell for cell therapy.
The top panel demonstrates transfection of stem cells to silence inhibitors
of mineralization. This was accomplished via a CPP complexation
strategy with miRNA (adapted from Suh et al. [64•], with permission
from Elsevier). The middle panel shows a proposed scheme for cancer
therapy using MSCs as carriers. Tumor necrosis factor (TNF)-related
apoptosis-inducing ligand (TRAIL) transfected into MSCs by PEI600-
Cyd was injected to C57BL/6 mice for estimating the efficiency of
cancer gene therapy (adapted from Hu et al. [28], with permission from
the American Chemical Society). The bottom panel indicates a schematic
flow for synthesis of magnetic nanoparticles which have multiple roles in
transfection and magnetic resonance imaging (MRI). Catechol-
functionalized polypeptide (CFP) was used for functionalizing iron
oxide nanoparticles, and PEI was attached for plasmid condensation
(adapted from Park et al. [76•], with permission from Elsevier)
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example, ESCs, genetically engineered to overexpress
microRNA-1 (a cardiac/muscle-specific miRNA), efficiently

differentiated in vivo to cardiomyocytes (100 % more than
control ESCs) and contributed to repair of the damaged
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myocardium tissue postmyocardial infarct [24]. We have
shown that the heterogeneity of early differentiating hESCs
can be significantly reduced through efficient RNA delivery.
Specifically, the mesoderm layer formation of embryonic stem
cells can be selectively enhanced by as much as 90-fold
through the transfection of siRNA which silences the KDR
receptor gene [25].

In the more near term, genetic engineering can greatly ben-
efit stem cell therapy by introducing fluorescent reporter genes
under the control of cell type-specific promoters. Such fluo-
rescent cell engineering allows, via fluorescent activated cell
sorting, for the identification and enrichment of specific cell
populations or the generation of pure cell populations for
transplantation by isolating pluripotent stem cells from hetero-
geneous differentiating cells [26, 27].

Genes for Specific Therapeutic Purposes

Depending on the purposes of the treatment, therapeutic genes
can confer specific properties to stem cells for diverse appli-
cations including HIV resistance, angiogenesis, and tumor
suppression. Transfected adult stem cells can be particularly
well suited for use as a drug delivery vehicle due to their
immune privilege [28]. For anti-tumor applications, genetical-
ly modified MSCs expressing interleukin-2 (IL-2) augmented
the anti-tumor effects of these cells compared to unmodified
cells in a mouse glioma model [29]; another study using
interferon-β (INF-β)-expressing MSCs eradicated the tumors
in 70 % of treated mice pre-implanted with human ovarian
cancer cells [30]. In the area of angiogenic therapy, MSCs
transfected by vascular endothelial growth factor (VEGF)
plasmid exhibited high angiogenesis potential, increasing ves-
sel densities by 2–4-fold compared to control groups in a
mouse hindlimb ischemia model [31]. Likewise, overexpres-
sion of fibroblast growth factor-2 (FGF-2) in MSCs signifi-
cantly improved cell survival by 3-fold under hypoxic condi-
tions in vitro and expressed cardiac specific markers [32].
More recently, a genetic engineering approach showed prom-
ise in treating patients with HIV. IPSCs derived from HIV
patients were edited with clustered regularly interspaced short
palindromic repeats-Cas9 (CRISPR-Cas9) to derive a muta-
tion in the C-C chemokine receptor type 5 (CCR5) gene,
which ultimately granted HIV resistance to the iPSCs and to
any cell type differentiated from them [33••].

Genes to Enhance Stem Cell Homing and Viability

One vital challenge to be resolved for stem cell therapy is the
homing of cells to the damaged tissue. The homing capacity of
MSCs has been the subject of intense research. Studies have
revealed numerous chemokines and growth factors responsi-
ble for stem cell homing to damaged myocardium (as
reviewed in [34]), including stroma-derived factor-1α (SDF-

1α), chemokine (C-X-C motif) receptor 4 (CXCR4), hepato-
cyte growth factor (HGF), and FGF-2. Thus, to increase the
homing of stem cells, one can genetically overexpress corre-
sponding receptors for these homing signals. These strategies
can also be applied to increase homing of ESC- and iPSC-
derived cells.

In addition to homing, another challenge for cell therapy is
that transplanted stem cells frequently have poor survival and
incomplete engraftment into injured or diseased tissue because
of inflammation, hypoxic stress, and insufficient perfusion.
Apoptosis and autophagy may contribute to their low survival
rate, but the exact mechanisms initiating these pathways are
still unclear. Various proteins, growth factors, and nucleic
acids that are related to ischemia, apoptosis, and autoph-
agy have been studied in an attempt to improve stem cell
viability. Anti-apoptotic genes such as B cell lymphoma 2
(Bcl-2) and Akt [35, 36] and growth factors including
VEGF, angiopoietin (Ang-1), and transforming growth
factor beta 1 (TGF-β1) [37, 38] have been transfected
into stem cells in order to prevent apoptosis and increase
survival. In the case of hypoxic stress, methods have been
described for overexpressing heme oxygenase (HO-1),
which is an anti-oxidant and anti-inflammatory protein,
as well as silencing prolyl hydroxylase, a cellular oxygen
sensor that controls hypoxia-inducible factor and nuclear
factor-κB [36, 39•].

Transfection Methods for Stem Cell Therapy

The ideal transfection agent must prevent degradation of the
delivered gene, penetrate the target cell membrane, and allow
for the insertion of the gene into the nucleus. Furthermore, the
agent would ideally be harmless to cells [40, 41]. As base
materials for non-viral vectors, liposomes, micelles, polymers,
dendrimers, peptides, and inorganic nanoparticles have been
studied and used for delivery to stem cells. Other techniques
such as electroporation, sonoporation, and microfluidic de-
vices for transfection have been developed recently. Gene
vectors may traffic via direct penetration into the cell or by
endocytosis with the route of entry based on the physical and
chemical characteristics of both the cargo and transfection
agent. However, the precise relationships between transfection
agents and mechanisms are still unclear.

Lipids, Liposomes, and Micelles

Liposomes, which fulfill several of the criteria for the ideal
transfection agent, can be fabricated with various natural and/
or synthetic lipids in order facilitate DNA or RNA encapsula-
tion. Unlike cationic polymers, charged lipids associate via
hydrophobic interactions among their aliphatic tails forming
liposomes and micelles. Their size (∼100 nm) and the cationic
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character of the head group or modifications thereof facilitate
carrying anionic oligonucleotides. Chemical modification tech-
niques such as PEGylation and RGD attachment may limit their
clearance from circulation and enhance their targeting ability,
respectively [42]. However, since liposomes are usually respon-
sive to environmental conditions such as pH, temperature, salt,
and other proteins such as serum, they are unstable in diverse
biological systems [9].While this instability can be used to tune
nucleic acid release inside the cell, care must be taken to main-
tain stability prior to cellular uptake. The positive charge of the
majority of cationic liposomes also has a detrimental effect on
cell viability; however, surface charge can be altered.
Poly(ethyleneimine) (PEI), and metal nanoparticles are com-
monly used in conjunction with liposomes, the former to avoid
cytotoxicity of free PEI and the latter to increase conjugate
stability [43, 44]. The advantage of using liposomes as gene
vectors is their chemical versatility. Liposomes can be fabricat-
ed from a host of different lipids with varying chemistries and
tailored to a specific response. Cationic lipids have been de-
signed with hydrophilic head groups such as ammonium
groups, polyamines, and guanidinium groups and hydrophobic
tail groups including aliphatic chains, steroids, and fluorinated
domains. Hydrophilic head groups primarily control the inter-
action with oligonucleotides and cellular membrane based on
their basicity and hydrogen bonding, while hydrophobic tail
groups regulate the fluidity and stability of liposomes [9].
These two molecular regions of the lipid influence the lipo-
somes’ ultimate transfection efficiency, interaction with oligo-
nucleotides, and cytotoxicity. The versatility of liposome fabri-
cation has led to the development of high-throughput screening
techniques. For example, screening of a synthetic lipid library
generated by thiol-yne click chemistry revealed that the length
of hydrophobic tail (C11 or C12), size of lipoplex (complex of
liposome with nucleic acid, between 100 and 200 nm), addition
of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE),
and stable positive charge of lipoplex (above +50mV) all affect
the resulting transfection efficiency [45•].

Cationic Polymers and Dendrimers

Many cationic polymers including poly-L-lysine (PLL) and
PEI have been studied for condensing and delivering nega-
tively charged oligonucleotides. The quest to find the ideal
gene transfection agent has generated diverse cationic poly-
mers, varying in molecular weight, number of branches, and
characteristics of side groups, such as primary, secondary, or
tertiary amines. Yet, the high cytotoxicity of these agents
caused by positive localized charge has led to the development
of several chemical and/or physical modification strategies.
These included rendering the polymer backbone biodegrad-
able, generating heterocyclic amine-derivatized polymers and
PEGylated polymers [46, 47], crosslinking low-molecular-
weight polymers with small molecules or lipid grafting [48,

49], and combining cationic polymers with other molecules
including lipids [50]. The majority of these modifications are
attempted to improve the toxicity of the polymers by making
them degradable or rendering the relative size of the agent
larger. Cationic polysaccharides have inherent characteristics
that are well suited for use as a transfection agent. In general,
they are biocompatible, biodegradable, and non-toxic. Some
cationic polysaccharides have built in specific cell targeting
capabilities. For example, pullulan and curdlan have binding
sites for Dectin-1 receptors uniquely found on dendritic cells,
macrophages, and B cells [38, 51, 52]. Alternatively, re-
searchers have generated libraries of synthetic biodegradable
cationic polymers such as poly beta-amino esters (PBAE) and
utilized high-throughput screening strategies to identify can-
didates that will efficiently transfect ESCs and MSCs [21, 53,
54, 55••]. A major research thrust involving cationic polymers
has been devoted to enhancing the escape of polymer/
oligonucleotide polyplexes from the endosome, one of the
leading hurdles for gene transfection. Toward this aim, envi-
ronmentally sensitive polymers have been designed with im-
proved transfection efficiency and cytotoxicity. During endo-
cytosis, the pH of the endosome is reduced; such a change can
trigger a proton sponge effect in these polymers, which then
disrupts the endosomal membrane and leads to release of gene
cargo into the cytoplasm. Various amine-modified PEIs hav-
ing pKa values from 5 to 6 can cause endosomal escape via
osmotic burst [46]. Poly ethylacrylic acids (PEAA) which
exhibit a transition in their hydrophilicity at pH 5–6 can also
disrupt the endosomal membrane [47, 56].

Dendrimers are large, monodisperse, highly branched mol-
ecules. They usually have a globular structure and can exhibit
specific functional groups on their surface. Since dendrimers
are synthesized through recurrent chemical reactions, their
size is predictable, typically 1 to 10 nm [57]. These strengths
make dendrimers advantageous for use as designing gene de-
livery agents, and many amine group-containing dendrimers
such as poly(amidoamine) (PAMAM), melamine-based
dendrimers, and polypropylenimine (PPI) dendrimers have
been studied [9, 58]. Notably, PAMAMdendrimers have been
shown to efficiently deliver interfering RNA to ESCs com-
pared to PEI-based lipopolymer controls. In order to enhance
their transfection efficiency and specificity and reduce cyto-
toxicity, modifications such as PEGylation, RGD attachment,
and charge modification have been applied [59, 60].

Peptides

Since peptides are the molecular building blocks of proteins
conferring numerous biological functions, peptides have been
investigated as gene transfection agents. In order to interact
with oligonucleotides, penetrate the cell membrane, and traffic
genes into the nucleus, specific peptide regions are employed.
Peptides can be designed to contain DNA-binding domains,
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cell-penetrating peptides (CPPs), also known as peptide trans-
duction domains, and nuclear localization signal (NLS) pep-
tides. CPPs usually have basic amino acids that possess both
positive charge and amphipathic secondary structure for
interacting with cell membranes and destabilizing them [61].
Various natural and synthetic CPPs including TAT, penetratin,
R8 and R9, Pep family, transportan, and GALA have been
studied for their ability to transfect genes, used to generate
novel synthetic CPPs, and modified through lipid and peptide
addition [18, 62, 63, 64•]. However, CPPs with high positive
charge can also be cytotoxic and demonstrate non-specific
interaction with serum proteins. Recently, novel hydrophobic
CPPs from signal peptides and Bax-inhibiting peptides were
found. In particular, Bax-inhibiting peptides have been conju-
gated to non-toxic nanoparticle carriers to improve cellular
uptake of gene cargo into MSCs. This is of particular interest
as MSCs typically exhibit low transfection efficiencies [10].
The reported role of NLS peptides has been to import proteins
into the nucleus, another critical step in the transfection pro-
cess. These amino acid sequences are also non-toxic and can
penetrate cell as well as nuclear membranes, thereby increas-
ing transfection efficiency [65]. Studies are ongoing to deter-
mine the precise biophysical mechanisms for peptide insertion
into membranes [18, 66, 67].

Inorganic Nanoparticles

Inorganic solid particles with a 10–1000-nm size have many
advantages as gene transfection agents. As a result of a solid
core, they are more stable than liposomes and can present a
high density of surface ligand. Their small size facilitates cell
penetration, and inorganic nanoparticles can protect nucleic
acids from degradation during cellular trafficking [68•]. A
range of inorganic materials such as gold, silver, calcium
phosphate, iron oxide, silica particles, quantum dots, and car-
bon nanotubes have all been studied as potential gene vectors.
The non-toxic and readily modifiable characteristics of gold
make them a leading candidate for gene transfection [10, 44].
Silver, which is known for its bactericidal effect yet can also
be cytotoxic to mammalian cells, has been recently used for
generating a photo-activated delivery agent. Silver has the
advantage of having an approximately ten times greater local-
ized surface plasmon field than gold [68•, 69]. Calcium phos-
phate, a non-toxic mineral, can interact with DNA and desta-
bilize the endosomal membrane in response to acidic pH. It
has been used as transfection agent for over 30 years.
Recently, a wide variety of calcium phosphate nanoparticles
and scaffolds have been studied for the dual role of increasing
transfection efficiency as well as serving as a substrate for
tissue regeneration [70•, 71–73]. Iron oxide, another mineral
in the form of nanoparticles, has been applied to make multi-
f un c t i on a l t r a n s f e c t i on agen t s be c au s e o f i t s
superparamagnetic character. Transfection agents that can be

detected through magnetic resonance imaging (MRI) were
recently synthesized, and it was demonstrated that applying
oscillating magnetic fields improves the transfection efficien-
cy of this agent [74, 75, 76•]. Lastly, the prospect of mesopo-
rous silica particles (MSNs) as effective transfection agents
has been studied. The nanometer size of pore channels can
contain cargo effectively, and the easily controllable pore size
and surface chemistry make MSNs an attractive transfection
agent. By using aminated MSNs, Kim et al. showed produc-
tion of BMP2 in mesenchymal stem cells (MSCs) of 66 %
efficiency [15].

Electroporation, Sonoporation, and Microfluidic Devices

In an effort to develop transfection methods without cyto-
toxic carriers, several researchers have studied transfection
wi th phys ica l methods such as e lec t ropora t ion ,
sonoporation, and laser irradiation. Among them, reports
on electroporation are most common; however, the high
voltages used can cause cell death [77]. Instead,
sonoporation and various microfluidic devices have been
developed to improve physical gene transfection. In the
case of sonoporation, several studies have reported that
ultrasound-mediated microbubble burst increases gene
transfection efficiency both in vitro and in vivo [78, 79].
Microfabricated fluidic devices have also been used in or-
der to overcome limitations with gene transfection. Sharei
et al. used a microfluidic platform that minimally deforms
cells in order to make the membrane permeable when cells
flow through a narrow path. This platform was then used to
introduce reprogramming proteins into fibroblasts,
exhibiting a 10-fold improvement in iPSC generation com-
pared to other non-viral methods [80••]. Others have fo-
cused on constructing electroporation-based microfluidic
devices that reduce the voltage necessary for transfection.
Xi et al. generated a nanoelectroporation platform com-
posed of alumina nanostraws for reducing electroporation
voltage and increasing uniformity over a large area [81].
Kang et al. fabricated a two-level electroporation device
composed of a cell culture chamber situated on top of a
series of microchannels. The microchannels were designat-
ed for loading transfection materials and reducing the volt-
age through localized electroporation using a nanofountain
probe. This microfluidic device showed 50 % plasmid
transfection efficiency with significantly lower voltage
(10 V) than traditional electroporation [77]. Lastly,
Grigsby et al. designed a microfluidic system for producing
polymer-nucleic acid nanoparticle that is smaller, more uni-
form, with less aggregation than otherwise possible. The
physical characteristics of nanocomplexes enhanced the
transfection efficiency in various cell lines including both
stem cells and primary cells [82].
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Conclusions and Future Directions

Diverse genes and viral and non-viral methods have been
studied for stem cell transfection. As a whole, stem cells are
generally more difficult to transfect than their primary cell
counterparts and care must be taken to control differentiation
status, viability, and tumorigenicity. The focus of gene trans-
fection for stem cell therapy has been the insertion of genes
controlling differentiation, preventing apoptosis, enhancing
angiogenesis, and encoding therapeutic proteins. Stem cells
are transfected in order to increase their survival rate and to
subsequently improve therapeutic efficacy.

Future advances will likely involve specific nucleases such
as zinc finger nucleases (ZFNs), transcription activator-like
effector nucleases (TALENs), and CRISPR/Cas in order to
improve the precision of genome editing, prevent mutations
and maintain stable, long-term gene expression. Since stem
cell mutations, particularly with embryonic stem cells, caused
by improper genome editing produces tumors, accurate ge-
nome engineering is absolutely essential. In the past decade,
engineered nucleases consisting of non-specific nucleases and
sequence specific DNA-binding domain have been studied.
Among several systems, ZFNs and TALENs that embody a
flexible editing system dominate genome engineering. The
2010 discovery of the clustered regularly interspaced short
palindromic repeat (CRISPR)/Cas system, which is a bacterial
immune mechanism for removing foreign genes, offered a
path toward very precise and flexible genome engineering.
A system composed of CRISPR/Cas was generated and ap-
plied in 2013 [83] Most recently, the Zhang group has identi-
fied a new CRISPER enzyme, cf1, that offers a more precise
and simpler gene editing than Cas [84]. It will be interesting to
see its impact on genetically engineered stem cells. New gene
engineering tools such as ZFNs, TALENs, and CRISPR mod-
ules offer great potential, yet they still need to be delivered
into cells and therefore have been used with various viral and
non-viral vectors with similar limitations related to transfec-
tion efficiencies [85, 86, 87••, 88–92].

As has been shown previously, it is possible to combine
strategies for gene transfection along with other therapeutic
purposes such as cell tracking (as in the case of metal nano-
particles), cell sorting (using genes encoding fluorescent pro-
teins), and, more recently, gene delivery via scaffolds that may
also allow for cell growth and tissue remodeling. Many bio-
compatible and functionalized scaffolds, made by
electrospinning, lithography, microfabrication, and self-as-
sembly, have been developed for tissue regeneration.
Various biocompatible and biodegradable compounds such
as poly(lactic-co-glycolic acid) (PLGA), poly-caprolactone
(PCL), poly(amido amine), PEG, collagen, and chitosan have
been used and studied [17, 93–100]. Researchers have devised
gene-activated scaffolds for combination gene and cell thera-
py. Several characteristics of scaffolds may be particularly

well suited toward use in combination with gene therapy in-
cluding transfection agent preservation, sustained agent pre-
sentation via controlled release, and the enhancement of trans-
fection through the maintenance of the proper 3D stem cell
microenvironment. Gene-activated biomaterials for stem cell
differentiation toward osteogenesis [17, 98, 99] and chondro-
genesis [95, 97] have been intensively studied due to the re-
quirement of a biomimetic platform. Murphy’s group has de-
scribed a high-throughput 3D scaffold screening system for
analyzing diverse transfection factors and optimizing mineral
coating for osteogenesis of hMSC [93, 100]. This work may
serve to inform future combination strategies.

Various materials containing lipids, polymers, dendrimers,
peptides, nanoparticles, and physical transfection agents have
been considered as transfection carriers. Of non-viral gene
carriers, no one solution has emerged as optimal, and there-
fore, there is a need for investigation into multifunctional car-
riers that combine several strategies together. We speculate
that such multifunctional carriers can eventually lead to de-
signing transfection agents that are both non-toxic with high
transfection efficiency. Considering the unique factors that
prevent safe and efficient transfection of stem cells, several
research groups have approached the problem by constructing
material libraries and combine existing materials in order to
have a large search space for obtaining the optimal solution. A
large body of existing literature in adult stem cell transfection
will serve as the base for understanding gene transfection
mechanisms in stem cell transfection.
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