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Abstract
We apply kinetic field theory to non-linear cosmic structure formation. Kinetic field
theory decomposes the cosmic density field into particles and follows their trajecto-
ries through phase space. We assume that initial particle momenta are drawn from
a Gaussian random field. We place particular emphasis on the late-time, asymptotic
behaviour on small spatial scales of low-order statistical measures for the distribution
of particles in configuration and velocity space. Our main result is that the power
spectra for density and velocity fluctuations in ensembles of particles freely streaming
along Zel’dovich trajectories asymptotically fall off with wave number k like k−3 for
k → ∞, irrespective of the cosmological model and the type of dark matter assumed,
with the exponent set only by the number of spatial dimensions. This conclusion
remains valid for density-fluctuation power spectra if particle interactions are taken
into account in a mean-field approximation. We also show that the bispectrum of
freely streaming particles falls off asymptotically like k−11/2 under the same general
conditions.

Keywords Cosmology · Cosmic structure formation · Dark matter · Kinetic field
theory · Small-scale limit

1 Introduction

Our observable universe is permeated by structures on all scales. TheEarth is part of the
Solar System, located in one spiral arm of the Milky Way galaxy, which is a member
of the Local Group of galaxies, which is part of the Virgo Supercluster. Galaxies
identified in the Two-Micron All-Sky Survey mark large-scale filamentary structures,
galaxy clusters and voids in the nearby universe [1]. These are structures characterizing
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738 S. Konrad, M. Bartelmann

Fig. 1 Left: Cosmic structures in early cosmic history as revealed by the temperature fluctuations in the
cosmic microwave background (Planck 2018). Right: Cosmic structures at the cosmic present as traced by
the local galaxy distribution observed by the Two-Micron All-Sky Survey (courtesy of Dr. T. H. Jarrett,
IPAC/Caltech)

the cosmic matter distribution at present, almost 14 billion years after the Big Bang
(Fig. 1 right). Temperature fluctuations in the cosmic microwave background on the
other hand represent density fluctuations in the early universe, about 400,000 years
after the Big Bang (Fig. 1 left). At that time, density fluctuations had an amplitude
of ≈ 10−5 relative to the mean [2]. By now, the matter density in the central regions
of galaxy clusters exceeds the mean cosmic density by factors of ≈ 5 . . . 10 [3, 4].
Within 14 billion years, the amplitude of density fluctuations has grown by a factor of
� 106 on such scales. The cosmological standard model requires dark matter, i.e. a
dominant form of matter incapable of interacting electromagnetically, to explain this
amount of growth [5]. With known forms of matter, the density-fluctuation amplitude
could not have grown by more than a factor of ≈ 103 in the same time (see, e.g. [6]).

Based on the assumption of dominating dark matter, of cold dark matter in partic-
ular, more and more refined and extended numerical simulations have revealed over
decades that themorphology and low-order statisticalmeasures of the observed cosmic
matter distribution can bewell reproduced in detail [7–9]. Impressively highly resolved
simulations have shown furthermore that the radial profiles of the dark-matter density
in gravitationally bound objects from a wide range of masses have a self-similar, uni-
versal form, and measurements in galaxy clusters have confirmed this profile shape
[8–13].

Cosmic structures are most commonly quantified by their power spectrum, which
is the variance of the Fourier modes of their matter density distribution as a function
of the wave number k. As long as the relative amplitude of density fluctuations is
smaller than unity, their evolution can be well described by the linearized system of
the continuity, Euler, and Poisson equations on the expanding cosmic space-time (see,
e.g. [14] for a review). In this linear theory, the Fourier modes of the density field
evolve independently and at a rate independent of wave number. The linearly evolved
density-fluctuation power spectrum thus has the same shape as it had initially, but an
amplitude expected to be approximately 106 times larger than right after the cosmic
microwave background was released (see, e.g. [6]).

Reconstructions of the linearly evolvedpower spectrum frommanydifferent cosmo-
logical measurements confirm that its shape cannot be observationally distinguished
from the simplest shape it could be expected to have, growing almost linearly with
k at large scales (small k), reaching a broad maximum near k ≈ 10−2 hMpc−1 and
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Kinetic field theory for cosmic structure formation 739

Fig. 2 Linearly evolved, density-fluctuation power spectrum reconstructed from different classes of cos-
mological measurements. The dotted line shows the non-linear evolution of the power spectrum modelled
by numerical simulations (Planck 2018 I)

turning over to a decrease approaching an asymptotic fall-off proportional to k−3

on small scales (large k) [5, 15–18]; see Fig. 2. Numerical simulations show that
this power spectrum is characteristically deformed by non-linear evolution on small
scales: at wave numbers � 1 hMpc−1, its amplitude is enhanced by way more than
an order of magnitude, and it seems to approach an asymptotic fall-off proportional
to k−3 on small scales [19, 20]. Measurements of the non-linearly evolved power
spectrum via the weak gravitational lensing effect confirm these numerical results on
the scales accessible to observation [21, 22]. Structures with power spectra approach-
ing an asymptotic, logarithmic slope of −3 are distinguished because their power,
defined as the number of density fluctuations times their variance in Fourier space,
becomes scale-independent towards small scales: every decade in scale then adds an
equal amount of fluctuation power.

While numerical simulations reproduce the statistical properties of the cosmic mat-
ter distribution very well and thus strongly support the cosmological standard model
as well as the hypothesis of cold dark matter, they cannot identify any fundamental
reasons for the self-similar density profiles of gravitationally bound cosmic struc-
tures or the scale-independence of fluctuation power on small scales. Understanding
the fundamental origin of this kind of universality of cosmic structures is necessary to
decide whether it is caused by any specialities of the cosmological model, the assumed
properties of dark matter, the functional shape of the gravitational law, or due to any
other reason. Testing wide classes of theoretical possibilities with sufficiently detailed
numerical simulations seems forbiddingly costly. The inevitable shot noise in numer-
ically simulated matter distributions on small scales caused by the necessarily finite
number of simulation particles adds another motivation to search for rigorous state-
ments on the statistics of cosmic structures on small scales (see, e.g. [12] for a recent
review on cosmic N -body simulations).

Analytic approaches to cosmic structure formation exist. They fall into the two
main classes of Eulerian [23–31] and Lagrangian perturbation theory [32–40], and
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740 S. Konrad, M. Bartelmann

enter into the non-linear regime of cosmic of structure formation by perturbative or
effective methods [41–48]. An interesting, methodically comparable approach based
on Eulerian perturbation theory has been developed in [49, 50] and called time-sliced
perturbation theory (TSPT). There, the central object is the probability distribution
function of the cosmic density field, which is developed in time using a Taylor expan-
sion of the fluid equations of motion in vertex orders. These different approaches
suffer from one essential problem: they describe the evolution of cosmic structures in
terms of dynamical equations for the cosmic density and velocity fields, assumed to
be smooth and differentiable. In this sense, dark matter is modelled as a fluid, based
on the ideal or viscous hydrodynamical equations. Once convergent streams of dark-
matter particles cross, however, the velocity field is no longer uniquely valued, and
the fluid description becomes inadequate. This is the origin of the notorious shell- or
stream-crossing problem.

For this main reason, we choose a different approach here, based on kinetic field
theory [51–57]. This theory is kinetic in the sense of describing the statistical properties
of a large number of microscopic particles. These particles are classical, subject to
Hamiltonian dynamics, and as an ensemble need not be in any kind of equilibrium.
The field that the theory is acting on is the bundle of particle trajectories. The theory
differs from conventional approaches to kinetic theory in that it does not assume a
smooth phase-space density function of the particles to exist. Its central mathematical
object is thus not a dynamical equation for a phase-space density, but a generating
functional characterizing the initial statistical properties of the particle ensemble and
the time evolution of the particle trajectories. Statistical properties of the ensemble are
extracted from the generating functional by functional derivation. Since phase-space
trajectories subject to Hamiltonian dynamics cannot cross, the theory avoids the shell-
crossing problem by construction. By design, it is formally identical to a statistical
quantum-field theory.

We have studied the relation between KFT and the BBGKY hierarchy of statistical
physics in [58]. A profound relation between approaches to statistical physics via the
Liouville equation (e.g. [59]) and the path-integral approach of KFT is indicated by
the Koopman–von Neumann (KvN) operator formalism for classical mechanics [60,
61]. As shown in [62], the KFT Lagrangian is directly related to the Liouville operator
of the KvN formalism. This relation certainly deserves deeper investigation and could
turn out to be enormously fruitful (cf. e.g. [63]).

We shall focus in this paper on rigorous statements that can be derived on small-scale
cosmic structures within the framework of kinetic field theory. Other aspects of the
theory have beenworked out elsewhere, most noticeable on its relation to conventional
kinetic theory or cosmological perturbation theory [55], macroscopic reformulations
including resummation [64], applications to mixtures of dark matter and gas [65, 66],
and others. We develop kinetic field theory in Sect. 2 where we describe in detail how
the theory can be adapted to the expanding cosmological background space-time. In
Sect. 3, we first characterize the statistical properties of the initial state of the particle
ensemble and then describe how low-order statistical measures for the evolved particle
distribution in configuration and velocity space can be derived. The asymptotic, small-
scale behaviour of the density-fluctuation power spectrum, the density-fluctuation
bispectrum, and the velocity power spectrum is derived for freely streaming particles
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Kinetic field theory for cosmic structure formation 741

in Sect. 4. In this section, we also show how particle interactions can be included
in a mean-field approximation, and demonstrate that the asymptotic behaviour of the
density-fluctuation power spectrum is unchanged by such interactions. In Sect. 5, we
summarize our results and present our conclusions.

2 Kinetic field theory in the cosmological context

Kinetic field theory studies the evolution of classical particle ensembles in and out of
equilibrium. We are studying canonical ensembles of particles here whose motion is
described by Hamiltonian mechanics. Their phase-space trajectories (qi (t), pi (t)) =:
xi (t), with the index i = 1, . . . , N enumerating the particles, are completely deter-
mined once their initial values (q(i), p(i)) are given at some point in time. Phase-space
trajectories cannot cross: if they did, they would have one point in common at a certain
time, which would force them to have the same past and to continue identically since
the solutions of the Hamiltonian equations are unique. This is one of the major advan-
tages of kinetic field theory compared to other approaches: it avoids by construction
any problems with matter streams crossing in configuration space.

2.1 Notation

We shall introduce two essential pieces of notation here: bundles of particle trajectories
and low-order statistical measures for density fluctuations.

2.1.1 Bundles of particle trajectories

The phase-space trajectories for all N particles of the ensemble together are the fun-
damental field that kinetic field theory is concerned with. For notational convenience,
we denote this field as

x(t) = xi (t) ⊗ êi , (1)

where the êi are the Cartesian unit vectors ofR
N . Let now H(x, t) be the Hamiltonian

on the single-particle phase space. With the symplectic matrix

M =
(

0 13
−13 0

)
, (2)

the Hamiltonian equation for a single trajectory can be written as

ẋi (t) = M∂xi H(xi , t). (3)

Introducing the matrix

M = M ⊗ 1N (4)
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742 S. Konrad, M. Bartelmann

for the entire particle ensemble, further the N -particle phase-space gradient

∂x = ∂xi ⊗ êi (5)

and the N -particle Hamiltonian H(x1, . . . , xN , t), the equations of motion for the
entire trajectory bundle can be compactly written as

ẋ(t) = M∂xH . (6)

For brevity and convenience, we introduce the short-hand notations

∫
q

=
∫

d3q,

∫
k

=
∫

d3k

(2π)3
,

∫
q

=
∫ N∏

i=1

d3qi ,
∫
k

=
∫ N∏

i=1

d3ki
(2π)3

(7)

and fix the Fourier convention by

f̃ (k) =
∫
q
f (q) e−ik·q , f (q) =

∫
k
f̃ (k) eik·q . (8)

We assume three spatial dimensions unless explicitly stated otherwise.

2.1.2 Correlation functions and power spectra

The cosmic matter density ρ is often written as a mean density ρ̄ times a fluctuation,

ρ(q) = ρ̄ (1 + δ(q)) , (9)

where δ(q) is called the relative density contrast at position q. The probability for
finding one matter particle in a small volume dV around position q1 and another one
within dV around position q2 is then given by

P(q2|q1)P(q1) = (ρ̄dV )2

m2
〈(1 + δ(q1)) (1 + δ(q2))〉 = (ρ̄dV )2

m2 (1 + ξδ(q1, q2)) , (10)

where ξδ(q1, q2) is the correlation function of the density fluctuations δ between
positionsq1 andq2. Thus, the correlation functionquantifies the conditional probability
for finding a particle at q2 given another particle at q1. Due to statistical homogeneity,
ξδ may only depend on the separation vector q2 − q1 between the two points, and due
to statistical isotropy, it may only depend on the absolute value q = |q2 − q1|,

ξδ(q1, q2) = ξδ(q2 − q1) = ξδ(q) = 〈δ(q1)δ(q2)〉 . (11)

The Fourier transform of the correlation function is the power spectrum,

Pδ(k) =
∫
q
ξδ(q) e−ik·q . (12)
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Kinetic field theory for cosmic structure formation 743

Since the Fourier transform of the density is

ρ̃(k) = ρ̄

∫
q
(1 + δ(q)) e−ik·q = ρ̄

[
(2π)3δD(k) + δ̃(k)

]
, (13)

the two-point function of the Fourier-transformed density is related by

〈ρ̃(k1)ρ̃(k2)〉 = ρ̄2
[
(2π)6δD(k1)δD(k2) +

〈
δ̃(k1)δ̃(k2)

〉]
(14)

to the two-point function of the Fourier-transformed density contrast. The latter is
related to the power spectrum by

〈
δ̃(k1)δ̃(k2)

〉
= (2π)3δD(k1 + k2)Pδ(k1), (15)

we can write (14) as

1

ρ̄2
〈ρ̃(k1)ρ̃(k2)〉 = (2π)3δD(k1 + k2)

[
(2π)3δD(k1) + Pδ(k1)

]
. (16)

We shall return to this equation later in (110). On the other hand, the connected part of
the two-point function of the Fourier-transformed density, i.e. the two-point density
cumulant in Fourier space, is

〈ρ̃(k1)ρ̃(k2)〉c = 〈ρ̃(k1)ρ̃(k2)〉 − 〈ρ̃(k1)〉 〈ρ̃(k2)〉
= (2π)3δD(k1 + k2)Pδ(k1) (17)

by combining (14) with (13) and (15).

2.2 Generating functional for a classical particle ensemble

Abundle of phase-space trajectories x(t) beginning at the initial phase-space points
x(i) follows the classical Hamiltonian flow φcl(x(i), t); see Fig. 3 for a schematic
illustration. The probability to find the particles at the phase-space points x(t) at time
t is

P(x(t)) =
∫

dx(i) P
(
x(t)|x(i)

)
P
(
x(i)

)
, (18)

where P(x(i)) is the probability for the initial particle positions x(i) to be occupied, and
P(x(t)|x(i)) is the transition probability for the particle ensemble from there to x(t).
Since the particles are classical and follow deterministic trajectories, this transition
probability is a functional Dirac delta distribution,

P
(
x(t)|x(i)

)
= δD

[
x(t) − φcl

(
x(i), t

)]
. (19)
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744 S. Konrad, M. Bartelmann

Fig. 3 Phase space is shown
schematically as a function of
time. Particle trajectories
originating at an initial position
transport the initial probability
forward in time

q

t

p

x̄(t)

x(i)

Integrating P(x(t)) over the trajectory bundle x(t) and introducing a generator field
J(t), we arrive at the generating functional

Z [J] =
∫

dx(i)P
(
x(i)

) ∫
Dx δD

[
x(t) − φcl

(
x(i), t

)]
ei(J,x), (20)

where the parentheses in the exponent denote a suitably defined scalar product between
J and x including a time integral,

(J, x) = (
Ji ⊗ êi , x j ⊗ ê j

) = δi j

∫ t

0
dt ′ Ji (t ′) · x j (t ′) =

∫ t

0
dt ′ Ji (t ′) · xi (t ′).

(21)

Evaluating the path integral in (20) over all possible trajectory bundles x(t), the delta
distribution selects the classical solution

x̄(t) = φcl

(
x(i), t

)
(22)

of the Hamiltonian equations (6). The generating functional for the entire particle
ensemble thus becomes

Z [J] =
∫

d� ei(J,x̄), (23)

with the integral measure d� on the initial phase space,

d� = P
(
x(i)

)
dx(i) = P

(
x(i)

) N∏
i=1

dx (i)
i . (24)

The generating functional Z [J] in (23) is already the central mathematical object of
kinetic field theory. By functional derivatives with respect to the generator field J ,
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Kinetic field theory for cosmic structure formation 745

then setting J = 0, statistical information on the particle ensemble at any time t can be
extracted from Z [J] [51, 54]. Aiming at statistical information on the particle ensem-
ble, we are not solving dynamical equations for density and velocity fields assumed to
be sufficiently smooth. Instead, the time evolution of the particle trajectories implies
the time evolution of the generating functional, from which statistical information on
the particle distribution in phase-space can be extracted at any required time. Study-
ing particle trajectories instead of smooth fields avoids the notorious shell-crossing
problem, which arises in other approaches when a velocity field assumed to be smooth
ceases to be uniquely valued after matter streams cross.

The main difference between our KFT-based approach and others is thus that we
dissolve the cosmic density field into particles whose trajectories we follow in phase
space. Since Hamiltonian trajectories cannot cross there, even though they may cross
in configurations space, the KFT formalism avoids the shell-crossing problem by con-
struction. Resolving the shell-crossing problem after it has occurred is a formidable
task. The authors of [67] use functional methods similar to ours, but begin with smooth
density and velocity fields that require to go beyond shell-crossing in a perturbative
way. To study the evolution at shell-crossing, [68] beginwith a lownumber of perturba-
tion modes and proceed to proceed to arbitrarily high order in Lagrangian perturbation
theory of a smooth displacement field, which becomes slow in more than one spatial
dimension. The paper [69] is comparable in spirit, showing that resummation of the
Lagrangian perturbation series can be achieved in one spatial dimension.

It should be noted that the generating functional Z [J] contains the exact infor-
mation on the time evolution of the entire particle ensemble if we insert the exact
particle trajectories x̄(t) into (23). Approximation schemes for the trajectories will
be introduced as we go along to arrive at tractable expressions. We will now turn to
describing particle trajectories with suitably chosen Green’s functions.

2.3 Particle trajectories

Beginningwith the Lagrange function of point particles of equalmass in the expanding
cosmic background, we shall derive Green’s functions here solving the equations of
motion and thus characterizing the particle trajectories through phase space. We shall
pay particular attention to choosing appropriate reference trajectories and deriving the
force acting between two particles relative to these trajectories (see e.g. [54, 70]).

2.3.1 Lagrange function, transformation to comoving coordinates

The trajectories of particles with mass m̃ on the expanding cosmic space-time are
determined by their Lagrange function

L̃ = m̃

2
	̇r 2 − m̃	, (25)

where the gravitational potential 	 satisfies the Poisson equation

∇2
r 	 = 4πGρ − 
 (26)
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746 S. Konrad, M. Bartelmann

with the matter density ρ and the cosmological constant 
 [71]. In terms of the
comoving spatial coordinate 	q , the physical spatial coordinate 	r is 	r = a 	q . During the
matter-dominated epoch, the scale factor a obeys Friedmann’s equation

ä

a
= −4πG

3
ρ̄ + 


3
(27)

containing the mean matter density ρ̄, which is a function of time only.
Transforming to comoving coordinates, subjecting the Lagrangian to the gauge

transformation

L̃ �→ L̃ − d f

dt
with f = m̃

2
aȧ 	q 2 (28)

and dropping the particle mass m̃ leads to the Lagrangian

L̃ = a2

2
	̇q 2 − φ, (29)

with the gravitational potential φ now satisfying the comoving Poisson equation

∇2
qφ = 4πGa2ρ̄δ (30)

containing the density contrast

δ = ρ

ρ̄
− 1. (31)

We now introduce the convenient time coordinate

τ = H−1
i

[
D+(t) − 1

]
(32)

instead of the cosmic time t , and Hi is the Hubble constant at some initial time ti.
The growth factor D+(t) for cosmic density fluctuations is the growing solution of
the linearized growth equation (40).

We set ti early in the matter-dominated era, e.g. right after the cosmic microwave
background has decoupled. We normalize the growth factor to unity initially such that
τ = 0 at t = ti.

The inverse Hubble constant at the initial time, H−1
i , sets an appropriate time scale.

We express the mean density ρ̄ by the critical density and the density parameter �i at
the initial time,

ρ̄ = 3H2
i

8πG
�i a

−3, (33)

where the scale factor is also normalized to unity at the initial time ti. Early in the
matter-dominated phase, we can safely replace the density parameter by unity,�i = 1.
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Kinetic field theory for cosmic structure formation 747

Fig. 4 Effective particle mass m as a function of the cosmic scale factor a (see 36)

If we finally drop the common factor H2
i from both terms of the Lagrange function

L̃ , we find the equivalent Lagrange function

L = m

2
	̇q 2 − mϕ. (34)

The dot now and in the following represents the derivative with respect to the time τ ,
the potential ϕ satisfies the Poisson equation

∇2ϕ = Aϕδ with Aϕ = 3a

2m2 , (35)

and m is the effective, dimensionless, but time-dependent particle mass

m = a2
dτ

dt
, (36)

see Fig. 4. Note that the time-dependence of the effective particle mass m is a math-
ematically exact and physically equivalent consequence of introducing comoving
coordinates. In physical coordinates, particles are diluted by cosmic expansion such
that the gravitational acceleration between them decreases over time. In comoving
coordinates, their mean separation remains constant, and the decreasing gravitational
acceleration is mapped to their increasing mass.

We will need the time derivative of the mass later, i.e. the derivative of m with
respect to the growth factor,

ṁ = dm

dD+
= m′

D′+
, (37)
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748 S. Konrad, M. Bartelmann

where the prime indicates the derivative with respect to the scale factor a. We insert
(36) into (37) and use

dτ

dt
= dD+

da
ȧ = D′+aH , (38)

where H = ȧ/a is the Hubble function. Measuring time in units of the initial Hubble
time H−1

i , we replace H by the expansion function E = H/Hi. Then,

m′ = d

da

(
a3D′+E

)
= a3E

[
D′′+ +

(
3

a
+ E ′

E

)
D′+

]
, (39)

(see, e.g. [56]). The growth factor itself satisfies the linear growth equation,

D′′+ +
(
3

a
+ E ′

E

)
D′+ = 3

2

�i

a5E2
D+, (40)

which simplifies the right-hand side of (39). Early in thematter-dominated era,�i ≈ 1
to excellent approximation. Combining this with (35)–(40), we can bring ṁ into the
simple form

ṁ = 3

2

D+
D′+a2E

= 3

2

aD+
m

= mAϕD+, (41)

with Aϕ specified in (35). From now on, we shall write t instead of τ , expressing all
times by the linear growth factor as defined in (32).

2.3.2 Hamiltonian Green’s function

The Lagrange function L from (34) implies the canonical momentum 	p = m 	̇q with
the dimensionless, time-dependent mass m. Due to our normalizing both the scale
factor a and the growth factor D+ to unity at the initial time, the effective particle
mass m is also unity initially and increases from there. The Hamilton function

H = 	p 2

2m
+ mϕ = H0 + HI (42)

splits into a free, kinetic part H0 = 	p 2/(2m) and an interacting part HI = mϕ (see,
e.g. [51, 54, 56, 70]). The free part implies the equation of motion

ẋ = M∂x H0 = A(t)x with A(t) =
(
0 m−1

0 0

)
, (43)

which is solved by the exponential

x(t) = e Ā(t,0)x0 with Ā(t, t ′) =
∫ t

t ′
dt̄ A(t̄). (44)
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Fig. 5 Hamiltonian propagator gH as defined in (48), shown here as a function of the cosmic scale factor
with ai = 0.001. The propagator is bounded from above because of cosmic expansion

Since Ā(t, t ′) is nilpotent, Ā2 = 0, the solution (44) simplifies to

x(t) = [
16 + Ā(t, 0)

]
x0. (45)

Varying the constant x0 leads to the solution

x(t) = [
13 + Ā(t, 0)

]
x (i) −

∫ t

0
dt ′

[
13 + Ā(t, t ′)

] ( 0
m∇ϕ

)
(46)

for the phase-space trajectory, with the superscript (i) identifying initial coordinates,
or

q(t) = q(i) + gH(t, 0)p(i) −
∫ t

0
dt ′ gH(t, t ′)m∇ϕ (47)

for the trajectory in configuration space, where

gH(t, t ′) =
∫ t

t ′
dt̄

m
(48)

is what we call the Hamiltonian propagator [70]; see Fig. 5.

2.3.3 Motion relative to Zel’dovich trajectories

It is convenient in cosmology to replace this Hamiltonian propagator gH(t, t ′) by the
time difference t−t ′, whichwe have chosen to be the difference between linear growth
factors (see eg. [70]). To achieve this, we re-write the trajectory (47) as

q(t) = q(i) + tp(i) −
∫ t

0
dt ′

{
gH(t, t ′)m∇ϕ + [

1 − ġH(t ′, 0)
]
p(i)

}
, (49)
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750 S. Konrad, M. Bartelmann

where the dot denotes the time derivative with respect to the first time argument of the
Hamiltonian propagator, and define a function Ap(t) implicitly by

∫ t

0
dt ′

[
1 − ġH(t ′, 0)

] !=
∫ t

0
dt ′ gH(t, t ′)Ap(t

′). (50)

Differentiating (50) twice with respect to t gives Ap = ṁ = mAϕD+; cf. (41) and the
definition of gH in (48).

We replace the potential ϕ by the shifted potential

φ = ϕ + AϕD+ψ, (51)

where ψ is an initial velocity potential defined to satisfy

∇ψ = p(i). (52)

By assuming a scalar potential for the initial particle velocities, we neglect any initial
vortical flows, which does however not mean that the flow remains non-vortical in the
course of the further evolution. Since initial velocities and density fluctuations have
to satisfy the continuity equation, the velocity potential must be related to the initial
density fluctuations δ(i) by the Poisson equation

∇2ψ = −δ(i). (53)

Considering (50) and replacing ϕ by φ, we can bring the trajectory (49) into the
form

q(t) = q(i) + tp(i) −
∫ t

0
dt ′ gH(t, t ′)m∇φ, (54)

with the potential φ satisfying the Poisson equation

∇2φ = ∇2ϕ + AϕD+∇2ψ = Aϕ

(
δ − δ(lin)

)
, (55)

where δ(lin) = D+δ(i) is the linearly evolving density contrast.
This is an important result in our context. The potentialφ is sourced by the difference

between the actual density contrast δ and its linearly evolving representative δ(lin), i.e.
φ is the potential created by the non-linear part of the density contrast only. Initially,
therefore, φ = 0 and the particles follow the inertial trajectories

q(t) ≈ q(i) + tp(i), (56)

representing the Zel’dovich approximation [72]; see Fig. 6 for an illustration. As the
density contrast develops a non-linear contribution at later times and on small scales,
particles are deflected from the Zel’dovich trajectories. This is the essential reason for
introducing the Zel’dovich trajectories (56) as reference trajectories here: the force

123



Kinetic field theory for cosmic structure formation 751

Fig. 6 Illustration of the Zel’dovich approximation, e.g. simulated density field at an early stage of the
evolution (left) and a later stage (right)

with respect to these trajectories initially vanishes, and it only builds up as density
fluctuations become non-linear.

We can finally replace the Hamiltonian propagator gH under the integral in (54) by
implicitly defining an effective force f (t) acting relative to the fiducial, Zel’dovich
trajectories (56) (see, e.g. [56]). Then,

∫ t

0
dt ′ gH(t, t ′)m∇φ

!= −
∫ t

0
dt ′

(
t − t ′

)
f (t ′). (57)

Differentiating this equation twice with respect to t results in the effective force

f (t) = −m∇φ + ṁ

m2

∫ t

0
dt ′ m∇φ. (58)

With the Green’s function

G(t, t ′) =
(
13 (t − t ′)13
0 13

)
, (59)

the full phase-space trajectory can be written as

x(t) = G(t, 0)x (i) +
∫ t

0
dt ′ G(t, t ′)

(
0

f (t ′)

)
. (60)
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2.3.4 Effective interaction potential

The Poisson equation (55) for the potential is interesting in its own right. In Fourier
space, it reads

φ̃ = − Aϕ

k2

(
δ̃ − δ̃(lin)

)
. (61)

At the same time, φ is the convolution δn̄ ∗v of the fluctuation δn̄ of the mean particle-
number density n̄ and the one-particle potential v; thus,

φ̃ = n̄δ̃ṽ (62)

according to the convolution theorem. The effective one-particle potential is then
determined by

ṽδ̃ = − Aϕ

n̄k2

(
δ̃ − δ̃(lin)

)
. (63)

Multiplying this equation oncewith δ̃ and oncewith δ̃(lin), taking the ensemble average
and eliminating 〈δ̃δ̃(lin)〉 between the resulting two equations gives

ṽ = − Aϕ

n̄k2

⎛
⎝1 −

√
P(lin)

δ

Pδ

⎞
⎠ . (64)

At large wavenumbers, P(lin)
δ  Pδ , and the one-particle potential approaches the

expected Newtonian form ∝ k−2. At small wave numbers, P(lin)
δ = Pδ and the poten-

tial drops to zero.Relative to theZel’dovich trajectories (56), the potential thus acquires
a large-scale cut-off. As Fig. 7 shows, its shape resembles the Yukawa form

ṽ = − Aϕ

n̄(k20 + k2)
(65)

with a time-dependent cut-off scale k0 delineating the regimes of linear and non-linear
structure formation [56].

This Yukawa shape is an approximate description of the interaction potential.
Clearly, since the Zel’dovich approximation contains the large-scale part of the grav-
itational interaction (due to the correlation of initial momenta with initial density
fluctuations), particle interactions relative to Zel’dovich trajectories must exclude this
large-scale contribution in order not to account of it twice. The calculation leading
to the exact Eq. (64) shows how the effective particle–particle interaction potential
is sourced only by the non-linear density fluctuations. Representing its shape by the
Yukawa form as in (65) is a convenient (and sufficiently accurate, see Fig. 7) approx-
imation, for which we have however no fundamental justification yet.
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Fig. 7 Yukawa fit function (golden line) from (65) compared to the scaled ratio of the power spectra (purple
line), (64)

2.4 Remarks concluding this section

We finish this subsection by five remarks which appear important here also in view of
wrong statements frequently repeated about the kinetic field theory of cosmic structure
formation.

1. For completeness, we repeat that the time-dependent, effective particle mass m is
due to the exact transformation from physical to comoving coordinates. It is not at
all an approximation.

2. The trajectories (60) are not approximate either, but exact. By a sequence of trans-
formations,wehave introduced inertial trajectorieswith respect to a time coordinate
t given by the linear growth factor as introduced in (32). This time coordinate is
non-uniform in cosmic time. These inertial, or Zel’dovich, trajectories are chosen to
incorporate part of the gravitational interaction between the particles, as quantified
by the Poisson equation (56) and the definition (58) of the effective force. Despite
their simple form, the Zel’dovich trajectories are subject to gravity by linear den-
sity fluctuations because the initial particle momenta are correlated with the initial
density fluctuations via the velocity potential ψ : where particles are overdense,
their flow converges.

3. The trajectories (60) show that the kinetic field theory of cosmic structure forma-
tion goes beyond the Zel’dovich approximation inasmuch as the effective force is
taken into account. We shall show later how the gravitational interaction relative
to Zel’dovich trajectories can be incorporated in a mean-field approach.

4. Introducing reference trajectories of the Zel’dovich form and an effective force
relative to them is nothing mysterious or unusual, and not at all any limitation
of the kinetic field theory of structure formation. Newton’s axioms introduce ref-
erence trajectories defined by inertial motion in coordinate time, and forces as
reasons for deviations from inertial motion. The equivalence principle introduces
the trajectories of freely falling particles as a reference, in consequence of which
gravitational force is transformed away altogether, and gravitational interaction is
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reduced to the gravitational tidal field. This illustrates that reference trajectories,
and thus Green’s functions, can be chosen at will if forces acting relative to them
are suitably adapted. The discussion of the effective gravitational potential above
shows that the interaction relative to the Zel’dovich trajectories has not an infinite
range any more.

5. Deviations from the Zel’dovich trajectories are exactly quantified by the time inte-
gral over the force term in (61). Since this force is sourced by non-linear density
fluctuations only, it is initially small even at small scales, and remains so at large
scales. The integral in (61) thus precisely determines a quantity suitable for a per-
turbative approach, if perturbation theory is what is wanted. Other approaches, such
as the mean-field approximation described below, are possible, less tedious, and
more efficient.

3 Statistics of the particle ensemble

Having set up the generating functional of kinetic field theory including the particle
trajectories, we shall proceed in this section by characterizing the initial state of the
particle ensemble in the cosmological situation, and by describing generally how
statistical information on the evolved particle ensemble can be extracted from the
generating functional.

3.1 The initial state

Since this section is about the initial particle configuration in phase space only, we drop
here the superscript (i) on the initial density contrast δ(i) and the initial phase-space
positions x(i) = (q(i), p(i)), understanding that x = (q, p) are initial positions. The
set of the initial phase-space coordinates for all particles is what we call the initial state
of the ensemble. Two assumptions are crucial for this initial state: initial velocities are
non-vortical, and the initial velocity potential is a Gaussian random field [73].

3.1.1 Probability distribution of initial phase-space positions

As discussed before, we assume that an initial velocity field exists which is the gradient
∇ψ of a velocity potential ψ . By continuity, the initial density contrast δ must then
be the negative Laplacian of this potential, δ = −∇2ψ ; see (52) and (53). This initial
density field is now sampled by N point particles, placed by a Markov process such
that the probability P(q|δ) of finding particles at positions q = qi ⊗ êi in the density
field characterized by the density contrast δ is

P(q|δ) = 1

V N

N∏
i=1

[1 + δ(qi )] , (66)

(see, e.g. [51]). Given the joint distribution P(δ, p) of the density-contrast values
δ = δ(qi ) ⊗ êi at the particle positions and the momenta p, the probability P(q, p)
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of the initial phase-space positions for the particle ensemble is

P(q, p) =
∫

dδ P(q|δ) P(δ, p). (67)

Assuming that ψ is a Gaussian random field, the joint probability P(δ, p) is a
multi-variate Gaussian. Its characteristic function

	(r, s) =
〈
e−i(r·δ+s· p)〉 (68)

is then given by

	(r, s) = exp

(
−1

2
k�Ck

)
with k =

(
ri
si

)
⊗ êi , (69)

characterized by the covariance matrix

C = 〈d ⊗ d〉 with d =
(

δi
pi

)
⊗ êi . (70)

The joint probability P(q, p) is then

P(δ, p) =
∫
r

∫
s
	(r, s) ei(r·δ+s· p). (71)

With this, we return to (67), where we introduce for later convenience a source field
R associated with δ,

P(q, p) =
∫

dδ P(q|δ) P(δ, p) e−iR·δ
∣∣∣∣
R=0

. (72)

This allows us to elevate the conditional probability P(q|δ) from (67) to an operator
acting on the source field R,

P(q|δ) �→ P̂ (q|i∂R) , (73)

which we can pull in front of the integral in (72). This, together with (71), turns (67)
into

P(q, p) = P̂(q|i∂R)

∫
dδ e−iR·δ

∫
r

∫
s
	(r, s) ei(r·δ+s· p)

∣∣∣∣
R=0

. (74)

Performing the integral over δ results in the Dirac delta distribution δD(r − R) such
that the ensuing integration over r replaces r by R,

P(q, p) = D̂
∫
s
	(R, s) eis· p (75)
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with the differential operator

D̂ = P̂(q|i∂R)

∣∣∣
R=0

. (76)

As we shall discuss in detail later, this differential operator can in cosmological appli-
cations at late times safely be approximated by

D̂ ≈ V−N 1̂
∣∣∣
R=0

, (77)

such that

P(q, p) = 1

V N

∫
s
	(0, s)eis· p

= 1

V N
√

(2π)3N detCpp(q)

exp

(
−1

2
p�C−1

pp (q) p
)

, (78)

where

Cpp = 〈 p ⊗ p〉 = Cpi p j ⊗ Ei j with Ei j = êi ⊗ ê j (79)

is the correlation matrix for the entire set of particle momenta, and Cpi p j is the corre-
lation matrix of the momenta of particles i and j [51].

3.1.2 Momentum correlations

Due to the definition p = ∇ψ of the initial momentum field in terms of the velocity
potential ψ , we have

Cpi p j (q) = (∇i ⊗ ∇ j
)
ξψ(q), (80)

where ξψ is the auto-correlation function

ξψ(q) =
∫
k
Pψ(k)eik·q (81)

of the initial velocity potential taken at the separation q = |qi − q j | of the particles i
and j . Thus,

Cpi p j (q) =
∫
k
(k ⊗ k) Pψ(k) eik·q . (82)

Notice thatCpi p j = Cpj pi because a sign change in q can be cancelled by an irrelevant
sign change in k in (82).
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Fig. 8 The initial momentum correlation functions a1,2(q) as defined in (86), normalized to σ 2
1 /3 (87) are

shown as a function of particle separation

Carrying out the integral over the directions of the wave vector k, we obtain

Cpi p j (q) = −13 a1(q) − π‖ a2(q) (83)

with the correlation functions

a1(q) = − 1

2π2

∫ ∞

0
dk P(i)

δ (k)
j1(kq)

kq
,

a2(q) = 1

2π2

∫ ∞

0
dk P(i)

δ (k) j2(kq) (84)

shown in Fig. 8, and the projector

π‖ = q̂ ⊗ q̂ (85)

parallel to the line connecting the two points which are being correlated [52]. The
vector q̂ is the unit vector in q direction, q̂ = q/|q|. We have used in (84) that
P(i)

δ = k4Pψ due to the Poisson equation (53) between the velocity potential ψ and

the initial density contrast δ(i). The power spectrum P(i)
δ (k), linearly evolved to redshift

z = 0, is shown in Fig. 9. The functions a1,2(q) have the limits

lim
q→0

a1(q) = −σ 2
1

3
, lim

q→0
a2(q) = 0, (86)

where σ 2
1 is one of the moments

σ 2
n = 1

2π2

∫ ∞

0
dk k2n−2 P(i)

δ (k) (87)
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Fig. 9 Linearly evolved CDM power spectrum at z = 0

of the initial density-fluctuation power spectrum; see also the asymptotic expansions
(156) below. Of course, we implicitly need to assume here that these moments exist
up to the order n needed in later expressions.

3.2 Statistics of the evolved particle distribution

Statistical information can be extracted from the time-evolved generating functional
by applying suitable operators (see, e.g. [51, 54]). We shall first introduce density
operators here and discuss density correlation functions before we proceed to power
spectra for density and velocity fluctuations.

3.2.1 Density operators

The number density of our particle ensemble is a sum over delta distributions,

ρ(q, t) =
N∑
i=1

δD (q − qi (t)) . (88)

We Fourier transform this expression,

ρ(q, t) �→ ρ̃(k, t) =
N∑
i=1

exp (−ik · qi (t)) (89)

and elevate it to an operator by replacing the particle positions qi (t) by the respective
functional derivative with respect to Jqi (t),

qi (t) �→ −i
δ

δ Jqi (t)
. (90)
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We thus obtain the density operator

ρ̂(k, t) =
N∑
i=1

ρ̂i (k, t) =
N∑
i=1

exp

(
−k · δ

δ Jqi (t)

)
, (91)

which is a sum of one-particle density operators ρ̂i (k, t).

3.2.2 Density correlation functions

Since the operators ρ̂i (k) contain a functional derivative in the exponential, they create
a translation. Thus, any sequence of n one-particle density operators applied to the
generating functional gives, setting J = 0 at the end,

ρ̂1(1) · · · ρ̂n(n) Z [J]
∣∣∣
J=0

= Z [L], (92)

where the short-hand notation ρ̂( j) = ρ̂(k j , t j ) was introduced. The shift tensor is

L = −
n∑
j=1

k j · δ J
δ Jq j (t j )

. (93)

Applying finally n density operators to the generating functional results in

〈ρ(1) · · · ρ(n)〉 =
N∑

j1,..., jn=1

ρ̂ j1(1) · · · ρ̂ jn (n) Z [J]∣∣J=0

=
n−1∏
r=0

(N − r) Z [L] ≈ Nn Z [L], (94)

where thefirst equality in the second line holds because the particles of the ensemble are
indistinguishable, so each of the N (N −1) · · · (N −n+1) particle tuples ( j1, . . . , jn)
must contribute the same statistical result. The final approximate equality holds if
N � n, as will usually be most safely the case. If the thermodynamic limit N →
∞ could be taken or would be inappropriate, shot-noise terms could occur [51]. In
cosmology, however, we can assume that any reasonably large volume will be filled
with an extremely large number of particles. We shall, therefore, replace (94) by an
equality from here on.

3.3 Low-order statistics of the free particle distribution

After this general discussion, we shall now specify the results obtained so far to low-
order statistical measures for the free particle distribution, i.e. for the distribution of
the particle ensemble flowing along force-free trajectories.
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3.3.1 Free power spectrum

For power spectra, we have with n = 2 in (94)

〈ρ(1)ρ(2)〉 = N 2Z [L]. (95)

For synchronous power spectra, t2 = t1, and the tensor L in (95) is

L = −
(
1
0

)
δD (t − t1)

(
k1 ⊗ ê1 + k2 ⊗ ê2

)
(96)

such that the scalar product (L, x̄(t)) turns out to be

(L, x̄(t)) = −k1 · q̄1(t1) − k2 · q̄2(t1). (97)

If we neglect the contribution to the particle trajectories (54) due to the particle
interactions and insert the Zel’dovich trajectories (56) into (97), we obtain from (23)
what we call the free generating functional,

Z0[L] =
∫

d� e−ik1(q1+tp1)−ik2(q2+tp2), (98)

where (qi , pi ) are now meant to be initial particle positions and momenta.
Due to spatial homogeneity, we can refer the positions of all particles to the position

of any particular particle, say particle 1, replacing qi �→ qi − q1, and integrate over
q1. Since the momentum-correlation matrix depends only on particle separations, but
not on absolute particle positions, this results in a delta distribution, leaving the free
generating functional in the form

Z0[L] = (2π)3δD (k1 + k2)
∫

d�1̂ e
−ik1t(p1−p2)+ik1q2 , (99)

where the Gaussian integral measure

d�1̂ = dq 1̂d p
1

V N
√

(2π)3N detCpp

exp

(
−1

2
p�C−1

pp p
)

(100)

now does not contain dq1 any more,

dq 1̂ =
N∏
i=2

dqi . (101)

Writing

− k1t (p1 − p2) = L p · p with L p = −k1t ⊗ (
ê1 − ê2

)
, (102)
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the momentum integration in (99) can be carried out directly, leading to

Z0[L] = (2π)3δD(k1 + k2)V
−N

∫
dq 1̂ exp

(
−1

2
L�
p CppL p

)
eik1q2 . (103)

Combining (102) with (79), the quadratic form in the exponential of (103) is

L�
p CppL p = 2t2k�

1

(
Cp1 p1 − Cp1 p2

)
k1 = 2t2k21

(
σ 2
1

3
+ a‖(q2, μ)

)
(104)

with the definition

a‖(q2, μ) = a1(q2) + μ2a2(q2) (105)

containing the cosine μ = k̂1 · q̂2 of the angle between k1 and q2 (see, e.g. [52, 54]).
Notice the limit

lim
q→0

a‖(q, μ) = −σ 2
1

3
(106)

of the momentum-correlation function a‖(q, μ).
Since the integrand in (103) depends only on the (relative) position q2, we can

integrate over all initial particle positions q j with j > 2, which results in a factor
V N−2. We can further pull part of (104) in front of the integral, arriving at

Z0[L] = (2π)3δD (k1 + k2) V
−2e−QD

∫
q
exp

(
−t2k21a‖(q, μ)

)
eik1·q , (107)

where q now abbreviates q2 for simplicity, and QD is

QD = σ 2
1

3
t2k21 . (108)

Returning to (90), the free two-point density correlator is now

〈ρ(1)ρ(2)〉 = N 2 Z0[L]. (109)

As shown in (16), the free power spectrum P(k) is defined in terms of this expression,
except for the preceding delta distribution and the prefactor ρ̄2 = (N/V )2,

(2π)3δD (k1 + k2)
[
(2π)3δD(k) + P(k)

]
= 1

ρ̄2
〈ρ(1)ρ(2)〉 . (110)

Combining (110), (109) and (107), we thus find

P(k) = e−QD

∫
q

[
e−t2k2a‖(q,μ) − 1

]
eik·q
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Fig. 10 The non-linear power spectrumP(k), (111) at redshift z = 0 (purple line), together with the linearly
evolved power spectrum (gray line) is shown for WIMP dark matter, where the initial power spectrum is
cut-off with a Gaussian kernel at a wave number ks = 106 Mpc−1

= e−QD

∫
q
e−t2k2a‖(q,μ)eik·q for k �= 0; (111)

see Fig. 10. It is evident from the argument of the first exponential in the integrand
of (111) that multiplying the amplitude of the initial power spectrum, and thus the
correlation function a‖, by a certain factor is equivalent to leaving this amplitude
unchanged but multiplying the time coordinate by the root of the same factor. This
will later be reflected by our results containing the time coordinate only in combination
with σ2, suggesting to introduce τ2 = tσ2 as the time coordinate relevant for structure
formation.

The exponential prefactor exp(−QD) seems to indicate that the spectrum will be
damped exponentially on small scales, but we will show later that it will be compen-
sated exactly on small scales. If the argument of the exponential in the integrand of
(111) is small enough, we can approximate

∫
dq

[
e−t2k2a‖(q,μ) − 1

]
eik·q ≈ −t2k2

∫
q
a‖(q, μ) eik·q

= t2P(i)
δ (k) = P(lin)

δ (k), (112)

where we have used in the last step that our time coordinate t is the linear growth
factor. Since a‖ is bounded, this approximation holds for sufficiently small k2t2, i.e.
for any given time on sufficiently large scales, as expected [52].
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3.3.2 Free bispectrum

For the bispectrum, we proceed in an exactly analogous way (see eg. [51]). The shift
tensor L contains three wave vectors (k1, k2, k3) now, thus (97) is replaced by

(L, x̄(t)) = −
3∑

i=1

ki · q̄i (t). (113)

Consequently, the free generating functional, evaluated at L, is extended to

Z0[L] = (2π)3δD

(
3∑

i=1

ki

)
V−3e−Q(3)

D

∫
q

∫
q ′
exp

(
−t2Q(3)

C

)
ei(k2·q+k3·q ′), (114)

where

Q(3)
D = σ 2

1

6
t2

(
3∑

i=1

k2i

)
(115)

and

Q(3)
C = k�

1 Cp1 p2 (q) k2 + k�
1 Cp1 p3

(
q ′) k3 + k�

2 Cp2 p3

(∣∣q − q ′∣∣) k3. (116)

Similar to (110), the free bispectrum B is defined by

(2π)3δD

(
3∑

i=1

ki

)
B(k2, k3) = 1

ρ̄3
〈ρ(1)ρ(2)ρ(3)〉 (117)

for non-degenerate configurations of the three wave vectors k1,2,3, i.e. if none of them
vanishes. The free bispectrum depends on only two wave vectors because the delta
distribution in (114) ensures that k1 = −(k2 +k3). Taking account of (94) with n = 3,
then comparing (117) to (114), we find the expression

B(k2, k3) = e−Q3
D

∫
q

∫
q ′
exp

(
−t2Q(3)

C

)
ei(k2·q+k3·q ′), (118)

understanding again that the wave vector k1 in Q(3)
C and Q(3)

D is fixed by the condition
k1 + k2 + k3 = 0. The bispectrum (118) is shown in Fig. 11.

In the large-scale limit, when the norm of all wave vectors involved is getting small,
k1, k2, k3 → 0, the expression resulting from (114) can be brought into the familiar
form

B(k2, k3) ≈ F(k2, k3)P
(lin)
δ (k2)P

(lin)
δ (k3) + cyc. (119)
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Fig. 11 The non-linear bispectrum B(k) from (118) at redshift z = 0 for the isosceles (green line) and the
equilateral (purple line) configuration of k vectors, together with the bispectrum approximation (black line)
as in (119) for light WIMP dark matter (ks = 105 Mpc−1 as in Fig. 8)

with the kernel function

F(k2, k3) =
(
1 + k2 · k3

k22

)(
1 + k2 · k3

k23

)
. (120)

3.3.3 Free velocity power spectrum

The generating functional of kinetic field theory contains the complete statistical infor-
mation on the phase-space trajectories of the particle ensemble and thus also allows
calculation velocity power spectra [54]. The momentum p j of a particle j needs to be
localized at the spatial position q j by the expression

p jδD(q − q j ), (121)

which we elevate to the velocity operator

�̂ j = p̂ j ⊗ ρ̂ j = −i
∂

∂ Jp j

⊗ ρ̂ j . (122)

The density operator locates the particle j and the derivative with respect to the source
field Jp j extracts this particle’s momentum.

Since the derivative with respect to Jq j contained in the density operator and the

derivative with respect to Jp j commute, we can apply multiple operators �̂1 . . . �̂n

by shifting all involved density operators ρ̂1 . . . ρ̂n to the right to apply them first to
the generating functional, which they will translate by an amount L,

�̂1(1) · · · �̂n(n) Z0[J]
∣∣∣
J=0

=
(

−i
∂

∂ Jp1(t1)

)
⊗ · · · ⊗

(
−i

∂

∂ Jpn (tn)

)
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Z0[J + L]
∣∣∣
J=0

. (123)

If we specialize to synchronous spectra, all operators are applied at the same time
t j = t . The free generating functional Z0[J + L] can then be brought into a form
similar to (98),

Z0[L + J] =
∫

d� ei(Lq+Jq ,q)+i(L p+J p, p), (124)

with the components

Lq = −k j ⊗ ê j , L p = −k j t ⊗ ê j (125)

of the shift tensor L, generalizing the definition of L p in (102). Expression (124)
shows that we can extract information on particle momenta p j by taking derivatives
with respect to L p j rather than Jp j . Therefore, for a velocity power spectrum with
n = 2,

〈�(1)�(2)〉 = −N 2
(

∂

∂L p1
⊗ ∂

∂L p2

)
Z0[L], (126)

analogous to (109). Taking the free generating functional from (103) and defining the
velocity power spectrum P�(k) in analogy to (110) results in

P�(k) = −D1 ⊗ D2

∫
dq e−Q eik·q , (127)

which is a second-rank tensor because it correlates all momentum components at one
position with all momentum components at another position. Here, Dj = ∂/∂L p j

abbreviates the derivative with respect to L p j and Q is the quadratic form

Q = 1

2
L�
p CppL p. (128)

The derivatives of Q with respect to L p1,2 are

D1Q = L�Cpp1 = (
Cp1 p2 − Cp1 p1

)
kt = −

(
σ 2
1

3
+ a1

)
kt − a2π‖kt,

D2Q = L�Cpp2 = −D1Q, (129)

while the second derivative is

D1 ⊗ D2Q = Cp1 p2 . (130)
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Fig. 12 The absolute value of the trace of the free velocity power spectrum Tr P� (purple line) from (131)

at redshift z = 0 is shown together with k−2P(ini)
δ (light gray line), which matches the trace at large scales,

and the free power spectrum, multiplied by σ 2
1 (dark gray line), matching the trace at small scales. The

initial power spectrum is for WIMP dark matter with a Gaussian cut-off at ks = 106 Mpc−1

Thus, the velocity power spectrum reads

P�(k) =
∫

dqQ e−Q eik·q (131)

with the matrix

Q = D1Q ⊗ D2Q − Cp1 p2 . (132)

The absolute value of the trace of P�(k) is shown in Fig. 12.

4 Asymptotic small-scale behaviour of power spectra

We shall now turn to deriving rigorous statements on the small-scale behaviour of the
main quantities derived above, in particular the free density-fluctuation power spec-
trum, the free density-fluctuation bispectrum, and the free velocity power spectrum.
We shall then generalize some of our results by including the complete set of initial
correlations and by including interactions in the mean-field approximation.

4.1 Free density-fluctuation power spectrum

We shall focus on density-fluctuation power spectra first, deriving their asymptotic
small-scale behaviour in two different ways [57].
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4.1.1 Leading-order asymptotics fromMorse’s lemma

We are interested in general statements on the power spectrum on small scales. For
this reason, we first study the asymptotic behaviour of the free power spectrum P(k)
as derived in (111).

We begin with Laplace’s method for d-dimensional integrals of the form

J (λ) =
∫

�

e−λ f (x) g(x) dd x (133)

over functions f , g ∈ C∞ on a domain � ⊂ R
d . The integral is supposed to converge

absolutely for sufficiently large λ ∈ R, the function f is assumed to have a minimum
at x0 ∈ � and only there, and the Hessian A of f in x0 is supposed to be positive
definite. Then, J (λ) has the asymptotic expansion

J (λ) ∼ e−λ f (x0)
∞∑
n=0

cn
λd/2+n

(134)

for λ → ∞ (see e.g. [74, 75]).
For specifying the coefficients cn , we introduce some elements of notation. Under

the given conditions, Morse’s lemma ensures that neighbourhoodsU , V of y = 0 and
x0 and a diffeomorphism h : U → V exist such that

( f ◦ h)(y) = f (x0) + 1

2
y�Qy, Q = diag(μ1, . . . , μd). (135)

With the Jacobian determinant det H of h, we define the function G : U → R by

G(y) = (g ◦ h)(y) det H(y). (136)

We further introduce the multi-index α = (α1, . . . , αd) and agree on the notation

|α| =
d∑

k=1

αk , α! =
d∏

k=1

αk !,

�(α) =
d∏

k=1

�(αk) , μα =
d∏

k=1

μ
α1
1 · · ·μαd

d , (137)

whereμ in the last equation is a d-dimensional vector.Moreover, we define the symbol

δ(α) =
{
a c

b d
(138)
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and the derivative operator

DαG(0) = ∂ |α|

∂α1 y1 · · · ∂αd yd
G(y)

∣∣∣∣
y=0

. (139)

Then, the coefficients cn are given by

cn =
∑

|α|=2n

δ(α)

(
2

μ

)(α+1)/2

�

(
α + 1

2

)
DαG(0)

α! . (140)

Applying the result (134) to integrals of the Laplace–Fourier type,

J (λ, k) =
∫

�

e−λ f (x)eik·xdd x (141)

and resumming the coefficients, we find

J (λ, k) ∼ e−λ f (0)

√
(2π)d

λd det A
exp

(
−k�A−1k

2λ

)
(142)

for λ → ∞. Next, we specialize this statement to integrals of the form

P(k) =
∫

�

e−|k|s f (x)eik·xdd x (143)

with s ≥ 2. We have shown in [57] that although the kernel does not meet the afore-
mentioned conditions, the theorem can still be applied. We thus obtain

P(k) ∼ e−|k|s f (0)
√

(2π)d

|k|sd det A exp

(
−k�A−1k

2|k|s
)

(144)

to leading asymptotic order for |k| → ∞.
Comparing the integrals in (143) and (111), we now set s = 2, d = 3 and f (q) =

t2a‖(q), use the limit (106) of a‖(q, μ) and the Hessian

A = t2
(

∂2a‖(q)

∂qi∂q j

)∣∣∣∣
q=0

= σ 2
2 t

2

15

(
13 + 2k̂ ⊗ k̂

)
. (145)

Since the inverse of the A is

A−1 = 15

σ 2
2 t

2

(
13 − 2

3
k̂ ⊗ k̂

)
, (146)
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Fig. 13 Left: The dimensionless free power spectrum k3P at redshift z = 0 (solid coloured lines) from (111)
together with the first order asymptotics (dashed lines) from (148) for three different values of the initial
small-scale smoothing wave number ks are shown. Right: The universal time evolution of the asymptotic
amplitude P(0) from (148) as a function of the time coordinate τ22 = σ 2

2 t
2 (gray line) together with the

asymptotic amplitudes of the spectra in the left panel

and its determinant is

det A = 3

(
σ 2
2 t

2

15

)3

, (147)

we immediately find

P(k) ∼ 3(4π)3/2

k3
�3/2(t)e−�(t) (148)

with

�(t) = 5

2τ 22
, τ 2n = t2σ 2

n ; (149)

see Fig. 13. Recently, this result has also been derived in the framework of Lagrangian
perturbation theory [76]. This is the leading-order asymptotic term, fromwhich impor-
tant conclusions can be drawn. Before we get to them, we derive the full asymptotic
series for the free power spectrum in a different manner from Erdélyi’s theorem.

4.1.2 Asymptotic series from Erdélyi’s theorem

We begin with the integral (111), introduce spherical polar coordinates with k̂ as the
polar axis, and introduce a finite upper limit qmax > 0 for the integration over q,

P(k, t) ∼ 2πe−QD

∫ 1

−1
dμ

∫ qmax

0
q2dq e−t2k2a‖(q)eikqμ (150)
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for k → ∞. This is asymptotically correct since the asymptotic behaviour of P for
large wave numbers is determined by the behaviour of the exponent next to its critical
point, so the contribution to the integral from qmax to∞ can be ignored [57, 77]. Then,
we can use Erdélyi’s theorem (see, e.g. [78–80]) to derive the asymptotic series for P
[57].

This theorem states that one-dimensional integrals of the form

I (λ) =
∫ b

a
e−λ f (x) g(x) dx (151)

over functions f and g admitting the asymptotic series

f (x) ∼ f (a) +
∞∑
k=0

ak(x − a)α+k, g(x) ∼
∞∑
k=0

bk(x − a)k+β−1 (152)

have the asymptotic expansion

I (λ) ∼ e−λ f (a)
∞∑
n=0

�(ν)cn
λν

with ν = n + β

α
(153)

with the coefficients

cn = 1

αaν
0

n∑
m=0

bn−m

m! dm,n, dm,n = lim
x→0

dm

dxm

⎛
⎝1 +

∞∑
j=1

a j

a0
x j

⎞
⎠

−ν

(154)

provided the function f has a global minimum at a, the function f can be term-wise
differentiated, f ′ and g are continuous in a neighbourhood of a, except possibly at a
itself, and I (λ) converges absolutely for sufficiently large λ.

We need to set f (q) = a‖(q) here with a‖(q) from (105) and a1,2(q) from (84).
Using the series expansions

jν(z) = zν
∞∑
n=0

(−z2/2
)n

n!(2ν + 2n + 1)!! (155)

for the spherical Bessel functions, we find first

a1(q) ∼ −σ 2
1

3
−

∞∑
n=1

(−q2
)n

σ 2
n+1

(2n + 3)(2n + 1)! ,

a2(q) ∼ q2
∞∑
n=0

(−q2
)n

σ 2
n+2

(2n + 5)(2n + 3)(2n + 1)! (156)
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with the moments σ 2
n from (87). These imply the asymptotic series

f (q) ∼ −σ 2
1

3
+

∞∑
m=0

a2m(μ)q2m+2 (157)

for f (q) with

a2m(μ) = (−1)m+2σ 2
m+2

(5 + 2m)(3 + 2m)!
[
1 + 2(m + 1)μ2

]
. (158)

Setting g(q) = q2 exp(ikqμ), we further find

g(q) ∼
∞∑

m=0

bm(μ)qm+2, bm(μ) = (ikμ)m

m! . (159)

Comparing (157) and (159) to (152), we can read off α = 2 and β = 3. Inserting the
coefficients a2m and bm into (154), setting ν = (n + 3)/2, using (153) and integrating
the resulting expressions over μ, we can derive the complete asymptotic series

P(k, t) ∼
∞∑

m=0

P(m)(t)

k3+2m (k → ∞). (160)

The two lowest order terms are

P(0)(t) = 3(4π)3/2�3/2(t)e−�(t),

P(1)(t) = (4π)3/2

28

σ 2
3

σ 2
2

�5/2(t)e−�(t)
[
123 − 132�(t) + 20�2(t)

]
; (161)

see Fig. 14. The leading-order term in (160) reproduces the result (148), as it should.
Generally, the functions P(m)(t) are proportional to the moments σ 2

n of the initial
power spectrum,

P(m)(t) ∝ σ 2
m+2, (162)

and also depend on lower order moments. Explicit expressions for the coefficient
functions P(m)(t) are given in [57].

4.1.3 Conclusions from the asymptotics of the free power spectrum

Our conclusions on the asymptotic behaviour of the free power spectrum rest upon
rather general assumptions. We have assumed that the initial momenta of the particles
in our ensemble are drawn from a Gaussian random velocity-potential field and cor-
related in such a way as to satisfy the continuity equation between the initial density
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Fig. 14 Comparison of leading (gray lines) and next-to-leading (colored) order amplitudes of the free
power spectrum asymptotics from (161) as a function of scale factor a for three different values of the
initial small-scale smoothing wave number ks. Dashed lines indicate negative values of the amplitude P(1)

and velocity fields. For deriving the asymptotic series of the free power spectrum, we
did not have to specify the shape of the initial power spectrum, but only had to assume
that its moments σ 2

2 for the leading-order and σ 2
3 for the next-to-leading order terms

exist.
Moreover, none of our results obtained so far depends on anything specific for cos-

mology. We have transformed the Hamiltonian equations of motion to the expanding
spatial background, which resulted in a time-dependent particle mass and a specific
form of the Poisson equation. Having focussed on the free power spectrum, however,
we could describe the particle trajectories purely kinematically, without invoking any
specific dynamics. All we have assumed in this regard is that a time coordinate t exists
in terms of which particle trajectories take on the inertial form (56). The formation of
the asymptotic k−3 tail of the free power spectrum is thus an effect of collective free
streaming of classical particles with phase-space positions drawn from an initially
Gaussian random field, and the exponent −3 is set solely by the number of spatial
dimensions.

Most importantly, the exponential damping factor exp(−QD) appearing in (107) is
exactly cancelled in the asymptotic terms. Freely streaming particles with correlated
initial momenta thus do not lead to exponential damping of small-scale structures.

The amplitudeP(0)(t) of the leading-order asymptotic term starts at zero for t = 0,
reaches a maximum value of

P(0)
max = 3

(
6π

e

)3/2

≈ 54.78 (163)

when �max = 3/2 and then decreases again. The increase is due to the fact that freely
streaming particles create structures where their flow is locally convergent, while the
decrease is due to the fact that they fly past each other and erase these structures again
after they pass the point of convergence.
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Fig. 15 The wave number k0 that indicates the transition to the small-scale k−3 asymptotics of the free
power spectrum, as defined in (165) as a function of scale factor a is shown for three different values of
the initial small-scale smoothing wave number ks. When the smoothing of initial scales is stronger (smaller
values of ks), the k−3 asymptotics sets in at earlier at larger scales. As time progresses, larger and larger
scales enter the k−3 asymptotics

The values of �max and P(0)
max have an absolute meaning, irrespective of the cosmo-

logical background and the shape of the initial density-fluctuation power spectrum.
The definition of � in (149) shows that τ2 = tσ2 is the relevant time coordinate for
structure formation by collective streaming. The lower the moment σ2 of the initial
power spectrum is, the more time t it will take the asymptotic k−3 tail to reach its
maximum amplitude, with

tmax =
√
5

3
σ−1
2 . (164)

This timescale tmax is expected to set an important scale for structure formation.
The ratio of the asymptotic terms of the next-to-leading and the leading order is

k−2P(1)(t)

P(0)(t)
= k−2

84

σ 2
3

σ 2
2

�
(
123 − 132� + 20�2

)
. (165)

When this value drops below unity above a certain wave number k0, illustrated in
Fig. 15, the free power spectrum attains its asymptotic behaviour ∝ k−3 for scales
smaller than k0.

4.2 Free density-fluctuation bispectrum

We now turn to the asymptotic behaviour of the free bispectrum, given in (118).
For finding an expression valid on small scales, an approach based on Laplace-type
integrals is possible. For the lowest order term of an asymptotic series, we require an
approximate expansion for the exponent Q(3)

C around its relevant critical point. While
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Q(3)
C has a critical point at zero, its Hessian with respect to q is non-invertible at q = 0

[81]. The previously applied method based on Morse’s lemma thus fails, but it can be
suitably adapted using the splitting lemma of functions, which extends the validity of
the Morse lemma to cases of Hessians with positive corank (see e.g. [82]).

The splitting lemma states that, if f is a polynomial of order ≥ 2 with a critical
point at x0 and a Hessian at x0 with rank k, then

f ∼
k∑
j=1

x2j + g(xk+1, . . . , xn) (166)

with either g = 0 or g a polynomial of order ≥ 3 which is uniquely determined up
to an equivalence transformation, provided the critical point is isolated. Under this
assumption, the proof of the splitting lemma can be adapted to the specific form of
Q(3)

C .
Since we are studying a statistically isotropic situation, we can without loss of

generality orient the coordinate system such that k2 points into 	ez direction and k3
falls into the x-z plane. Then, the only non-vanishing components of the wave vectors
k2,3 are k2z , k3x and k3z , in terms of which the asymptotic behaviour of the bispectrum
is given by

B (k2z, k3x , k3z) ∼ c0 e−3�/2

τ 52 τ
1/2
3 c1/44 (k)k23xk

5/2
2z

(167)

for k1, k2, k3 → ∞ with the coefficients

c0 = 9000 4
√
6.3π5/2�(5/4),

c4(k) = k43x + 6k23xk
2
3z + 5k43z + k22z

(
k23x + 5k23z

)
+ 2k2zk3z

(
3k23x + 5k23z

)
,

(168)

as shown in [81].
In the triangle formed by k1,2,3, let α and β be the angles between k2 and k3 and

between k1 and k3, respectively. Then, by the sine theorem, the norm of k3 is

|k3| = Ak with A = sin(α + β)

sin β
, (169)

and its components are k3x = −Ak sin α and k3z = −Ak cosα. We can then bring the
function c4(k) into the form

c4(k) = f (α, β)

(
k

sin2 α

)4

(170)
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Table 1 Values of the function f 1/4(α, β) for some special configurations of the triangle k1,2,3

Case |k1,2,3| α β f (α, β)

Isosceles k π/3 π/3 (3/4)4/2

Right isosceles |k2| = k = |k3| π/2 π/4 2

Right isosceles |k1| = k = |k2| π/4 π/4 1/8

Acute |k2| = k = |k3|  1 ≈ π/2 ≈ α10

Fig. 16 The dimensionless free bispectrum k6B at redshift z = 0 for the equilateral configuration of k
vectors for three values of the initial smoothing wave number ks are shown (solid lines) from (118) together
with their corresponding asymptotics (dashed lines) from (172)

with

f (α, β) = A2 sin8 α
[(

1 + A2
) (

1 + 4 cos2 α
)

− 2A cosα
(
3 + 2 cos2 α

)]
,(171)

allowing us to write the asymptotic expression for the bispectrum as

B (k, α, β) ∼ c0
f 1/4(α, β)

e−3�/2

τ 52 τ
1/2
3

k−11/2. (172)

Values of the function f 1/4(α, β) are tabulated for some special cases in Table 1.
For an equilateral configuration of wave vectors, B is shown in Fig. 16, and Fig. 17
illustrates the wave vectors k1,2,3 and the angles α, β between them.

4.3 Free velocity power spectrum

The asymptotic expansions (156) of the functions a1,2(q) show that

Cp1 p2 ∼ σ 2
1

3
13 + O

(
q2

)
, Dj Q ∼ O

(
q2

)
; (173)
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Fig. 17 Arrangement of the
wave vectors k1,2,3

k2

k3

k1

α

β

thus, terms proportional to k2 show up only at O(q4) in the terms in parentheses in
(131). The dependence on the wave number k of the leading-order asymptotic term of
the velocity power spectrum P�(k) for k → ∞ thus remains unchanged compared
to that of the density-fluctuation power spectrum P(k). Only its amplitude changes
because we need to replace the coefficient b0 in the asymptotic expansion (159), and
thus also the coefficient function P(0) in (160), as

b0 → −σ 2
1

3
b0, P(0) → −σ 2

1

3
P(0). (174)

This takes us to the leading-order asymptotic expression

P�(k) ∼ P(0)
�

k3
13 (175)

for k → ∞, with

P(0)
� = −σ 2

1

3
P(0) = −(10π)3/2

σ 2
1

τ 32
e−�(t). (176)

The time dependences of the leading-order asymptotic terms in the density-fluctuation
and the velocity power spectra are thus the same, their maximum amplitudes are
reached at �max = 3/2, but the maximum amplitude of the leading-order asymptotic
term in the velocity power spectrum is

P(0)
�,max = −σ 2

1

(
6π

e

)3/2

; (177)
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compare (163). The velocity correlation on small scales is negative and has the same
amplitude as the density-fluctuation power spectrum multiplied by the initial velocity
dispersion σ 2

1 . This explains the origin of the k
−3 asymptotics, i.e. structures on small

scales: initially convergent particle streams cross which leads to caustics.

4.4 Density-fluctuation power spectrum for interacting particles

So far, we have neglected particle interactions altogether. This does however not mean
that no gravity was included because the Zel’dovich inertial trajectories are subject
to the large-scale, linear part of the gravitational interaction, as specified in Sect. 2.
We shall now proceed to include particle interactions in the mean-field approximation
[56].

4.4.1 Forces in the mean-field approximation

So far, we have neglected particle interactions beyond those that are already contained
in the reference trajectories modelled with the Zel’dovich approximation. The density-
fluctuation two-point function written down in (95) is still exact, however. The shift
tensor L, multiplied with the actual particle trajectories, is

(L, x̄(t)) = −k1 · (q̄1(t) − q̄2(t)) (178)

according to (97), taking into account that k1 + k2 = 0 due to statistical homo-
geneity. The spatial trajectories q̄ j (t) can be split into the free part q̄(0)

j (t) described
by the Zel’dovich approximation, and a part ȳ(t) describing the deviations from the
Zel’dovich reference trajectories caused by the particle interactions,

q̄ j (t) = q j + tp j︸ ︷︷ ︸
q̄(0)
j

−
∫ t

0
dt ′gH(t, t ′)m∇ jφ︸ ︷︷ ︸

−ȳ j

. (179)

We are quoting the result (54) here which contains the Hamiltonian propagator gH
given in (48), and the gradient of the potential φ which satisfies the Poisson equation
(55).

In (98), we continued with q̄(0)
1,2, neglecting ȳ1,2. We shall now include ȳ1,2 in a

mean-field approximation. For completing the generating functional Z [L], we require
the scalar product

(L, ȳ) = k1 ·
∫ t

0
dt ′gH(t, t ′)m (∇1φ − ∇2φ) . (180)

We now approximate the potential gradients ∇ jφ by a mean-field average,

∇ jφ → 〈∇ jφ
〉
, (181)
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which we construct in the following way. Let V (q) be an interaction potential linearly
superposed by contributions v(q) due to individual particles at positions qi , then

V (q) =
N∑
i=1

v(q − qi ) =
∫
y
v(q − y)

N∑
i=1

δD(y − qi ) =
∫
y
v(q − y)ρ(y), (182)

because the sum of delta distributions is the (number) density ρ of the particles. The
potential gradient at the position q j of another particle is

∇q j V (q) =
∫
q
δD(q − q j )∇V (q) =

∫
q
ρ j (q)∇V (q), (183)

where ρ j (q) is the contribution of particle j to the particle number density. Thus, the
potential gradient acting on particle j is

∇φ =
∫
q

∫
y
ρ j (q)∇v(q − y)ρ(y), (184)

where v is the interaction potential between a pair of individual particles separated by
q − y. The potential gradient contributed by particles at a distance q − y from particle
j is

∇φ(q − y) =
∫
q
ρ j (q)∇v(q − y)ρ(y). (185)

In the cosmological situation,we imagine a test particlemoving through a collection
of other particles, exposed to their collective gravitational field. The number density
of these particles can be considered to be arbitrarily high. The force exerted by any
individual particle on the test particle is then an arbitrarily small contribution to the
total force. Fluctuations of this force caused by individual particles can then be ignored.
This situations is typically well described by a mean-field approximation. Averaging
the potential gradient ∇φ leads to

〈∇φ〉 (q − y) =
∫
q
∇v(q − y)

〈
ρ j (q)ρ(y)

〉
, (186)

containing the two-point function of the (number) density field. By definition of the
two-point density auto-correlation function ξ ,

〈
ρ j (q)ρ(y)

〉 = n̄2

N
[1 + ξ(q − y)] , (187)

where n̄ is the mean number density. The division by N takes into account that we
cross-correlate the one-particle density contribution ρ j with the density ρ.
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Inserting (187) into (186) leaves

〈∇φ〉 (q − y) = n̄2

N

∫
q
∇v(q − y)ξ(q − y) (188)

because the contribution by uncorrelated particles averages to zero in a statistically
homogeneous and isotropic random field. Now, both factors in the integrand of (188)
depend on the fixed separation q − y only, but not on the point q any more. This is
a consequence of statistical homogeneity. The integral over q thus only results in a
volume factor which, together with the prefactor N−1, cancels one of the n̄ factors.
Thus, the mean potential gradient is

〈∇φ〉 (q − y) = n̄∇v(q − y)ξ(q − y). (189)

By the Fourier convolution theorem, the Fourier transform of the average potential
gradient is the convolution of the Fourier transforms of the individual factors. The
Fourier transform between particles is given by (64), approximated by (65). Thus, the
Fourier transform of its gradient is

∇̃v = − iAϕk

n̄
(
k20 + k2

) . (190)

The Fourier transform of the two-point density auto-correlation function ξ is the
density-fluctuation power spectrum Pδ(k). Since we select the motion of particles
along Zel’dovich inertial trajectories (56) as a reference, the most appropriate power
spectrum to insert here would be the free power spectrum P(k). We shall further sim-
plify this choice below and keep the symbol Pδ(k) for now. We thus find the Fourier
transform of the mean potential gradient to be

〈̃∇φ〉(k) = −iAϕ

(
k

k20 + k2

)
∗ Pδ(k). (191)

We thus replace the expressions k1 · (∇1φ − ∇2φ) appearing in the scalar product
(180) by the averaged expression

F(k1) = k1 ·
(
〈̃∇φ〉(k1) − 〈̃∇φ〉(k2)

)
= 2k1〈̃∇φ〉(k1)

= −2iAϕ

∫
k′

k1 · (k1 − k′)
k20 + (k1 − k′)2

Pδ(k
′), (192)

where we have used that 〈̃∇φ〉(−k1) = −〈̃∇φ〉(k1). For carrying out the convolution,
we introduce the cosine μ of the angle between k1 and k′ and define κ = |k′|/|k1| as
well as κ0 = |k0|/|k1|. This enables us to write

F(k1) = −2iAϕσ 2
J (k1) (193)
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Fig. 18 Filter function J as defined in (195) for different values of κ0

where σ 2
J is the moment

σ 2
J (k1) = |k1|3

(2π)2

∫ ∞

0
κ2dκ Pδ(|k1|κ) J (κ, κ0) (194)

of the density-fluctuation power spectrum with the filter function

J (κ, κ0) =
∫ 1

−1
dμ

1 − κμ

1 + κ2
0 + κ2 − 2κμ

= 1 + 1 − κ2 − κ2
0

4κ
ln

κ2
0 + (1 + κ)2

κ2
0 + (1 − κ)2

(195)

shown in Fig. 18.

4.4.2 Density-fluctuation power spectrum in the mean-field approximation

We can now write the mean-field averaged scalar product between L and ȳ as

〈(L, ȳ)〉 (k1) = −2i
∫ t

0
dt ′gH(t, t ′)mAϕσ 2

J (k1). (196)

Since this expression does not depend on the initial phase-space coordinates of the
particle ensemble any more, it can be pulled in front of the integral over d� in the
generating functional. This leads to

Z [L] = e〈SI〉Z0[L], (197)
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Fig. 19 The mean-field interaction term 〈SI〉 as defined in (198) as a function of wave number k

containing the mean-field interaction term

〈SI〉 (k1) = i 〈(L, ȳ)〉 (k1) = 2
∫ t

0
dt ′gH(t, t ′)mAϕσ 2

J (k1) (198)

shown in Fig. 19. Invoking (109) and (110) once more, the non-linear, density-
fluctuation power spectrum, including particle interactions in the mean-field approxi-
mation, can be written as

P(nl)
δ (k) = e〈SI〉(k)P(k). (199)

This is a convenient and simple expression whose merits need to be assessed by
comparing it with, e.g. density-fluctuation power spectra derived from numerical sim-
ulations. In [56], we have further simplified it by replacing the free, non-linear power
spectrum P by the linearly evolved power spectrum P(lin)

δ , and the power spectrum
Pδ(k) to be inserted into the moment σ 2

J given in (194) by a suitably damped version

of P(lin)
δ as well. The result is the approximate expression

P(nl)
δ (k) ≈ e〈SI〉(k)P(lin)

δ (k) (200)

for the mean-field averaged, non-linear power density-fluctuation power spectrum. As
Fig. 20 shows, it reproduces the results from numerical simulations remarkably well.
This result may give sufficient credit to the mean-field approximation for the particle
interactions.

In our present context, we are aiming at a different conclusion, however. As (198)
shows, the scale dependence of the mean-field interaction term is determined by the
moment σ 2

J , which we now repeat in a different way,

σ 2
J (k1) =

∫
k
Pδ(k) J (k/k1, k0/k1) . (201)
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Fig. 20 The analytic mean-field approximated (purple line, (200)), the non-linear power spectrum obtained
numerically by [19] (golden line) and the linear power spectrum (dashed line) are shown at redshift z = 0

The filter function J (k/k1, k0/k1) flattens for k < k1 at a level decreasing with
increasing k0/k1, and falls off ∝ k−2 for k > k1. For k0/k1 → 0, the filter func-
tion approaches J → 2 for k  k1. In the small-scale limit, k1 → ∞, the filter
function is well approximated by J ≈ 2 almost everywhere in the integration range in
(201). Then, the integration covers the entire power spectrum, and the result becomes
scale-independent. While the power spectrum in (201) is growing linearly, comparing
with (87) shows that

σ 2
J (k1) → 2t2σ 2

2 (202)

for k1 → ∞. The mean-field interaction term thus becomes independent of scale in
the small-scale limit, which implies that the asymptotic behaviour of the non-linear
power spectrum P(nl)

δ (k) for k → ∞ will be the same as that of P ,

P(nl)
δ (k) ∝ k−3, (203)

while its amplitude will be enhanced compared to (148) or the identical expression in
(161) by the exponentiated mean-field interaction term.

4.4.3 A note on virialization

The formation of the asymptotic tail ∝ k−3 is due to the collective free streaming
of the initially correlated dark-matter particles in the Zel’dovich approximation. A
characteristic time scale is defined by the peak amplitude of the leading-order asymp-
totic term first given in (148) and later discussed in Sect. 4.1.3, where we show that
the characteristic time scale for developing the asymptotic tail is what we call the
free-streaming time τ2 = tσ2, first defined in (149).

KFT can ideally and methodically describe virialization since its interaction opera-
tor contains all particle interactions. The degree to which virialization can be included
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Fig. 21 Linearly evolved power spectrum k3P(lin)(k) and free, non-linearly evolved power spectrum
k3P(k) at redshift z = 20. The maximum in k3P(k) delimits non-linear structures at a scale defined
by the free-streaming time τ2

into KFT calculations depends on the approximations applied in evaluating the inter-
action operator. So far, we have done so either perturbatively [51] or in a mean-field
approach [56]. The latter shows that the transition to the non-linear power spectrum
at moderate wave numbers (the “bump”) is reproduced accurately at the scale where
the mean-field interaction term first grows above the linearly evolved power spectrum.
This scale is larger than galaxy-cluster scales and thus beyond virialization.

The mean-field approximation proposed in [56] averages the force between parti-
cles over their correlation function, or equivalently convolving the Fourier-transformed
force with the power spectrum. For simplicity, we use the free power spectrum there
and moderate its damping factor with the adhesion approximation to avoid overdamp-
ing of the interaction term on small scales. The viscosity parameter in the adhesion
approximation can be determined from KFT itself. While this affects the behaviour
of the damping term at large wave numbers, it leaves the location of the “bump”
unchanged. We would thus claim that the scale where the “bump” appears can be
determined from first principles.

To illustrate this,we show inFig. 21 the linearly evolved power spectrum k3P(lin)(k)
together with the free, nonlinearly evolved power spectrum k3P(k) at a redshift of
z = 20. The “bump” has formed in P(k) at the scale set by stream crossing expected
at the respective free-streaming time.

Virialization cannot be expected to occur with the restricted dynamics captured by
theZel’dovich approximation.However, the time expected to be required for streams to
cross for the first time, derived from the peak amplitude of the leading-order asymptotic
term, is supposed to occur much earlier than virialization.

While virialization can in principle be described by KFT, it is not fully captured by
the mean-field approximation. However, since the KFT interaction operator is expo-
nential, and the mean-field averaged force between particles enters into the argument
of the exponential, the interaction term in the mean-field approximation sums over
infinitely many powers of the averaged force term. As long as the mean density field
can reasonably be described as a Gaussian random field, the powers of the averaged
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force term correspond to higher order particle correlations, due to Wick’s theorem.
Therefore, the mean-field interaction term contains averaged particle forces beyond
those expected from two-point correlations.

Since themean-field approach is by construction not perturbative, it does not contain
a small parameter that we expand into. A forthcoming publication on up to third-order
perturbation theory in KFT will clearly show the hierarchy of perturbation terms in
KFT.

It is not clear to us yet whether virialization could destroy the k−3 behaviour, and
we doubt it. The mean-field interaction term becomes independent of k for large k
and thus preserves the asymptotic behaviour of the free power spectrum. The onset
of the non-linear deformation of the power spectrum is accurately described by the
mean-field approach. Our perturbative calculations show that the “bump” in the non-
linear power spectrum is reproduced at first perturbative order, as we will show in a
forthcoming paper.We thus argue that the “bump” should not be attributed to the onset
of virialization. Moreover, KFT perturbation theory shows that all orders we could
so far calculate reproduce the k−3 asymptotic behaviour beyond scales whose wave
number grows with the perturbation order.

We should point out here that the perspective on the characteristic non-linear defor-
mation of the power spectrum suggested by KFT and discussed here does not agree
with the standard view on virialization in the course of non-linear evolution, and thus
needs to be further studied and ultimately clarified.

4.5 Lifting limitations

Up to this point, we have made several simplifying assumptions. In particular, we have
assumed that themoments σ 2

n of the initial density-fluctuation power spectrum exist up
to the order necessary, andwe have neglected density–density and density–momentum
correlations in the initial state.We shall now show how these assumptions can be lifted,
and that they do not change our conclusions about the asymptotic behaviour of the
density-fluctuation and velocity power spectra.

4.5.1 Asymptotic behaviour for strictly Cold Dark Matter

In deriving the leading-order asymptotic behaviour of the free power spectrum, we
assumed that the second moment σ2 of the initial velocity potential power spectrum
exists as defined in (87). This is a save assumption also for cold dark matter since mea-
surements of the spectral index ns return values smaller than unity. For this reason, the
initial cold dark matter power spectrum, which is assumed to be accurately described
by linear theory, has a tail at large wave numbers falling off like kns−4 log2 k. The
asymptotic series that we derived above from Erdélyi’s theorem, however, requires
that the moments σ 2

n of arbitrary high order should exist. This is indeed only the case
for power spectra that are exponentially cut off above some possibly very large wave
number ks, i.e. if structures smaller than a typical length scale of k−1

s do not exist at
the initial time.

123



Kinetic field theory for cosmic structure formation 785

Should this not be the case, and it is unknown whether arbitrarily small dark-matter
structures can be formed initially, we need strongermethods than previously applied to
study the asymptotic behaviour of the free power spectrum. Suchmethods are provided
by analytic continuations of inverse Mellin transforms. Moreover, it turns out that the
asymptotics of a power spectrum for strictly cold dark matter correctly describes
the intermediate regime of dark matter with large ks, which is not accessible from
our previously derived asymptotic series due to its divergent nature. In this section,
we begin with an assumed wide class for the asymptotic behaviour of the initial
density-fluctuation power spectrum and use the Mellin-transform technique to derive
the asymptotic behaviour of the momentum correlation function a‖(q) for q → 0. We
then insert the resulting expression into the free, non-linear power spectrum P from
(111) and obtain its asymptotic behaviour in the small-scale limit.

We thus begin by assuming that the initial density-fluctuation power spectrum
admits an asymptotic expansion of the form

P(i)
δ (k) ∼ kns−4

∞∑
m=0

k−m
2∑

n=0

cmn log
n k (204)

for k → ∞ with real coefficients cmn . This represents a very wide class of asymptotic
behaviour (see, e.g. [83, 84]).

Next, we need the Mellin transform of a function f , which is defined by

M [ f ; z] :=
∫ ∞

0
dk kz−1 f (k), (205)

where the integral typically converges on a strip of the complex planewith a < Re z <

b. Equipped with the Mellin transform, we study integral transforms of functions f
with a kernel h, called H-transforms and defined by

I (q) =
∫ ∞

0
dk h(k) f

(
kq−1

)
(206)

Under sufficiently general conditions, allowing I to be not absolutely convergent,
integral transforms of this type can be expressed byMellin transforms of the functions
involved,

I (q) = 1

2π i

∫ c+i∞

c−i∞
dz qzM [ f ; 1 − z]M [h; z] , (207)

where c is a real number falling into the common strip of analyticity of both Mellin
transforms. Defining the function

G(z) := M [ f ; 1 − z]M [h; z] (208)
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and assuming G can be analytically continued to the right half-plane, the integral I (q)

can be expanded asymptotically as

I (q) = −
∑

c<Re z<R

Res
{
qzG(z)

} + 1

2π i

∫ R+i∞

R−i∞
dz qzG(z) (209)

for q → 0+, where G(z) has no pole for Re R such the remaining integral is o(qR)

(see, e.g. [74]).
To derive the asymptotic behaviour of a‖(q) on small scales, we apply this method

to the integrals (84) and obtain the results

a1(q) ∼ − 1

6π2M[P(i)
δ ; 1] + q2

60π2M[P(i)
δ ; 3]

− q3−ns

2π2

2∑
n=0

c0n

n∑
j=0

(
n

j

)
(− ln q) j M(n− j)[ j1; ns − 4] + O(q3−ns ),

a2(q) ∼ q2

30π2M[P(i)
δ ; 3]

+ q3−ns

2π2

2∑
n=0

c0n

n∑
j=0

(
n

j

)
(− ln q) j M(n− j)[ j2; ns − 3] + O(q3−ns ) (210)

for q → 0, whereM(n− j) denotes the (n− j)th derivative of theMellin transformwith
respect to the function argument. The detailed derivation can be found in [85]. The
moments σ 2

n of the initial velocity potential can be expressed by the Mellin transform
as

σ 2
n = 1

2π2M[P(i)
δ ; 1 + 2(n − 1)], (211)

which also allows us to identify the analytic continuation of these moments for non-
converging integrals. Since a‖(q) = a1(q) + μ2a1(q), we conclude from (210) that
we can write

a‖(q) ∼ −σ 2
1

3
+ σ 2

2

30
(2μ2 + 1)q2 − ξ(μ2, log q)q3−ns + O(q4−ns ), (212)

as q → 0, where the function ξ(μ2, log q) is implicitly given by (210).
We can now insert this asymptotic, small-scale expression for a‖(q) into the free

power spectrum (111) and use a suitable Taylor expansion of the exponential to arrive
at the asymptotic expansion

P(k, t) ∼ 1

(kτ2)3

M∑
m=0

1

(kτ2)m(1−ns)

2m∑
n=0

Pmn(τ2) log
n(kτ2), (213)
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Fig. 22 The dimensionless free power spectrum k3P for strictly cold dark matter (golden line) at redshift
z = 0 is shown togetherwith the k−3 asymptotics (green line) and the asymptotics up to order k−3−M(1−ns )

as defined in (213) for three different values ofM (solid, dashed and dotted gray lines). The k−5 asymptotics
is negligible

Fig. 23 The dimensionless free power spectrum k3P for WIMP dark matter with small-scale smoothing
wave number ks = 106 Mpc−1 (purple line) at redshift z = 0 is shown togetherwith the various asymptotics
that we derived. At large scales, i.e. up to wave numbers k ≈ 0.02 Mpc−1, k3P is well described by the
damped linearly evolved power spectrum (gray line). At small scales, above k ≈ 2 × 104 Mpc−1, k3P
becomes constant, accurately described by the k−3 asymptotics (green line). Below k � 1.2 × 104, the
asymptotics of the free power spectrum of cold dark matter (golden line) aligns with the initially smoothed
spectrum, where we chose M = 1000. Note, that this is remarkable, as this line contains only information of
the unsmoothed spectrum up to q3−ns order of the initial momentum correlation functions a1 and a2. The
crossing point of the k−5 asymptotics (blue line) with the k−3 asymptotics marks the transition from k−3

asymptotics to the CDM asymptotics. To summarize, strictly CDM Zel’dovich power spectra approximate
the intermediate regime of WIMP Zeldovich power spectra

illustrated in Fig. 22 for CDM and in Fig. 23 for WIMP dark matter with a spectral
cut-off. The time-dependent coefficient functions Pnm(τ2) need to be specified. They
turn into constants at late times, τ2 � 1 [85]. Figure 24 shows the functions a1,2(q).
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Fig. 24 The functions a1 + σ 2
1 /3 (left, purple line) and a2 (right, purple line) with their q2 (green lines)

and q3−ns (blue dashed lines) asymptotics are shown. The sum of the two asymptotic orders (golden lines)
shows that we indeed need the q3−ns order to accurately describe those functions on relevant scales

4.5.2 Including all initial correlations in the density-fluctuation power spectrum

We have so far simplified the probability distribution P(q, p) from (75) by approxi-
mating the differential operator D̂ by (77), leading to theGaussian (78) in themomenta
p. We shall now demonstrate that this approximation is very well justified at late times
[86].

With (75), the free generating functional (23) reads

Z [J] = D̂
∫

dqd p
∫
s
	(R, s)eis· pei(J,x̄0). (214)

For calculating a power spectrum,we apply twodensity operators directly and integrate
over q1 as before. This results in

〈ρ(1)ρ(2)〉 = N 2Z0[L]
= N 2(2π)3δD(k1 + k2)D̂

∫
dq 1̂d p

∫
s
	(R, s)ei(s+L p)· p+ik1·q2 (215)

with the shift tensor L p from (102). The integral over p results in a delta distribution
δD(s + L p) which allows carrying out the s integration immediately. This leads to

〈ρ(1)ρ(2)〉 = N 2(2π)3δD(k1 + k2)D̂
∫

dq1̂	(R, L p)e
ik1·q2 . (216)

In view of our further calculation, it is important to note that L p contains entries for
two particles only, conveniently labelled as particles 1 and 2. If we set D̂ = V−N 1̂
and R = 0 here and inserted the characteristic function 	 from (69), we reassuringly
returned to (103).
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The characteristic function, evaluated at (R, L p), reads

	(R, L p)=exp

(
−1

2
L�
p CppL p

)
eM with M=−1

2
R�CδδR−R�Cδ pL p. (217)

The density–density auto-correlation and density–momentum cross-correlation func-
tions are determined by the initial density-fluctuation power spectrum,

Cδδ(q) =
∫
l
P(i)

δ (l) eil·q = 1

2π2

∫ ∞

0
l2dl P(i)

δ (l) j0(lq),

Cδ p(q) = i
∫
l

l

l2
P(i)

δ (l) eil·q = − q

2π2

∫ ∞

0
dl P(i)

δ (l) j1(lq). (218)

Since the differential operator acts on R only, we can continue writing (216) in the
form

〈ρ(1)ρ(2)〉=N 2(2π)3δD(k1+k2)
∫

dq1̂ exp

(
−1

2
L�
p CppL p

)
eik1·q2 D̂eM . (219)

The differential operator D̂, given by (66) and (76), is

D̂ = 1

V N

N∏
j=1

(
1 + i∂R j

)∣∣
R=0

. (220)

Since M is quadratic in R, at most second-order derivatives of M with respect to R
can appear. The differential operator D̂ applied to M will thus contain the two types
of term

i∂R j M
∣∣∣
R=0

= −iCδ j pL p and − ∂R j ∂Rk M
∣∣∣
R=0

= Cδ j δk (221)

only. If j �= 1, 2 in the first type of term, the correlation matrix Cδ j p depends only on
relative coordinates that appear nowhere else in the integrand. Integrating −iCδ j pL p

over the spatial coordinates then results in zero. Likewise, if j, k �= 1, 2 in the second
type of term, the subsequent integration over Cδ j δk vanishes. Therefore, only those

contributions to D̂M remain which contain ∂R1 or ∂R2 . We can thus replace D̂eM in
(219) by

D̂eM = V−N (
1 + i∂R1

) (
1 + i∂R2

)
eM

∣∣∣
R=0

= V−N [
1 + Cδ1δ2 − iCδ1 pL p − iCδ2 pL p − (

Cδ1 pL p
) (
Cδ2 pL p

)]
. (222)

Furthermore, since Cδ j p j = 0,

Cδ1 pL p = Cδ1 p2L p2 (223)
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Fig. 25 The terms that enter the function F as defined in (226). The initial density–density correlation
term (Cδδ , purple line) enters linearly. The linear density–momentum correlation term (2|Cδ p |, green line)
enters linearly in kt , while the quadratic density–momentum correlation term (|Cdp |2, blue line) enters
quadratically in kt

and likewise for Cδ2 pL p. Therefore, we have

D̂eM = V−N [1 + F(k1, q2, t)] (224)

with

F(k, q, t) = Cδδ(q) − iCδ1 p2L p2 − iCδ2 p1L p1 − (
Cδ1 p2L p2

) (
Cδ2 p1L p1

)
. (225)

The expression for Cδ p in (218) shows that Cδ j pk = −Cδk p j because the exchange
of indices implies q → −q. Moreover, we know from (102) that L p2 = −L p1 = k1t .
Thus, we can somewhat simplify F(k, q, t) to read

F(k, q, t) = Cδδ(q) − 2iCδ1 p2kt − (
Cδ1 p2kt

)2
. (226)

The correlation functions Cδδ and Cδ p are shown in Fig. 25.
Integrating finally over the free particle positions q3 . . . qN and comparing (219) to

(110), we can identify the expression

P(k) = e−QD

∫
q
[1 + F(k, q, t)] e−t2k2a‖(q,μ)eik·q (227)

for the free power spectrum including not only momentum auto-correlations, but all
correlations between density and momentum fluctuations [86].

The expressions (218) for Cδδ and Cδ p and the series expansions (155) for the
spherical Bessel functions lead to the asymptotic expansions

Cδδ(q) ∼
∞∑
n=0

(−q2
)n

σ 2
n+2

(2n + 1)! ∼ σ 2
2 − q2

6
σ 2
3 ,
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Fig. 26 The modified asymptotic amplitude P(0), where initial density–density, density–momentum and
momentum–momentum correlations are considered (see (227)), are shown as a function of scale factor a
in colored lines for three different initial small-scale smoothing wave numbers ks . The comparison to the
asymptotic amplitudes where only initial momentum–momentum correlations Cpp are considered shows
that the other correlations have a barely noticeable impact on the small-scale structure evolution

Cδ p(q) ∼ −q
∞∑
n=0

(−q2
)n

σ 2
n+2

(2n + 3)(2n + 1)! ∼ −q

3

(
σ 2
2 − q2

10
σ 2
3

)
(228)

for q → 0. Therefore, the factor (1 + F) has the asymptotic expansion

1 + F ∼ 1 + σ 2
2 + 2i

3
σ 2
2 t k · q − σ 4

2

9
t2 (k · q)2 . (229)

Searching for the effect of the factor (1 + F) on the leading-order asymptotic
behaviour of the free density-fluctuation power spectrum, we thus need to multiply
the asymptotic expansion for the function g in (159) by each term in the asymptotic
expression (229) and change m to m + 1 and m + 2, respectively. The dependence
on the wave number of the leading order terms remain unchanged. The leading-order
asymptotic behaviour of the free power spectrum is thus given by

P(k) ∼
(
1 + 4

9
σ 2
2 − 10

3t
+ 25

9t2

) P(0)

k3
, (230)

with the coefficient function P(0) from (161), and the k−3 behaviour remains [86].
The amplitudeP(0) modified by density–density and density–momentum correlations
is shown in Fig. 26.

4.5.3 Including all initial correlations in the velocity power spectrum

As shown before, taking the initial density–density and density–momentum corre-
lations into account in addition to the momentum auto-correlations inserts a factor
(1 + F) into the integrand of the free power spectrum, with the function F given
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by (225). Therefore, the velocity power spectrum taking the complete set of initial
correlations into account is obtained by inserting (1 + F) into (127),

P�(k) = −D1 ⊗ D2

∫
dq [1 + F(k, q, t)] e−Q eik·q =

∫
dq F e−Q eik·q (231)

with the matrix

F = D1 ⊗ D2F − D1F ⊗ D2Q − D2F ⊗ D1Q + (1 + F)Q. (232)

As before, we need the leading asymptotic order in q of the matrix F , which is

F ∼
(
1 + σ 2

2 + 2i

3
σ 2
2 t k · q − σ 4

2

9
t2 (k · q)2

)
σ 2
1

3
13, (233)

implying that the velocity power spectrum including all initial correlations must have
the leading-order asymptotic behaviour

P�(k) ∼
(
1 + 4

9
σ 2
2 − 10

3t
+ 25

9t2

) P(0)
�

k3
13 (234)

with P(0)
� from (176).

5 Conclusions

We have reviewed kinetic field theory for classical particle ensembles, putting particu-
lar emphasis on the evolution of cosmic structures in collision-less darkmatter. Kinetic
field theory dissolves the cosmic density field into particles subject to Hamiltonian
dynamics and studies the evolution of an initial phase-space probability distribution
under the Hamiltonian flow. Compared to other analytic approaches to cosmic struc-
ture formation, the essential advantage of kinetic field theory is that trajectories in
phase space do not cross. The notorious shell-crossing problem occurring inevitably
in methods building upon uniquely valued density and velocity fields in configuration
space is thus avoided by construction.

The central mathematical object of kinetic field theory is a generating functional
encapsulating the statistically defined initial state of the particle ensemble together
with the dynamics of phase-space trajectories. Kinetic field theory does not set up
and solve a dynamical equation for smooth density or velocity fields or a phase-
space distribution function. Rather, it evolves this generating functional in time and
allows extracting statistical information on the evolved particle ensemble by functional
derivatives. Formally, it resembles a statistical quantum field theory, however some
aspects of it are considerably simpler.

After the introduction in Sect. 1, we set up in Sect. 2 the generating functional of
kinetic field theory in an expanding cosmic space-time and chose a suitable Green’s
function to solve the Hamiltonian equations of motion. We introduced the growth rate
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of linear density fluctuations as a time coordinate and argued that inertial motion with
respect to this time, the so-called Zel’dovich approximation, is particularly appropriate
for describing cosmic structure formation.We emphasized that the gravitational poten-
tial between particles on Zel’dovich inertial trajectories is sourced only by non-linear
fluctuations of the cosmic matter density, which implies that the effective gravitational
potential is short-ranged and is approximately of Yukawa form.

We defined density operators in Sect. 3, showed how they can be used to extract
statistical information from the generating functional, and derived low-order statistical
measures for distributions of particles freely streaming along Zel’dovich reference
trajectories. We emphasize once more that this kind of reference motion, even though
being referred to as free, does include gravitational interaction at early times, and long-
range gravitational interaction at all times. In particular, we derived equations for the
non-linear, free power spectrum of cosmic density fluctuations and their bispectrum
as well as the free velocity power spectrum.

Aiming at rigorous statements on the small-scale behaviour of low-order statistical
measures, Sect. 4 is the core of this paper. There, we used extensions of Laplace’s
method to derive the small-scale asymptotics of the free density-fluctuation power
spectrum, the free bispectrum, and the free velocity power spectrum. Our central
results obtained there are that

1. the free density-fluctuation power spectrum and the free velocity power spectrum
asymptotically fall off proportional to k−3 for wave number k → ∞, and that

2. the free bispectrum asymptotically falls off like k−11/2.

These results assume only that the initial particle momenta are drawn from a Gaussian
random field whose power spectrum has finite low-order moments. The nature of the
dark matter and the cosmological model are irrelevant. The k−3 tail of the free power
spectra and the k−11/2 tail of the bispectrum evolve by collective streaming of the
matter particles, and the exponents are set by the number of spatial dimensions only.

These results persist if some simplifying limitations are given up. We have shown
further that gravitational interaction between particles in the mean-field approxima-
tion and strictly cold dark matter with an initial power spectrum without small-scale
cut-off do not affect the asymptotic k−3 dependence of the matter-fluctuation power
spectrum. In addition, including initial density–density and density–momentum cor-
relations together with momentum auto-correlations do not change the asymptotic
behaviour of the density-fluctuation and the velocity power spectra either.

It would thus appear that the asymptotic behaviour of low-order statistical mea-
sures of the cosmic matter and velocity distribution is a consequence of the initial
particle momenta being drawn from a Gaussian random field, without further assump-
tions entering. Late-time, non-linear density-fluctuation power spectrawould therefore
necessarily develop a k−3 tail on small scales, irrespective of the cosmological model
and the nature of the dark matter.

Characteristic and universal time scales for structure formation can be derived from
the leading-order asymptotic term reaching itsmaximumamplitude, and from the next-
to-leading order term falling below the leading order term. Possible observational
consequences and the potential significance of these time scales need to be worked
out.

123



794 S. Konrad, M. Bartelmann

The k−3 behaviour of power spectra implies that the power, i.e. the product of the
power spectra times the number of Fouriermodes, flattens off and becomes constant on
small scales. Each fixed scale interval will then contribute the same amount of power.
This result should provide clues for the universal density profile of gravitationally
bound structures. Of course, many questions remain to be addressed and answered, but
the conclusions on the small-scale behaviour of non-linear cosmic structures obtained
from kinetic field theory here appear promising.
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