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Abstract One of the most obvious characteristics of the aging
process is the progressive decline in the regenerative potential
of tissues. Adult somatic stem cells are critical for rejuvenat-
ing tissues and persist throughout the lifespan of organisms.
However, stem cell function declines during the aging process
in tissues such as the brain, blood, skin, intestinal epithelium,
bone, and skeletal muscle. This demise may contribute to
tissue degeneration, organismal aging, and age-related dis-
eases. A series of organismal models have emerged as valu-
able systems to study stem cell aging in vivo. Here, we review
the age-associated changes of stem cells and the different or-
ganismal models used to define stem cell aging.
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Introduction

Organismal aging is associated to a progressive imbalance in
tissue and organ homeostasis and a timely decline in their
regeneration capacity, which is accompanied by the loss of
physiological integrity that, in turn, results in susceptibility
to death. Stem cell exhaustion has been defined as one of the
hallmarks of aging and determines the tissue repair ability of
organisms [1e*]. Stem cells are divided into two groups: em-
bryonic stem cells (ESCs) and adult stem cells. ESCs are
pluripotent and are found in early stage of embryos. Since
ESCs do not undergo replicative senescence, they are consid-
ered to be immortal in culture [2, 3]. Adult organisms have
two types of stem cells: (1) adult somatic stem cells with
regenerative potential, which are found in several tissues and
(2) germline stem cells (GSCs), which can generate gametes
for reproduction [4]. GSCs are designed to maintain an unlim-
ited proliferative capacity to fulfill their biological purpose: to
be passed from one generation to the next. Adult somatic stem
cells are critical for rejuvenating tissues and persist in the adult
body of an organism throughout its lifespan. Adult somatic
stem cells reside in various adult tissues such as liver, brain,
and bone marrow. In contrast to ESCs, they can only differ-
entiate into a limited type of cells. Adult somatic stem cell
function decreases with age, and this failure may contribute
to age-related diseases [1e, 5, 6]. For instance, neural stem
cells (NSCs) from older animals are less able to self-renew
and more skewed toward astrocytes [7]. A decline in the pro-
liferation of NSCs and neurogenesis during aging has been
correlated with impairment of olfactory discrimination [8].
Notably, postnatally generated neurons are absent in advanced
stages of Huntington’s disease [9]. Another example is the
decline of hematopoietic stem cell (HSCs) function with
age. This failure could have a significant impact on organis-
mal aging since decreased hematopoiesis with age results in a
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diminished generation of adaptive cells and increased myeloid
malignancies and anemia [6]. In this review, we will focus on
age-associated changes of somatic and germline stem cells
and the emerging models for the study of their aging in vivo.

In Vive Models for Stem Cell Aging

A series of model organisms have started to reveal the general
principles of stem cell aging (Fig. 1). These findings generally
come from studies in the budding yeast (Saccharomyces
cerevisiae), invertebrates (the nematode Caenorhabditis
elegans and the fruit fly Drosophila melanogaster), and ro-
dents (Table 1). S. cerevisiae has been used to identify genes
that modulate replicative lifespan [10], a process observed in
many dividing cells such as adult stem cells. The yeast cell
divides asymmetrically by forming a bud which gives rise to
the daughter cell. As the cell wall of the daughter cell is
formed de novo, the mother cell retains the same wall, evi-
denced by scars from each budding event on the cell wall
surface. Accumulation of budding scars is a marker of repli-
cative senescence. Ultimately, the mother cell is not able to
reproduce anymore, and sterility is the final phenotype of
yeast aging [10]. In addition, the asymmetric cell divisions
invoked by the budding yeast resemble stem cell self-renewal.
In yeast asymmetric cell division, the daughter cell inherits a
limited amount of damaged macromolecules from the mother
cell [11] enabling the generation of a rejuvenated, germ-like,
daughter cell lineage. Thus, this phenomenon can be

Table 1  Example of model organisms for stem cell aging

Organism Examples for in vivo studies

S. cerevisae Asymmetric cell division giving rise to
rejuvenated daughter cell

Model for germline stem cells

Resemblance to adult stem cells

Study of replicative lifespan

Chronological lifespan inducible by dietary
restriction

Epigenetic changes in aging

C. elegans Study of germline stem cells

D.melanogaster Study of germline stem cells, somatic stem

cells (mostly intestinal stem cells)

Study of several adult stem cell types
(HSCs, NSCs, satellite cells, epidermal
stem cells, cardiac stem cells, etc.)

Modulation of specific stem cells by either
their niche or other tissues in a
non-autonomous manner

Heterochronic parabiotic experiments to
identify the role of the stem cell niches

M. musculus

considered a model for GSCs. One interesting example for
successful use of yeast and its extrapolation to stem cell aging
is the role of sirtuins, which are histone-deacetylating en-
zymes involved in gene silencing. The sirtuin family of pro-
teins impinges upon replicative lifespan of yeast [12]. For
example, Sir2 was shown to be involved in the stabilization
of repetitive DNA in yeast. During aging and DNA damage,
Sir2 specifically localizes to the sites of low genomic integrity

Genomic changes

Loss of proteostasis

'T DNA damage
telomere shortening

Senescence

"

adult stem cells v

Impaired nutrient
sensing regulation

i

altered chaperone levels
change in autophagy rate

| stem cell function
l stem cell

homeostasis

11S signaling

Epigenetic changes

Mithocondrial dysfunction

dietary restriction

altered DNA methylation
impaired chromatin structure

Fig.1 The impact of aging on adult stem cells. Aging causes a decrease in
stem cell functionality that leads to a decline in tissue rejuvenation and
repair. Age-associated changes of stem cells include (1) genomic
changes, which arise from increased DNA damage as well as a
shortening of the telomeres, (2) loss of proteostasis through altered

accumulation of ROS
mtDNA mutations

chaperone levels and deregulation of autophagy rate which might lead to
accumulation of damaged proteins, (3) epigenetic changes in methylation
and chromatin-remodeling factors, (4) mitochondrial dysfunction as a
consequence of ROS accumulation and mtDNA mutations, (5) cellular
senescence, and (6) impaired nutrient sensing regulation
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(genomic instability), and SIRT1, the mammalian orthologue
of Sir2, may play a major role in age-dependent gene expres-
sion [13]. Thus, data from yeast have suggested a major role
for epigenetic changes in aging. Finally, yeast can also be used
as amodel for chronological aging [14]. In these studies, yeast
cells are induced into a non-dividing state by withdrawal of
nutrients.

Metazoan models provide the means to study stem cell
decline during organismal aging. C. elegans and
D. melanogaster are established models for the study of
GSCs. Fly and mouse models are the main organisms used
for somatic stem cell aging research. D. melanogaster has
been mostly used to study the intestinal stem cell (ISCs) pop-
ulation in the midgut, although other somatic stem cell com-
partments are starting to be identified. Mouse models are suit-
able for the study of a wide number of stem cell types. These
models have helped to establish not only general principles of
stem cell aging but also differences between the different so-
matic stem cells [8, 15]. Although these general age-related
changes may induce a decline in stem cell function at some
extent, they do not always result in a change in the stem cell
number. For instance, the number of NSCs and melanocyte
stem cells decreases with age in mammals. However, the num-
ber of HSCs increases with age in some mouse strains [16];
whereas, their functionality declines (e.g., HSCs from old
mice are skewed to differentiate toward the myeloid lineage
[17]). Metazoans also allow the study of the modulation of
specific stem cells by either their niche or other tissues in
a non-autonomous manner (i.e., through systemic signals
in response to environmental and nutrient changes). Of
special relevance are heterochronic parabiotic experiments
in mice that demonstrated that aging of muscle stem cells
(also known as satellite cells) is regulated by systemic
factors. In this experimental paradigm, in which aged
mice are surgically connected to young mice, muscle stem
cells are rejuvenated by the exposure to a youthful envi-
ronment [18].

Age-Associated Changes of Stem Cells

Somatic stem cell exhaustion is one of the hallmarks of aging
[1ee]. Besides stem cell exhaustion, Lopez-Otin and col-
leagues have pointed out other hallmarks of aging (i.e., geno-
mic instability, telomere shortening, epigenetic alterations,
loss of proteostasis, mitochondrial dysfunction, cellular senes-
cence, altered intercellular communication, impaired nutrient
sensing regulation) [ 1+¢]. Somatic stem cells exhibit a series of
these age-related changes that could trigger stem cell
dysfunction/death and, in turn, a progressive decline in regen-
eration capacity [15] (Fig. 1). In this section, we discuss age-
related cellular changes of somatic stem cells.
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Genomic Instability and Telomere Attrition

Similar to other cell types, somatic stem cells also undergo
both DNA damage and telomere shortening with age [6].
Markers of DNA damage have been observed in stem cell
populations during aging [19, 20]. Increased DNA damage
contributes to the decline in the self-renewal ability of both
epidermal and melanocyte stem cells during the aging pro-
cess [21, 22]. In addition to elevated DNA damage, a de-
crease in DNA damage response (DDR), which is crucial
for repair mechanism, has also been reported in stem cells
[23, 24]. Increased DNA damage in stem cells may result
in their senescence and production of defective daughter
cells [25, 26]. It has been shown that deletion of Atm, a
DNA damage sensor, results in increased ROS levels and
loss of quiescence in HSCs. Eventually, this defect causes
depletion of the HSC pool [27].

Stem cells may be prone to telomere shortening due to
their high self-renewal ability. Both human and mice stud-
ies have shown telomere shortening in stem cells during
the aging process [28, 29]. The importance of telomere
length in stem cell homeostasis has emerged especially in
NSCs. In these cells, telomere shortening results in
interrupted neuronal differentiation. Moreover, reduction
of NSC function has been also observed in telomerase-
deficient (Terc ") mice, a deficiency that results in short
telomeres [29].

Epigenetic Alterations

Epigenetic alterations (e.g., histone modifications such as
acetylation, ubiquitination, and methylation) contribute to
the aging process [1]. Several studies have suggested an
important role of epigenetic alterations in stem cell aging
[30, 31]. However, the analysis of epigenomic changes re-
quires a large amount of cells, which is not always feasible
for somatic stem cells. Therefore, epigenetic research on stem
cells usually depends on measurement of tissue compartments
in which these cells are found.

One of the examples of epigenetic changes in stem cells
indicates that DNA methylation levels increase in a site-
specific manner in HSCs with age [30]. Chambers and col-
leagues [31] showed that epigenomic changes in aged stem
cells are related with alterations in chromatin-modifying en-
zymes and their cofactors. Microarray data from HSCs from
young and old mice have revealed a decrease in the expression
levels of switch/sucrose nonfermentable (SWI/SNF)
chromatin-remodeling complex subunits, specific histone
deacetylases (HDACI, 5, and 6), and a DNA methyltransfer-
ase (DNMT3b) [31]. In addition, age-dependent changes in
histone modification could switch expression of self-renewal
genes in HSCs [32].
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Loss of Proteostasis

The integrity of the proteome (proteostasis) declines in a pro-
gressive manner with age [1+¢]. During the aging process, cells
accumulate damaged and misfolded proteins. These damaged
proteins impair cell functionality and tissue homeostasis and,
therefore, must be scavenged. The accumulation of damaged
proteins with age is associated to a decline in the intracellular
ability of maintaining proteostasis. Several nodes of the
proteostasis network such as autophagy-lysosomal potential,
proteasomal activity, and chaperone function decline during
organismal aging [33—37]. This demise in the proteostasis
network could also determine stem cell exhaustion (for exten-
sive review, see [8]).

A series of cellular responses such as the heat shock (HSR)
or the endoplasmic reticulum (UPR®®) and mitochondrial
(UPR™) unfolded protein responses are activated to maintain
the quality of the proteome when aberrant proteins accumu-
late. These responses are essential mechanisms to ensure prop-
er cytosolic protein folding and reduce proteotoxic stress. Ac-
tivation of these mechanisms and increased levels of chaper-
ones are associated with enhanced protection against
proteotoxic stress [38]. However, their activity also decreases
during the aging process [39, 40]. Supporting evidence sug-
gests that chaperones such as heat shock proteins (HSPs) may
play a role in stemness and differentiation. HSPAS (a non-
inducible HSP) negatively influences the stability of
proapoptotic Bim mRNA, increasing HSCs survival and
preventing their differentiation [41]. Bim is required for apo-
ptosis during hematopoiesis. HSP70 indirectly triggers eryth-
ropoiesis by preventing caspase-3-mediated cleavage of
GATA-1 [42], an essential transcriptional factor for differenti-
ation and maturation within the erythroid lineage. Several
components of the UPR®® have a key role during differentia-
tion. For instance, XBP1 induces osteogenic and plasma dif-
ferentiation [43], IRE1 increases lymphopoiesis of B cells
[44], and CHOP promotes differentiation of B cells, erythro-
cytes, osteocytes, and chondrocytes [45—48]. Moreover, the
UPR"®, as a stress-coordinated pathway, has an important role
in the modulation of differentiation of mouse intestinal epithe-
lial stem cells [49¢]. The transition from stem cell to transit-
amplifying cells of the intestine is accompanied by induced
activity of the UPR™®. Perk-eIF2« induces endoplasmic retic-
ulum stress that, in turn, promotes loss of stemness. In
organoid cultures of primary intestinal epithelium, inhibition
of Perk-elF2«x leads to accumulation of stem cells [49¢]. Tak-
en together, these observations make it difficult to correlate
high levels of HSPs or proteotoxicity protection with somatic
stem cell differentiation, and further insights into the impact of
these pathways on stem cell identity are necessary. In addition,
it will be fascinating to define whether the levels of chaper-
ones and/or the ability to activate proteotoxic cellular stress
responses decrease in somatic stem cells with age. Notably, a

recent study has shown that a decline in the UPR™ contributes
to HSC aging [50]. Inactivation of SIR7, a regulator of the
UPR™, reduces quiescence, increases mitochondrial protein
folding stress, and compromises the regenerative potential of
HSCs. Moreover, SIR7 expression is decreased in HSCs,
whereas SIRT7 up-regulation enhances the regenerative po-
tential of aged HSCs [50].

‘When misfolded proteins cannot be “rescued” by chaper-
ones and stress responses, they are degraded through the pro-
teasome and/or autophagy. Increased levels of proteasome
components result in enhanced replicative lifespan and resis-
tance to proteotoxic stress in yeast [51]. Although the impact
of increased proteasome activity as a determinant of ESC
function has been shown, whether somatic stem cells also
have an enhanced proteasome activity remains to be elucidat-
ed. However, maintenance of proteasomal activity in somatic
stem cells may critically impact organismal aging. On the
other hand, more insights into the impact of autophagy in
somatic stem cells have been shown. In vitro studies with
somatic stem cells such as human mesenchymal stem cells
(hMSCs) [52], HSCs, dermal stem cells (DSCs), and epider-
mal stem cells [53] suggest that autophagy activity is in-
creased in these cells compared to their differentiated counter-
parts. In fetal and postnatal mouse HSCs, a deficiency in es-
sential autophagy genes such as FIP200 or Atg7 increases
ROS levels and deregulates proliferation, suggesting that au-
tophagy is required for stemness in fetal and postnatal mouse
HSCs [54-57]. Moreover, deletion of ATG7 triggers the de-
pletion of HSC pools [56]. FoxO3, a forkhead transcription
factor linked to both longevity and stem cell homeostasis [58],
maintains the expression of pro-autophagy genes in adult
mouse HSCs to allow a quick autophagic response upon stress
[59+¢]. Notably, old mouse HSCs have higher basal levels of
autophagy activity, a characteristic required for their cloning
efficiency, and are able to induce autophagy like young HSCs.
However, autophagy activity in young HSCs is not required
for their cloning efficiency [59+¢]. This observation is contro-
versial as previous data showed the opposite effect [54—57].
The difference might be that one study [59+¢] used a drug to
block autophagy in normally developed adult mouse HSCs,
whereas the latter study used a genetic model to block autoph-
agy that causes severe defects early in life leading to death,
thus looking at fetal/early stages. The higher levels of autoph-
agy activity in old adult mouse HSCs were due to an attenu-
ated nutrient (2-NBD glucose) uptake [59e¢]. That old adult
mouse HSCs maintain an autophagy potential similar to
young mouse HSCs and exhibit higher levels of autophagy
for their survival confronts the traditional view where com-
promised autophagy is established as a determinant of aging
[34].

In NSCs or cardiac stem cells (CSCs), autophagy activity
increases upon their differentiation [60—62]. This enhanced
autophagy might be due to a specific increase in the
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requirements of their differentiated counterparts, such as neu-
rons, to recycle their cellular components. During the initial
period of neuronal differentiation (E15.5 mouse embryos), the
expression of the autophagy genes Atg7, Becnl, Ambral, and
LC3 are increased in vivo in the mouse embryonic olfactory
bulb (OB) [60]. Blocking autophagy either genetically or
chemically impairs NSCs and CSCs differentiation [60-62].
Inhibition of autophagy by wortmannin or 3-MA decreases
neurogenesis of OB-derived stem cells [60]. In addition,
Ambral loss-of-function mice show decreased neural markers
in the E13.5 OB [60]. However, FIP200, an essential compo-
nent of autophagy, is required for NSC proliferation [63]. Ex-
vivo treatment of E8.5 mouse embryos with the autophagy
activator rapamycin increases the expression of cardiomyo-
cyte markers in the second heart field [61, 62]. Taken together,
these observations suggest a higher degree of protection, at
least, in somatic stem cells to cytotoxic stresses. Consistent
with this idea, impairment of autophagy in epidermal stem
cells, DSCs, and HSCs leads to increased susceptibility to
cytotoxic stress such as etoposide, doxorubicid, or UV [53].

Accumulation of ROS and Mitochondrial Dysfunction

Several studies indicate that increased accumulation of ROS
determines stem cell dysfunction and fate decision during the
aging process [64—66]. In mice, the amount of HSCs with low
ROS levels decrease in an age-dependent manner [67]. Fur-
thermore, increased ROS levels result in disruption of prolif-
eration and self-renewal of HSCs [68]. The treatment with N-
acetyl-L-cysteine (NAC), an oxidative stress inhibitor, rescues
the defects in HSC and NSC function in a progeroid mice
model [69, 70].

Another well-characterized hallmark of aging is mitochon-
drial dysfunction [1e]. This demise can be caused by mito-
chondrial DNA mutation or changes in mitochondrial func-
tion such as alterations in nutrient sensing and energy metab-
olism [71]. mtDNA mutagenesis in mice affects HSCs during
the fetal development stage. mtDNA mutations also affect the
number of quiescent NSCs in vivo and their self-renewal abil-
ity in vitro [69]. Furthermore, HSCs exhibit a decrease in their
capacity of nutrient uptake in an age-dependent manner
[59e°].

Senescence

Cellular senescence is defined as irreversible cell cycle arrest.
Indirect evidence indicates that signaling pathways related
with cellular senescence increase with age in somatic stem
cells [15]. However, senescence of these cells has not been
clearly shown. Notably, a mutant mouse strain deficient in
Klotho, a protein involved in mineral homeostasis, shows se-
nescence markers in stem cells of the gut and the skin [72].
These cells show foci of y-H2AX staining, a hallmark of
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senescence induced by DNA damage. Similarly, aged HSCs
and muscle stem cells have increased levels of y-H2AX foci
[19,20]. However, DNA damage could also lead to apoptosis.
Therefore, it cannot be ruled out that these cells are undergo-
ing programmed cell death.

Impaired Nutrient Sensing Regulation

The use of invertebrate models for aging research led to the
discovery of several longevity pathways [37]. Among these
signaling networks, we find evolutionary conserved pathways
that have emerged as regulators of somatic stem cell function
[8]. One of these pathways is the reduced insulin/insulin-like
growth factor 1 (IGF-1) signaling (IIS). IGF-1 is the second-
ary mediator of the somatotrophic axis in mammals, which is
regulated by the growth hormone. The intracellular signaling
pathway of IGF-1 is the same as the one triggered by insulin.
The major downstream effector of IIS is the FOXO family of
transcription factors. Notably, FOXOs regulate the function-
ality of somatic stem cells such as HSCs and NSCs. A com-
bined deficiency of FoxO1/FoxO3/FoxO4 depletes the HSC
and NSC pools in mice [73, 74]. Deficiency of FoxOs in-
creases ROS levels in both NSCs and HSCs [73, 74], which
may increase protein misfolding. FoxOs protect from oxida-
tive stress, promoting the expression of antioxidant enzymes
[75]. FoxO3 is essential for regulating this process in mice,
since FoxO3 deficiency alone increases ROS levels and de-
pletes the pool of HSCs and NSCs [76, 77]. Notably, the loss
of FoxO3 causes increased neurogenesis during development
followed by NSC depletion in adulthood of mice [76]. Inter-
estingly, FoxO3-bound genes thoroughly overlap with those
bound by the proneuronal bHLH transcription factor
ASCL/MASHI in cultured neural progenitor cells [78].
FoxO3 represses the expression of specific ASCL1 neurogen-
ic targets restraining neurogenesis. Therefore, FoxO3 may
contribute to maintain the homeostasis of the NSC pool by
negatively regulating neurogenesis. In flies, IIS is also re-
quired for ISC proliferation and may regulate division of these
cells during aging and tissue repair [79, 80]. Insulin-like pep-
tides (dILP)-expressing cells in the brain modulate ISC pro-
liferation and age-associated dysplasia [80]. Furthermore,
dFOXO modulates the aging of muscle in flies [81, 82]. Cir-
cular muscle releases factors that induce ISC proliferation and,
therefore, is considered a component of the ISC niche [83].
Thus, IIS may also modulate ISC function through their niche.

Dietary restriction (DR), defined as reduced food-intake
without malnutrition, also extends lifespan in multiple species
[36, 84]. The target of rapamycin (mTOR) is required for
mediating the effects of DR on longevity. mTOR associates
with other proteins to form two different complexes:
mTORCI and mTORC2. mTORCI activity is inhibited by
DR resulting in longevity [85]. Recent findings indicate a role
of DR on stem cell proliferation. DR increases functionality of
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mouse ISCs via a non-cell-autonomous mechanism acting
through adjacent Paneth cells of the ISC niche. DR down-
regulates mTORCI1 activity in Paneth cells, but not in ISCs,
eventually creating an environment where ISC function is
enhanced [86¢]. Decreased activity of mTORCI1 in Paneth
cells up-regulates the levels of bone stromal antigen 1
(Bst-1), a protein that promotes cell proliferation in bone
marrow. Regulation of Bst-1 levels by mTORCI is required
for the enhanced ISC function upon DR. Similarly, the regen-
erative potential of muscle stem (satellite) cells increases upon
DR in both young and old mice [87]. The number of satellite
cells per fibers is enhanced after DR treatment during
3 months. DR also increases neurogenesis [88], but the effects
are not compatible for in vivo application since a high intake
deprivation is necessary. Taken together, these data could help
understand the pro-longevity effects of DR suggesting an im-
pact on stem cell function.

Germline Stem Cells

Both C. elegans and D. melanogaster are well-established
models for the study of GSCs. In the female germline stem
cell niche of flies, the primary niche-associated factor
decapentaplegic (DPP) promotes GSC self-renewal. Interest-
ingly, GSCs themselves regulate the restriction of DPP func-
tion through activation of the epidermal growth factor receptor
(EGFR) mitogen-activated protein kinase (MAPK) in the
nearby somatic cells [89]. In aged flies, dILPs regulate the
homeostasis and proliferation of GSCs through autonomous
and non-autonomous mechanisms in both females and males
[90-92]. Furthermore, IIS declines in the ovary from aged
females [90]. Thus, age-associated changes in the levels of
local or circulating dILPs may contribute to the decline in
the number and functionality of GSCs. In addition, DR also
enhances GSC maintenance [93].

Notably, signals from the GSCs regulate organismal
lifespan in both worms and flies [94]. Genetic ablation of
the germline, but not the entire gonad, leads to lifespan exten-
sion in worms [95]. This phenotype may be caused by in-
creased proteome stability within the post-mitotic soma [96,
97]. Inhibiting germline proliferation induces an increase in
the somatic levels of the proteasome subunit RPN-6 that, in
turn, promotes proteasome activity and extends lifespan [96,
97]. Increased levels of RPN-6 are modulated by DAF-16, the
worm FOXO orthologue [98, 99¢]. Extended lifespan induced
by the lack of germline could be explained by the disposable
soma theory of aging in reverse. Hypothetically, the need
for repairing and preventing damage to the germline
dominates resource allocation strategies, while the so-
matic tissues age and deteriorate [100]. Abrogation of
the germline would stimulate a re-allocation of metabol-
ic resources to the somatic tissues.

Conclusions

In this review, we have discussed the different general princi-
ples that might define adult stem cell aging. Besides the in-
sights gained into the aging of these cells, the molecular mech-
anisms underlying stem cell exhaustion are still unknown. It
will be fascinating to continue exploring the interconnected-
ness between stem cell exhaustion and the other candidate
hallmarks of aging. Although cumulative evidence suggests
that delaying age-associated changes in stem cells could have
beneficial effects in the health and lifespan of an organism,
more research in this field is needed to facilitate the develop-
ment of specific adult stem-cell-based therapies. However,
considering the links between enhanced stem cell proliferation
and malignant cells, some detrimental effects of this approach
should not be discarded. Additionally, it is important to re-
mark the contribution of the decline of post-mitotic and pro-
genitor cells to age-associated diseases and loss of tissue ho-
meostasis. Thus, it is important to understand the interplay
between stem, progenitor, and post-mitotic cells to develop
efficient healthspan-promoting therapies.
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