Skip to main content
Log in

Nonlinear optical microscopy for artworks physics

  • Review Paper
  • Published:
La Rivista del Nuovo Cimento Aims and scope

Abstract

Nonlinear optical microscopies (NLOMs) are innovative techniques recently introduced in the field of cultural heritage for the non-invasive in-depth analysis of artworks. In this review, we report on the state-of-the-art of NLOMs on different artistic materials, i.e., varnish, glue, paint, wood, parchment, and metal, and we evaluate the potential and capabilities of NLOMs in comparison with other more established linear optical techniques. We also discuss the latest studies defining suitable measurement conditions and instrumental requirements for the safe and in situ application of NLOMs on real cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Reprinted from R. W. Boyd, Nonlinear Optics, Second Edition, the Institute of Optics, University of Rochester, New York, USA, Academic Express (2003), Copyright (2021), with permission from Elsevier [or Applicablesociety Copyright Owner] [90]

Fig. 3
Fig. 4
Fig. 5

Permission to use granted by Newport Corporation. All rights reserved

Fig. 6
Fig. 7
Fig. 8

COPYRIGHT: Adapted with permission from G. Filippidis et al., Opt. Lett. 33, 240–242 (2008) © The Optical Society [113]

Fig. 9

Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer, Appl. Phys. A, Multi-photon excitation fluorescence and third-harmonic generation microscopy measurements combined with confocal Raman microscopy for the analysis of layered samples of varnished oil films, A. Nevin et al., Copyright (2010) [116]

Fig. 10

G. Filippidis et al., Assessment of In-Depth Degradation of Artificially Aged Triterpenoid Paint Varnishes Using Nonlinear Microscopy Techniques, Microsc. Microanal. 21, 510–517, reproduced with permission [78]

Fig. 11

Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer, Anal. Bioanal. Chem., Second and third harmonic generation measurements of glues used for lining textile supports of painted artworks, G. Filippidis et al., Copyright (2009) [119]

Fig. 12

Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer, Appl. Phys. A, Nonlinear imaging techniques as non-destructive, high-resolution diagnostic tools for cultural heritage studies, G. Filippidis et al., [Copyright] (2008) [113]

Fig. 13

Modified from Dal Fovo et al., 2020 [80]

Fig. 14

Modified from Mari et al., 2020 [73]

Fig. 15

T. E. Villafana et al. 2014 [81]

Fig. 16

A. Selimis et al., 2009 [122]

Fig. 17

Republished with permission of Royal Society of Chemistry from M. Oujja et al., Nonlinear imaging microscopy for assessing structural and photochemical modifications upon laser removal of dammar varnish on photosensitive substrates. Phys. Chem. Chem. Phys. 19, 22836–22843 (2017); permission conveyed through Copyright Clearance Center, Inc) [79]

Fig. 18.

COPYRIGHT: Adapted with permission from G. Latour et al., Opt. Express 20, 24623-24635 (2012) © The Optical Society [76]

Fig. 19

Latour et al., 2016 [134]

Fig. 20

Latour et al. 2016 [134]

Fig. 21

Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer, Appl. Phys. A, Multi photon excitation fluorescence imaging microscopy for the precise characterization of corrosion layers in silver-based artifacts, Faraldi et al., [Copyright] (2013) [86]

Fig. 22

Reprinted from Microchem. J 154, A. Dal Fovo et al., [85] Safe limits for the application of nonlinear optical microscopies to cultural heritage: a new method for in-situ assessment, 9, Copyright (2021), with permission from Elsevier [OR Applicable socIety Copyright Owner]

Similar content being viewed by others

Notes

  1. The characteristic atomic electric field strength is Eat = e/(4πε0α02) = 5.14 × 1011 V/m, where e is the charge of the electron and α0 is the Bohr radius of the hydrogen atom. (R. W. Boyd, 2003 [90]).

  2. For example, rhodamine 6G has a σ2ωQf of 40 Göppert-Mayer units (GM; 1 GM = 10 − 50 cm4 s/photon) at 830 nm.

Abbreviations

2PEF:

Two-photon excitation fluorescence

3PEF:

Three-photon excitation fluorescence

AFM:

Atomic force microscope

CH:

Cultural Heritage

CLSM:

Confocal laser scanning microscopy

CMC:

Carboxy-methyl cellulose

CRM:

Confocal Raman microscopy

FLIM:

Fluorescence lifetime imaging microscopy

FORS:

Fibre optics reflectance spectroscopy

IC:

Internal conversion

IRR:

Infrared reflectography

ISC:

Inter-system crossing

LIF:

Laser induced fluorescence

MPEF:

Multi-photon excitation fluorescence

NA:

Numerical aperture

nanoIR:

IR nanoscopy

NIR:

Near infrared

NLOM:

Nonlinear optical microscopy

NMR:

Nuclear magnetic resonance

OCT:

Optical coherence tomography

OM:

Optical microscopy

OPO:

Optical parametric oscillator

PA:

Photoacoustic

PAcSA:

Photoacoustic signal attenuation

PIXE:

Particle-induced X-ray emission

PMMA:

Poly-methyl methacrylate

PMT:

Photomultiplier tubes

PSHG:

Polarization-resolved second harmonic generation

RF:

Radio frequency

SHG:

Second harmonic generation

SORS:

Spatially offset Raman spectroscopy

THG:

Third harmonic generation

THz-TDS:

Terahertz time-domain spectroscopy

VR:

Vibrational relaxation

XRF:

X-ray fluorescence

References

  1. K. Groen, In: The First Ten Years: The Examination and Conservation of Paintings, 1977– to 1987, ed. by I. McClure (The Hamilton Kerr Institute of the Fitzwilliam Museum. University of Cambridge, Cambridge, 1988) Vol. 1, pp. 48–65.

  2. W.C. McCrone, JAIC 33(2), 101–114 (1994)

    Google Scholar 

  3. M.H. Butler, Microscope 21, 101 (1973)

    Google Scholar 

  4. M.H. Butler, Polarized Light Microscopy in the Conservation of Painting (State Microscopical Society of Illinois, Chicago, 1970)

    Google Scholar 

  5. J. S. Martin, in Postprints of the Wooden Artifacts Group, Amer. Inst. for Conservation of Historic and Artistic Works, Wooden Artifacts Group, 1996, pp. 19–21

  6. N. Bäschlin, Zeitschrift für Kunsttechnologie und Konservierung 8(2), 318–339 (1994)

    Google Scholar 

  7. K. Janssens, R. Van Grieken, Elsevier Sci. 42, 828 (2004)

    Google Scholar 

  8. E. Ciliberto, G. Spoto, in Modern analytical methods in art and archaeology, Vol. 155 in the Chemical Analysis Series (John Wiley & Sons, New York, 2000), pp. 755. ISBN 0 471 29361 X

  9. C. Lehanier, Mikrochim. Acta 104, 245–254 (1991)

    Article  Google Scholar 

  10. N. Khandekar, Stud. Conserv. 48(sup1), 52–64 (2003)

    Article  Google Scholar 

  11. J. Striova, A. Dal Fovo, R. Fontana, La Rivista del Nuovo Cimento 43, 515–566 (2020)

    Article  ADS  Google Scholar 

  12. S. Jane, R. Barker, J. Chad, USA Microsc. Anal. 55, 31 (1995)

    Google Scholar 

  13. R. Barker, J. Chad, S. Jane, Pict. Restor. 11, 8–11 (1997)

    Google Scholar 

  14. C. Daffara, R. Fontana, L. Pezzati, Proc. SPIE 7391 (2009).

  15. T. Arecchi, M. Bellini, C. Corsi, R. Fontana, M. Materazzi, L. Pezzati, A. Tortora, Proc. SPIE 5857, 278–282 (2005)

    ADS  Google Scholar 

  16. H. Liang, M. Gomez-Cid, R.G. Cucu, G.M. Dobre, A.G. Podoleanu, J. Pedro, D. Saunders, Opt. Express 13, 6133–6144 (2005)

    Article  ADS  Google Scholar 

  17. P. Targowski, B. Rouba, M. Wojtkowski, A. Kowalczyk, Stud. Conserv. 49(2), 107–114 (2004)

    Article  Google Scholar 

  18. M.-L. Yang, A.M. Winkler, J.K. Barton, P.B. Vandiver, Archaeometry 51, 808 (2009)

    Article  Google Scholar 

  19. M. Hughes, PhD thesis, University of Kent in Canterbury (2010), http://www.mike-hughes.org/files/phd_oct_for_art.pdf Accessed: 31 Mar 2011

  20. P. Targowski, M. Iwanicka, L. Tyminska-Widmer, M. Sylwestrzak, E.A. Kwiatkowska, Acc. Chem. Res. 43(6), 826–836 (2010)

    Article  Google Scholar 

  21. P. Targowski, M. Iwanika, Appl. Phys. A 106, 265–277 (2012)

    Article  ADS  Google Scholar 

  22. D.C. Adler, J. Stenger, I. Gorczynska, H. Lie, T. Hensick, R. Spronk, S. Wolohojian, N. Khandekar, J.Y. Jiang, S. Barry, Opt. Express 15, 15972 (2007)

    Article  ADS  Google Scholar 

  23. M. Hughes, D.A. Jackson, A.G. Podoleanu, Proc. SPIE 7139, 713917 (2008)

    Article  Google Scholar 

  24. S. Chang, Y. Mao, C. Flueraru, G. Chang, Opt. Eng. 49, 063602 (2010)

    Article  ADS  Google Scholar 

  25. G. Latour, J. Moreau, M. Elias, J.-M. Frigerio, Proc. SPIE 6618, 661806 (2007)

    Article  Google Scholar 

  26. G. Latour, G. Georges, L. Siozade, C. Deumié, J.-P. Echard, Proc. SPIE 7391, 73910J (2009)

    Article  ADS  Google Scholar 

  27. G. Latour, J.P. Echard, B. Soulier, I. Emond, S. Vaiedelich, M. Elias, Appl. Opt. 48, 6485 (2009)

    Article  ADS  Google Scholar 

  28. I. Gurov, A. Karpets, N. Margariants, E. Vorobeva, Proc. SPIE 6618, 661807 (2007). https://doi.org/10.1117/12.726315

    Article  Google Scholar 

  29. P. Targowski, M. Iwanicka, M. Sylwestrzak, C. Frosinini, J. Striova, R. Fontana, Angew. Chem. 57, 7396–7400 (2018)

    Article  Google Scholar 

  30. R. Fontana, A. Dal Fovo, J. Striova, L. Pezzati, E. Pampaloni, M. Raffaelli, M. Barucci, Appl. Phys. A 121, 957–966 (2015)

    Article  ADS  Google Scholar 

  31. J. Striova, A. Dal Fovo, V. Fontani, M. Barucci, E. Pampaloni, M. Raffaelli, R. Fontana, Microchem. J. 138, 65–71 (2018)

    Article  Google Scholar 

  32. B. Kanngiesser, W. Malzer, A. Fuentes-Rodriguez, I. Reiche, Spectrochim. Acta B 60, 41–47 (2005)

    Article  ADS  Google Scholar 

  33. B. Kanngiesser, A.G. Karydas, R. Schütz, D. Sokaras, I. Reiche, S. Röhrs, L. Pichon, J. Salomon, Nucl. Instr. Methods Phys. Res. B 264, 383–388 (2007)

    Article  ADS  Google Scholar 

  34. B. Kanngiesser, W. Malzer, I. Mantouvalou, D. Sokaras, A.G. Karydas, Appl. Phys. A 106, 325–338 (2012)

    Article  ADS  Google Scholar 

  35. A.R. Woll, J. Mass, C. Bisulca, M. Cushman, C. Griggs, T. Wazny, N. Ocon, Stud. Cons. 53(2), 93–109 (2013)

    Article  Google Scholar 

  36. X. Wei, Y. Lei, T. Sun, X. Lin, Q. Xu, D. Chen, Y. Zou, Z. Jiang, Y. Huang, X. Yu, X. Ding, H. Xu, X-ray Spectrom. 37, 595–598 (2008). https://doi.org/10.1002/xrs.1098

    Article  ADS  Google Scholar 

  37. N. Grassi, A. Migliori, P.A. Mandò, H. Calvo del Castillo, X-ray Spectrom. 34(4), 306–309 (2005)

    Article  ADS  Google Scholar 

  38. G. Turrell, P. Dhamelincourt, in Modern Techniques in Raman Spectroscopy, edited by J.J. Laserna (John Wiley and Sons, Surrey, 1996 (Chapter 4))

  39. G. Lorenzetti, J. Striova, A. Zoppi, E.M. Castellucci, J. Mol. Struct. 993, 97–103 (2011)

    Article  ADS  Google Scholar 

  40. F. Casadio, C. Daher, L. Bellot-Gurlet, Top. Curr. Chem. (Z) 374, 62 (2016). https://doi.org/10.1007/s41061-016-0061-z

    Article  Google Scholar 

  41. C. Conti, C. Colombo, M. Realini, G. Zerbi, P. Matousek, Appl. Spect. OA 68, 686–691 (2014)

    Article  ADS  Google Scholar 

  42. C. Conti, A. Botteon, C. Colombo, D. Pinna, M. Realini, P. Matousek, J. Cult. Herit. 43, 319–328 (2020). https://doi.org/10.1016/j.culher.2019.12.003

    Article  Google Scholar 

  43. C. Rehorn, B. Blgmich, Cultural Heritage studies with mobile NMR. Angew. Chem. Int. Ed. 57, 7304–7312 (2018)

    Article  Google Scholar 

  44. B. Blümich, J. Perlo, F. Casanova, Prog. Nucl. Magn. Reson. Spectrosc. 52, 197–269 (2008)

    Article  Google Scholar 

  45. S. Sfakianaki, E. Kouloumpi, D. Anglos, A. Spyros, Magn. Reson. Chem. 53, 22–26 (2015)

    Article  Google Scholar 

  46. B. Blümich, J. Mod. Magn. Reson. 927–958 (2018).

  47. R. Cignini, R. Melzi, F. Tedoldi, C. Casieri, F. De Luca, Magn. Reson. Imaging 24, 813–818 (2006)

    Article  Google Scholar 

  48. G. R. Fife, B. Stabik, B. Blgmich, R. Hoppenbrouwers, T. Meldrum, in The Noninvasive Analysis of Painted Surfaces: Scientific Impact and Conservation Practice (Eds.: A. Nevin, T. Doherty), (Smithsonian Institution Scholary Press, Washington 2016)

  49. F. Presciutti, J. Perlo, F. Casanova, S. Glöggler, C. Miliani, B. Blümich, B.G. Brunetti, A. Sgamellotti, Appl. Phys. Lett. 93, 033505 (2008)

    Article  ADS  Google Scholar 

  50. A.J.L. Adam, P.C.M. Planken, S. Meloni, J. Dik, Opt. Express 17(5), 3407–3416 (2009)

    Article  ADS  Google Scholar 

  51. M. Picollo, K. Fukunaga, J. Labaune, J. Cult. Herit. 16, 73–80 (2015)

    Article  Google Scholar 

  52. K. Fukunaga, Springer (2016). https://doi.org/10.1007/978-4-431-55885-9

    Article  Google Scholar 

  53. J. Dong, A. Locquet, M. Melis, D.S. Citrin, Sci. Rep. 7, 15098 (2017)

    Article  ADS  Google Scholar 

  54. G.J. Tserevelakis, I. Vrouvaki, P. Siozos, K. Melessanaki, K. Hatzigiannakis, C. Fotakis, G. Zacharakis, Sci. Rep. 7, 747 (2017)

    Article  ADS  Google Scholar 

  55. G.J. Tserevelakis, P. Siozos, A. Papanikolaou, K. Melessanaki, G. Zacharakis, Ultrasonics 98, 94–98 (2019)

    Article  Google Scholar 

  56. G.J. Tserevelakis, A. Dal Fovo, K. Melessanaki, R. Fontana, G. Zacharakis, J. Appl. Phys. 123, 123102–123109 (2018). https://doi.org/10.1063/1.5022749

    Article  ADS  Google Scholar 

  57. A. Dal Fovo, G.J. Tserevelakis, A. Papanikolaou, G. Zacharakis, R. Fontana, Opt. Letters 44, 919–922 (2019). https://doi.org/10.1364/OL.44.000919

    Article  ADS  Google Scholar 

  58. G.J. Tserevelakis, V. Tsafas, K. Melessanaki, G. Zacharakis, G. Filippidis, Opt. Lett. 44, 1154–1157 (2019)

    Article  ADS  Google Scholar 

  59. E. Gratton, N.P. Barry, S. Beretta, A. Celli, Methods 25(1), 103–110 (2001)

    Article  Google Scholar 

  60. R. Gauderon, P.B. Lukins, C.J.R. Sheppard, Micron 32(7), 691–700 (2001)

    Article  Google Scholar 

  61. D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, Y. Silberberg, J. Struct. Biol. 147(1), 3–11 (2004)

    Article  Google Scholar 

  62. E. B. Van Munster, T. W. J. Gadella, fluorescence lifetime imaging microscopy (FLIM). In: Rietdorf J. (eds) Microscopy Techniques. Advances in Biochemical Engineering, vol 95. (Springer, Berlin, Heidelberg 2005). https://doi.org/10.1007/b102213

  63. F.E. Robles, J.W. Wilson, M.C. Fischer, W.S. Warren, Opt. Express 20(15), 17082–17092 (2012)

    Article  ADS  Google Scholar 

  64. M.C. Fischer, J.W. Wilson, F.E. Robles, W.S. Warren, Rev. Sci. Instrum. 87(3), 031101 (2016). https://doi.org/10.1063/1.4943211

    Article  ADS  Google Scholar 

  65. E. Gavgiotaki, V. Tsafas, S. Bovasianos, S. Agelaki, V. Georgoulias, M. Tzardi, I. Athanassakis, G. Filippidis,. Proc. SPIE 11076, Advances in Microscopic Imaging II, 110760I (22 July 2019)

  66. S. You, H. Tu, E.J. Chaney, Y. Sun, Y. Zhao, A.J. Bower, Y.Z. Liu, M. Marjanovic, S. Sinha, Y. Pu, S.A. Boppart, Nat. Commun. 9(1), 1–9 (2018)

    Article  Google Scholar 

  67. D. Tokarz, R. Cisek, M.N. Wein, R. Turcotte, C. Haase, S.C.A. Yeh, S. Bharadwaj, A.P. Raphael, H. Paudel, C. Alt, T.M. Liu, H.M. Kronenberg, C.P. Lin, PLoS ONE 12(10), e0186846 (2017)

    Article  Google Scholar 

  68. V. Tsafas, E. Gavgiotaki, M. Tzardi, E. Tsafa, C. Fotakis, I. Athanassakis, G. Filippidis, J. Biophoton. 13(10), e202000180 (2020)

    Article  Google Scholar 

  69. R. Gueta, E. Tal, Y. Silberberg, I. Rousso, J. Struct. Boil. 159, 103–110 (2007)

    Article  Google Scholar 

  70. D.A. Dombeck, M. Blanchard-Desce, W. Webb, J. Neurosci. 24, 999–1003 (2004)

    Article  Google Scholar 

  71. W. Denk, J. Strickler, W. Webb, Science 248, 73–76 (1990)

    Article  ADS  Google Scholar 

  72. A. Diaspro, P. Bianchini, G. Vicidomini, M. Faretta, P. Ramoino, C. Usai, Biomed. Eng. Online 5, 36 (2006)

    Article  Google Scholar 

  73. M. Mari, G. Filippidis, Sustainability 12, 1409 (2020)

    Article  Google Scholar 

  74. H. Liang, M. Mari, C.S. Cheung, S. Kogou, P. Johnson, G. Filippidis, Opt. Express 25, 19640–19653 (2017)

    Article  ADS  Google Scholar 

  75. G. Filippidis, G.J. Tserevelakis, A. Selimis, C. Fotakis, Appl. Phys. A 118, 417–423 (2015)

    Article  ADS  Google Scholar 

  76. G. Latour, J.P. Echard, M. Didier, M.C. Schanne-Klein, Opt. Express 20, 24623–24635 (2012)

    Article  ADS  Google Scholar 

  77. G. Filippidis, M. Massaouti, A. Selimis, E.J. Gualda, J.M. Manceau, S. Tzortzakis, Appl. Phys. A 106(2), 257–263 (2012)

    Article  ADS  Google Scholar 

  78. G. Filippidis, M. Mari, L. Kelegkouri, A. Philippidis, A. Selimis, K. Melessanaki, M. Sygletou, C. Fotakis, Microsc. Microanal. 21, 510–517 (2015)

    Article  ADS  Google Scholar 

  79. M. Oujja, S. Psilodimitrakopoulos, E. Carrasco, M. Sanz, A. Philippidis, A. Selimis, P. Pouli, G. Filippidis, M. Castillejo, Phys. Chem. Chem. Phys. 19, 22836–22843 (2017)

    Article  Google Scholar 

  80. A. Dal Fovo, M. Sanz, M. Oujja, R. Fontana, S. Mattana, R. Cicchi, P. Targowski, M. Sylwestrzak, A. Romani, C. Grazia, G. Filippidis, S. Psilodimitrakopoulos, A. Lemonis, M. Castillejo, Sustainability 12(9), 3831 (2020)

    Article  Google Scholar 

  81. T.E. Villafana, W.P. Brown, J.K. Delaney, M. Palmer, W.S. Warren, M.C. Fischer, Proc. Natl. Acad. Sci. USA 111, 1708–1713 (2014)

    Article  ADS  Google Scholar 

  82. T.E. Villafana, W. Brown, W.S. Warren, M. Fischer, Proc. SPIE 9527, 9 (2015)

    Google Scholar 

  83. A. Dal Fovo, R. Fontana, J. Striova, E. Pampaloni, M. Barucci, M. Raffaelli, R. Mercatelli, L. Pezzati, R. Cicchi, in Proceedings of LACONA XI Lasers in the Conservation of Artworks XI, P. Targowski et al. (Eds), NCU Press Torun (2017)

  84. A. Dal Fovo, M. Oujja, M. Sanz, A. Martínez-Hernández, M.V. Cañamares, M. Castillejo, R. Fontana, Spectrochim. Acta A 208, 262–270 (2018)

    Article  ADS  Google Scholar 

  85. A. Dal Fovo, M. Sanz, M. Oujja, S. Mattana, M. Marchetti, R. Cicchi, R. Fontana, M. Castillejo, Microchem. J 154, 104568 (2020)

    Article  Google Scholar 

  86. F. Faraldi, G.J. Tserevelakis, G. Filippidis, G.M. Ingo, C. Riccucci, C. Fotakis, Appl. Phys. A 111, 177–181 (2013)

    Article  ADS  Google Scholar 

  87. S. Psilodimitrakopoulos, E. Gavgiotaki, K. Melessanaki, V. Tsafas, G. Filippidis, Microsc. Microanal. 22(5), 1072 (2016)

    Article  ADS  Google Scholar 

  88. S. Psilodimitrakopoulos, L. Mouchliadis, I. Paradisanos, A. Lemonis, G. Kioseoglou, E. Stratakis, Light Sci. Appl. 7(5), 18005–18005 (2018)

    Article  ADS  Google Scholar 

  89. M. Schmeltz, L. Robinet, S. Thao, C. Teulon, G. Ducourthial, M. C. Schanne-Klein, G. Latour, The potential of nonlinear optical microscopy to noninvasively quantify the degradation state of historical parchments (Conference Presentation). In Optics for Arts, Architecture, and Archaeology VII (Vol. 11058, p. 1105809). International Society for Optics and Photonics (2019).

  90. R.W. Boyd, Nonlinear Optics, Second Edition (The institute of optics University of Rochester, Academic Express, New York, 2003)

    Google Scholar 

  91. P. Franken, A. Hill, C. Peters, G. Weinreich, Phys. Rev. Lett. 7(4), 118–119 (1961). https://doi.org/10.1103/PhysRevLett.7.118

    Article  ADS  Google Scholar 

  92. B.R. Masters, P.T.C. So (eds.), Handbook of Biomedical Nonlinear Optical Microscopy (Oxford University Press, New York, 2008), p. 896. (ISBN13:978-–0195162608)

    Google Scholar 

  93. M. Bass, P.A. Franken, J.F. Ward, Phys. Rev 138, A534–A542 (1965)

    Article  ADS  Google Scholar 

  94. M. Oheim, D.J. Michael, M. Geisbauer, D. Madsen, R.H. Chow, Adv. Drug. Deliv. Rev. 58(7), 788–808 (2006)

    Article  Google Scholar 

  95. R. Hristu, S.G. Stanciu, D.E. Tranca, G.A. Stanciu, J. Biophoton. 10(9), 1171–1179 (2017)

    Article  Google Scholar 

  96. G. New, in Introduction to Nonlinear Optics, (Cambridge University Press, 2011). https://doi.org/10.1017/CBO9780511975851

  97. T.Y.F. Tsang, Phys. Rev. A 52, 4116–4125 (1995)

    Article  ADS  Google Scholar 

  98. Y. Barad, H. Eisenberg, M. Horowitz, Y. Silberberg, Appl. Phys. Lett. 70, 922–924 (1997)

    Article  ADS  Google Scholar 

  99. J.A. Squier, M. Müller, G.J. Brakenhoff, K.R. Wilson, Opt. Express 3(9), 315–324 (1998)

    Article  ADS  Google Scholar 

  100. D. Débarre, N. Olivier, E. Beaurepaire, Opt. Express 15(14), 8913–8924 (2007)

    Article  ADS  Google Scholar 

  101. M. A. Omary, H. H. Patterson, in Luminescence, theory, reference module in chemistry, molecular sciences and chemical engineering, encyclopedia of spectroscopy and spectrometry (Third Edition), (Elsevier, 2017), pp 636–653 https://doi.org/10.1016/B978-0-12-803224-4.00193-X

  102. M. Göppert-Mayer, Ann. Phys. 9(3), 273–295 (1931)

    Article  Google Scholar 

  103. C. Albrecht, R.J. Lakowicz, Anal. Bioanal Chem 390, 1223–1224 (2008)

    Article  Google Scholar 

  104. J. Squier, M. Muller, Rev. Sci. Instrum. 72, 2855–2867 (2001)

    Article  ADS  Google Scholar 

  105. D.E. Spence, P.N. Kean, W. Sibbett, Opt. Lett. 16, 42 (1991)

    Article  ADS  Google Scholar 

  106. M. Born, E. Wolf, Principles of Optics, 6th edn. (Pergamon, Oxford, 1980)

    MATH  Google Scholar 

  107. S. Psilodimitrakopoulos, L. Mouchliadis, I. Paradisanos, G. Kourmoulakis, A. Lemonis, G. Kioseoglou, E. Stratakis, Sci. Rep. 9, 14285 (2019)

    Article  ADS  Google Scholar 

  108. M. Marchetti, E. Baria, R. Cicchi, F. Pavone, Methods Protoc. 2, 51 (2019)

    Article  Google Scholar 

  109. R. Cicchi, L. Sacconi, A. Jasaitis, R.P. O’Connor, D. Massi, S. Sestini, V. De Giorgi, T. Lotti, F.S. Pavone, Appl. Phys. B 92, 359–365 (2008)

    Article  ADS  Google Scholar 

  110. P.J. Campagnola, A.C. Millard, M. Terasaki, P.E. Hoppe, C.J. Malone, W.A. Mohler, Biophys. J. 82, 493–508 (2002)

    Article  Google Scholar 

  111. E.J. Gualda, G. Filippidis, G. Voglis, M. Mari, C. Fotakis, N. Tavernarakis, J. Microsc. 229, 141–150 (2008)

    Article  MathSciNet  Google Scholar 

  112. D. Debarre, W. Supatto, A.M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.C. Schanne-Klein, E. Beaurepaire, Nat. Methods 3, 47–53 (2006)

    Article  Google Scholar 

  113. G. Filippidis, E.J. Gualda, K. Melessanaki, C. Fotakis, Opt. Lett. 33, 3 (2008)

    Article  Google Scholar 

  114. M. Mari, V. Tsafas, K. Melessanaki, G. Filippidis, Insight 60(12), 663–669 (2018)

    Article  Google Scholar 

  115. E.J. Gualda, G. Filippidis, K. Melessanaki, C. Fotakis, Appl. Spec. 63, 280 (2009)

    Article  ADS  Google Scholar 

  116. A. Nevin, D. Comelli, I. Osticioli, G. Filippidis, K. Melessanaki, G. Valentini, R. Cubeddu, C. Fotakis, Appl. Phys. A 100, 599–606 (2010)

    Article  ADS  Google Scholar 

  117. N.S. Cohen, M. Odlyha, R. Campana, G.M. Foster, Thermochim. Acta. 365, 45–52 (2000)

    Article  Google Scholar 

  118. D. Saunders, L. Kirby, Conservator 25, 95–104 (2001)

    Article  Google Scholar 

  119. G. Filippidis, K. Melessanaki, C. Fotakis, Anal. Bioanal. Chem. 395(7), 2161–2166 (2009)

    Article  Google Scholar 

  120. G.W. White, Microscope 18, 51–59 (1970)

    Google Scholar 

  121. T. Ye, D. Fu, W.S. Warren, Photochem. Photobiol. 85(3), 631–645 (2009)

    Article  Google Scholar 

  122. A. Selimis, P. Vounisiou, G. J. Tserevelakis, K. Melessanaki, P. Pouli, G. Filippidis, C. Beltsios, S. Georgiou, C. Fotakis, SPIE Europe 2009 Optical Metrology O3A (2009)

  123. P. Vounisiou, A. Selimis, G.J. Tserevelakis, K. Melessanaki, P. Pouli, G. Filippidis, C. Beltsios, S. Georgiou, C. Fotakis, Appl. Phys. A 100, 647–652 (2010)

    Article  ADS  Google Scholar 

  124. D. Ciofini, M. Oujja, M.V. Canamares, S. Siano, M. Castillejo, Microchem. J. 124, 792 (2016)

    Article  Google Scholar 

  125. M. Fujita, H. Harada, Ultrastructure and formation of wood cell wall, in: D.N.S. Hon, N. Shiraishi (Eds.), Wood and Cellulosic Chemistry, Marcel Dekker (2001)

  126. A. Rencurosi, J. Rohrling, J. Pauli, A. Potthast, C. Jager, S. Pÿrez, P. Kosma, A. Imberty, Angew. Chem. Int. Ed. 22, 41 (2002)

    Google Scholar 

  127. G. Cox, N. Moreno, J. Feijó, J. Biomed. Opt. 10(2), 024013–024016 (2005)

    Article  ADS  Google Scholar 

  128. L.A. Donaldson, K. Radotic, J. Microsc. 251(2), 178–187 (2013)

    Article  Google Scholar 

  129. G. Mizutani, Y. Sonoda, H. Sano, M. Sakamoto, T. Takahashi, S. Ushioda, J. Lumin. 87, 824–826 (2000)

    Article  Google Scholar 

  130. S.-W. Chu, I.-H. Chen, T.-M. Liu, P.C. Chen, C.-K. Sun, Opt. Lett. 26, 1909–1911 (2001)

    Article  ADS  Google Scholar 

  131. A.C. Millard, P.J. Campagnola, Opt. Lett. 28, 22 (2003)

    Article  Google Scholar 

  132. I. Gusachenko, V. Tran, Y.G. Houssen, J.-M. Allain, M.-C. Schanne-Klein, Biophys. J. 102(9), 2220–2229 (2012)

    Article  ADS  Google Scholar 

  133. L. Robinet, S. Thao, M. C. Schanne-Klein, G. Latour, The influence of manufacturing and alterations on skin-based artifacts as characterized by nonlinear optical microscopy. ICOM-CC 18th Triennial Conference 2017 Copenhagen, Sep 2017, Copenhague, Denmark. pp.1609. hal-01761403

  134. G. Latour, L. Robinet, A. Dazzi, F. Portier, A. Deniset-Besseau, M.C. Schanne-Klein, Sci. Rep. 6(1), 1–10 (2016)

    Article  Google Scholar 

  135. A. Dazzi, C.B. Prater, Q. Hu, D.B. Chase, J.F. Rabolt, C. Marcott, Appl. Spectrosc. 66(12), 1365–1384 (2012)

    Article  ADS  Google Scholar 

  136. J. Shank and J. W. E. Crumley, Artists’ Pigments. A Handbook of their History and Characteristics, vol. 1–4, ed. by Robert L. Feller, (Leonardo, 1989)

Download references

Acknowledgements

This research has been funded by Regione Toscana (POR FSE 2014-2020, “Giovanisì”, Intervention Program “CNR4C”, CUP B15J19001040004), by the Spanish State Research Agency (AEI) through project PID2019-104124RB-I00/ AEI /1.0.13039/501100011033, by the TOP Heritage-CM (S2018/NMT-4372) program, by the H2020 European project IPERION HS (Integrated Platform for the European Research Infrastructure ON Heritage Science, GA 871034) and is supported by CSIC Interdisciplinary Platform “Open Heritage: Research and Society” (PTI-PAIS). Collaborations with Drs Mohamed Oujja and Mikel Sanz are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaella Fontana.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dal Fovo, A., Castillejo, M. & Fontana, R. Nonlinear optical microscopy for artworks physics. Riv. Nuovo Cim. 44, 453–498 (2021). https://doi.org/10.1007/s40766-021-00023-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40766-021-00023-w

Keywords

Navigation