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Abstract
The numerical modeling of mechanical waves is currently a fundamental tool for the
study and investigation of their propagation in media with heterogeneous physical
properties and/or complex geometry, as, in these cases, analytical methods are usually
not applicable. These techniques are used in geophysics (geophysical interpretation,
subsoil imaging, development of new methods of exploration), seismology (study of
earthquakes, regional and global seismology, accurate calculation of synthetic seis-
mograms), in the development of new methods for ultrasonic diagnostics in materials
science (non-destructive methods) and medicine (acoustic tomography). In this paper
we present a review of numerical methods that have been developed and are cur-
rently used. In particular we review the key concepts and pioneering ideas behind
finite-difference methods, pseudospectral methods, finite-volume methods, Galerkin
continuous and discontinuous finite-element methods (classical or based on spectral
interpolation), and still others such as physics-compatible, andmultiscalemethods.We
focus on their formulations in time domain along with the main temporal discretiza-
tion schemes. We present the theory and implementation for some of these methods.
Moreover, their computational characteristics are evaluated in order to aid the choice
of the method for each practical situation.
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1 Introduction

Each field of applied sciences has particular requirements for computational modeling
and often develops its own suite of numerical techniques. The numerical modeling
of mechanical waves in some applications involve two somewhat conflicting require-
ments:

• Complex, heterogeneous structures must be correctly modeled. In particular, inter-
faces and shapes of geological structures must be taken into account during
space discretization. Moreover, high accuracy is needed for avoiding numerical
anisotropy, attenuation, or dispersion that mislead interpretation. As a result, the
numerical solution requires a huge computational effort, both in memory storage
(from Giga to Tera nodes) and CPU time (from hours to weeks);

• The medium where waves propagate is iteratively updated to fit recorded data.
Wave simulation is one step of an imaging/inversion algorithm thatmaybe repeated
several times, thus it must be fast enough for not compromising the entire process.

These requirements are typical in the analysis of material response and imaging, for
instance in
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Numerical modeling of mechanical wave propagation 461

• Exploration geophysics, reservoir scale seismics;
• Geotechnical and engineering seismology;
• Local, regional, and global seismology;
• Planetary seismology;
• Earth’s interior imaging;
• Ground-shaking risk analysis - strong ground motion;
• Monitoring of volcanic processes;
• Earthquake and Tsunami early warning systems;
• Global monitoring of nuclear tests.

Traditionally, these demands have been met with high-order schemes [1,2]. They
are highly accurate methods that require a low number of grid points per wavelength,
thus reducing storage and CPU time requirements. Regardless of the chosen method,
an efficient implementation is needed for reducing the total cost of the simulations.
Some alternatives are resorting to vector/parallel platforms (massively parallel, clus-
ters, GRID [2]), efficient subroutines and libraries (FFT, Lapack,MPI [3]), and seeking
a low count of operations and of primary storage.

The numericalmethods that have been developed for the above-mentioned purposes
constitute a multidisciplinary field named computational seismology, the numerical
simulation of seismic wave propagation in arbitrary 3D models [2]. Its scope is nat-
urally beyond global-scale seismology, reaching other topics of geosciences (such
as rock physics, exploration geophysics, volcanology, and geotechnical engineering)
and beyond (computational mechanics, materials science, underwater acoustics, and
medicine).

The recent literature provides detailed reviews oriented towards specific methods
[4–7] or communities [8–10]. The purpose of this paper is to share an overview of
computational seismology methods with a broader audience, starting from the mathe-
matical models, visiting general aspects of spatial and temporal discretization and then
arriving at the theoretical and computational aspects of the main numerical methods
currently in use.

2 Governing equations

2.1 Scalar wave equation

The most elementary mathematical model of wave propagation is the scalar wave
equation

ü − c2
∂2u

∂x2
= f , (1)

where the unknown function u(x, t) may denote, for instance, the acoustic pressure,
c is the wave velocity in a homogeneous medium, and f (x, t) is the divergence of
an external body force. The dots denote time differentiation. A related model is the
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one-dimensional shear-wave propagation equation

ρü − ∂

∂x

(
μ

∂u

∂x

)
= f , (2)

where ρ is the density and μ is the shear modulus. When the latter is constant, Eq. (2)
can be written similarly to (1) by defining c = (μ/ρ)1/2.

In the absence of source functions, Eq. (1) has the general solution

u(x, t) = F(x + ct) + G(x − ct), (3)

where the functions F(·) and G(·) are arbitrary. Some important particular solutions
are the d’Alembert solution

u(x, t) = u0(x + ct) + u0(x − ct)

2
+ 1

2c

∫ x+ct

x−ct
u00(s) ds, (4)

which satisfies the initial conditions u(x, 0) = u0(x) and u̇(x, 0) = u00(x), and the
plane-wave solution

u(x, t) = exp[−i(ωt − κx)], (5)

where the angular frequency ω and the wave number κ satisfy the dispersion relation
ω = ±cκ . Equation (1) can be generalized to 2D or 3D media as follows:

ü − c2�u = f , (6)

which admit plane-wave solutions of the form u(x, t) = exp[−i(ωt − κ · x)], with
ω = ±c|κ |, when f = 0. Both Eqs. (1) and (6) may be considered in the more general
case of a homogeneous velocity field c(x). Moreover, the more general acoustic wave
equation

∂

∂t

(
1

ρc2
u̇

)
− ∇ ·

(
1

ρ
∇u

)
= f , (7)

accounts for variable density. We recall that Eq. (7) arises from the linearized mass
and conservation equations

1

K
u̇ + ∇ · v = 0, (8a)

ρv̇ + ∇u = F. (8b)

for the pressure u and velocity v of a fluid with density ρ(x) and bulk modulus K (x)

(see, e.g., [11]), for which the velocity is c(x) = (K (x)/ρ(x))1/2.
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2.2 Elastic wave equation

The standard model for wave propagation in solids is given by the conservation of
linear momentum (Newton’s law)

ρ ü − ∇ · σ (u) = f , (9)

where u is the displacement and σ is the stress tensor. In particular, elastic media are
described by the linear constitutive relation (Hooke’s law)

σ (u) = C : ε(u), ε(u) = 1

2

(
∇u + ∇uT

)
(10)

between the stress σ and the linearized strain ε(u), where C is the elasticity tensor. Due
to the symmetry provided by the conservation of angular momentum, it is convenient
to use Voigt notation

σ = {σxx , σyy, σzz, σxy, σxz, σyz}�, (11)

or σ = {σxx , σyy, σxy}� in 2D, for which the governing equations may be written as

ρ ü − D�σ = f , (12a)

σ (u) = CDu, (12b)

where the differential operator D is

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂x 0 0
0 ∂y 0
0 0 ∂z

∂y ∂x 0
∂z 0 ∂x

0 ∂z ∂y

⎤
⎥⎥⎥⎥⎥⎥⎦

or D =
⎡
⎣ ∂x 0
0 ∂y

∂y ∂x

⎤
⎦ in 2D. (13)

The elasticity tensor C has up to 21 free parameters, but there can be signifi-
cantly fewer ones depending on the symmetry assumptions [12]. When the medium is
isotropic, we have Cε = λItr(ε) + 2με, where I is the identity operator and λ,μ > 0
are the Lamé coefficients. In experimental studies, other elastic parameters are more
typical, such as the elastic modulus and the Poisson’s ratio, which respectively are
E :=λ + 2μ and ν:=λ/2(λ + μ) for isotropic media. Under Voigt notation, tensor C
has the following matrix representation:

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

E λ λ 0 0 0
λ E λ 0 0 0
λ λ E 0 0 0
0 0 0 μ 0 0
0 0 0 0 μ 0
0 0 0 0 0 μ

⎤
⎥⎥⎥⎥⎥⎥⎦

or C =
⎡
⎣ E λ 0

λ E 0
0 0 μ

⎤
⎦ in 2D. (14)
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In vector notation, Eq. (9) assumes the following standard form:

ρ ü − ∇[(λ + μ)∇ · u] − ∇ · (μ∇u) = f . (15)

When f = 0 and the elastic parameters are constant, the plane wave u(x, t):=
R exp[−i(ωt − κ · x)] is a solution to (15) if

(
ω2

|κ |2 − c2S

)
R − (c2P − c2S)

(
R · κ

|κ |
)

κ

|κ | = 0, (16)

where

cP :=
√

λ + 2μ

ρ
, cS :=

√
μ

ρ
. (17)

are the compressional and shear-wave velocities. The vector Eq. (16) admits the solu-
tions (ωP , RP ) and (ωS, RS), where the angular frequencies are ωP = ±cP |κ | and
ωS = ±cS|κ |, while the propagation directions RP and RS (RSV and RSH in 3D)
are parallel and perpendicular to κ , respectively [13].

A relevant class of anisotropic elastic stress-strain relations in computational seis-
mology is that of transversely isotropic media with vertical symmetry axis (VTI):

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66

⎤
⎥⎥⎥⎥⎥⎥⎦

or C =
⎡
⎣C11 C13 0

C13 C33 0
0 0 C44

⎤
⎦ in 2D, (18)

where C66 = (C11 − C12)/2. Following [14], a plane-wave solution u(x, t):=
R exp[−i(ωt − κ · x)] in the three-dimensional case with κ = κ{sin θ, 0, cos θ}�
(without loss of generality, given the cylindrical symmetry [15]) yields the following
dispersion relations:

ωP = ±cP

(
1 + ε sin2 θ + �(θ)

)1/2
κ, (19a)

ωSV = ±cS

(
1 + C2

P

C2
S

ε sin2 θ − C2
P

C2
S

�(θ)

)1/2

κ, (19b)

ωSH = ±cS

(
1 + 2γ sin2 θ

)1/2
κ, (19c)

where cP = (C33/ρ)1/2, cS = (C44/ρ)1/2, ε = (C11 − C33)/(2C33), γ = (C66 −
C44)/(2C44), δ = [(C13 + C44)

2 − (C33 − C44)
2]/[2C33(C33 − C44)], and

�(θ) = rC P

2

⎧⎨
⎩
[
1 + 4(2δ − ε) sin2 θ cos2 θ + 4(rcp + ε)ε

r2C P

sin4 θ

]1/2

− 1

⎫⎬
⎭ , (20)
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with rC P = 1 − c2S/c2P . The fact that ωSV and ωSH may not coincide leads to the
phenomenon of shear-wave splitting. The dimensionless numbers ε, δ, and γ are
known as Thomsen parameters and serve as measures of anisotropy. Under additional
assumptions, the elasticity tensor C can be entirely written in terms of cP , cS , and
Thomsen parameters [16,17].

2.2.1 Viscoelasticity

The model of viscoelastic media is based on stress-strain relations that account for not
only the instantaneous strain, but all its history. This is accomplished by a convolution
in time between the strain rate of change and a time-dependent tensor G known as the
relaxation tensor [18]:

σ (u, t) =
∫ t

−∞
G(t − τ)ε̇(u, τ ) dτ. (21)

This equation may be recast in differential form through fractional derivatives [12,
Sec. 2.5.2] and can be numerically handled with the aid of auxiliary memory variables
[19]. IfG(t) = H(t)G0, where H is the Heaviside function, then we recover the elastic
model (10) with C = G0. Another extreme case is when G(t) = δ(t)η0, where δ is the
Dirac distribution, which leads to σ (u, t) = η0ε̇(u, τ ).

Important aspects of wave propagation in viscoelastic media are present in the
Kelvin–Voigt model, which combines both cases above, in the one-dimensional case:

ε(x, t) = G0
∂u

∂x
(x, t) + η0

∂

∂t

(
∂u

∂x
(x, t)

)
. (22)

This constitutive relation yields the following wave equation:

ρü − ∂

∂x

(
G0

∂u

∂x
+ η0

∂

∂t

(
∂u

∂x

))
= f , (23)

which serves as a preliminary site-responsemodel for small strains [20]. The dispersion
relation for this equation is ω2 = κ2(G0 − iωη0), hence phase (ω/κ) and group
(dω/dκ) are complex and frequency-dependent, highlighting two relevant aspects of
viscoelastic wave propagation: attenuation and physical dispersion, respectively.

2.2.2 Poroelasticity

Wave propagation in fluid-saturated porous media had been studied by M. A. Biot for
a variety of cases [21–23]. For simplicity, we consider an isotropic solid matrix with
constant porosity φ.

Let us denote the densities and bulkmoduli of the constituent solid and the saturating
fluid as ρs, ρ f and Ks, K f , respectively. Moreover, the bulk and shear modulus of the
dry matrix will be denoted as Kd and μd . For convenience, let us also introduce the
Lamé parameter λd = Kd − (2/3)μd .
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Though the governing equationsmaybewritten in terms of the displacement vectors
us, u f at the solid andfluid phases [21], it is convenient to substitute fluid displacement
by w = φ(u f − us), which represents the flow of the fluid relative to the solid but
measured in terms of volume per unit area of the bulk medium [23]. In this case, the
equations of motion are

ρ üs + ρ f ẅ − ∇ · σ b = 0, (24a)

ρ f üs + T ρ f

φ
ẅ + ∇ p + η

k
ẇ = 0. (24b)

where ρ = (1− φ)ρs + φρ f is the density of the saturated matrix, T is the tortuosity,
η is the fluid viscosity, and k is the permeability. The constitutive relations for the total
stress σ b = σ + I(−φ p) and the fluid pressure p can be written as

σ b = 2μdε + (λd + α2M)tr(ε)I + αM (∇ · w) I, (25a)

p = −αM tr(ε) − M∇ · w, (25b)

where α = 1 − Kd/Ks and M is such that 1/M = (α − φ)/Ks + φ/K f [12].
A plane-wave analysis can be performed by decoupling the P− and S− modes of

propagation [12]. Namely, we can apply the divergence operator to Eq. (24) to find
a system of equations for ∇ · us and ∇ · w, and apply the curl operator to the same
equations and find another system for curl us and curl w. Proceeding to the analysis
of propagation in a single direction, we find two compressional velocities rather than
a single one; the propagation mode associated with the velocity of lower magnitude
is known as the Biot’s slow wave.

2.3 Velocity-stress formulation

The mathematical models reviewed above involve partial differential equations of
second order in time for the displacement field. If we seek instead the velocity field
(and introduce the stress as an additional variable), we are led to a system of first-order
equations, for which a large variety of numerical methods is available.

Let us consider for instance the elastic Eq. (9). By taking time derivatives of both
sides of (10), we find

ρv̇ = ∇ · σ + f , (26a)

σ̇ = C : ε(v), (26b)

where the unknowns are the stress σ and the velocity v = u̇. In matrix form, we have

Ẇ = DW + F, W =
{

v

σ

}
, D =

[
0 (1/ρ)∇·

C : ε(·) 0

]
, F = 1

ρ

{
f
0

}
. (27)
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A related first-order system is given by the velocity-displacement formulation

ρv̇ = ∇ · (C : ε(u)) + f , (28a)

u̇ = v. (28b)

From the computational point of view, formulation (28) has the advantage of involv-
ing less unknowns than in (26). For instance, in the three-dimensional case we have
six unknowns rather than nine.

2.4 Boundary conditions

Modeling of wave-propagation problems may involve not only physical but also com-
putational (or artificial) boundaries depending on the region of interest, denoted by
� (the problem domain). Physical boundaries are usually modeled by transmission
conditions of the form

σ · n = g, (29)

where n is the unit vector normal to the boundary and pointing outwards. The case
g = 0 is referred to as a free-surface boundary condition.

Ideally, a computational boundary should not interferewith thewaves, whichmakes
it very challenging to model. One of the classical approaches is to use absorbing
(or non-reflecting) boundary conditions [7,24,25]. As pointed out in [26], absorbing
boundary conditions are related to the Sommerfeld radiation condition

lim
r→0

r (d−1)/2
(

∂u

∂r
(r) − iku(r)

)
= 0, r2 = x21 + · · · + x2d (30)

for Helmholtz equation �u + k2u = 0, in the sense that the analogue of (30) for the
scalar wave equation (6) is

lim
r→0

r (d−1)/2
(

∂u

∂r
(r , t) + 1

c

∂u

∂t
(r , t)

)
= 0. (31)

Engquist and co-authors [24,27] obtained the followingboundary condition at r = a
in the two-dimensional case:

∂u

∂r
(a, t) + 1

c

∂u

∂t
(a, t) + 1

2a
u(a, t) = 0, (32)

aswell as higher-order conditions, based on paraxial approximations of thewave equa-
tion (see also [28]). In Cartesian coordinates, the lowest-order boundary conditions at
x = 0 (a typical lateral border in a two-dimensional simulation) are

(
∂

∂x
− 1

c

∂

∂t

)
u(0, y, t) = ∂u

∂x
(0, y, t) − 1

c

∂u

∂t
u(0, y, t) = 0, (33a)

123
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(
∂2

∂x∂t
− 1

c

∂2

∂t2
+ c

2

∂2

∂ y2

)
u(0, y, t) = 0. (33b)

Conditions (33)were also derived by annihilating the reflection coefficient of plane-
wave solutions [29–31]. A more general approach was later proposed by Higdon
[25,32], who considered boundary conditions of order p in the form

p∏
j=1

(
cosα j

∂

∂t
− c

∂

∂x

)
u(0, y, t) = 0, (34)

which reduce to Engquist–Majda conditions when α j = 0, 0 ≤ j ≤ p. These
coefficients may be chosen to minimize the reflection coefficient

R(θ) = −
p∏

j=1

cosα j − cos θ

cosα j + cos θ
(35)

of plane waves traveling with angle of incidence θ . Bamberger et al. [33] proposed
modified conditions that account for Rayleigh waves. Another relevant progress on
absorbing boundary conditions is handling corner points [34–37].

As pointed out in [7], the error of a high-order absorbing boundary condition does
not necessarily converge to zero as the order tends to infinity.When the error due to the
boundary condition does converge to zero, it is referred to as an exact non-reflecting
boundary condition [38–41].

Moreover, higher-order approximations involve high-order spatial and temporal
derivatives, which must be appropriately represented in the numerical discretization
andusually incur a higher computational cost. Such a constraint hasmotivated the study
of high-order local non-reflecting boundary conditions (high-order local NRBCs, [7,
36]), which introduce auxiliary variables that avoid the need of high-order derivatives.
As outlined in [7], one of the first approaches of this class, due to Collino [34], can be
written as

∂u

∂x
(0, y, t) + 1

c

p∑
j=1

2 sin2 θ j

2p + 1

∂φ j

∂t
(0, y, t) = 0, (36a)

1

c2
∂2φ j

∂t2
(y, t) − cos2 θ j

∂2φ j

∂ y2
(y, t) − ∂2u

∂ y2
(y, t) = 0 (1 ≤ j ≤ p), (36b)

where θ j = jπ/(2p+1). Thanks to the auxiliary variables φ1, . . . , φp, the derivatives
in (36) have order no greater than two.

2.5 Variational formulation

Thevariational, orweak formulation is a convenient representation of themathematical
model that allows to seek the approximate solution in a functional space with lower
regularity requirements, for instance when the material properties are discontinuous.
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For conciseness, let us focus on system (9)–(10). Its weak form is obtained by
taking the scalar product of both sides of (9) by a test function w and integrating over
the domain �. In the case of a homogeneous Dirichlet condition,

∂2

∂t2

∫
�

ρw ·ud�+
∫

�

(ε(w)) ·(C : ε(u))d� =
∫

�

w · f d� ∀ w ∈ H1
0 (�)d , (37)

where d = 2 or 3 and H1
0 (�) = {u ∈ L2(�) | ∇u ∈ L2(�) and u |∂�= 0},

where L2(�) is the space of functions that are square-integrable with respect to the
Lebesgue measure in � and u |∂� denotes the trace of u over the boundary of � [42].
Analogously, the variational formulation of system (26) is

∂

∂t

∫
�

ρw · v d� +
∫

�

ε(w) : σ d� =
∫

�

w · f d� ∀ w ∈ H1
0 (�)d , (38a)

∂

∂t

∫
�

τ : σ d� =
∫

�

τ : (C : ε(v)) d� ∀ τ ∈ X , (38b)

where X = {τ ∈ L2(�)d×d ; τ� = τ }. A similar variational formulation can be
obtained for the velocity-displacement formulation (28). One may also consider a
formulation of system (26) with lower regularity on velocities and higher regularity
on stresses, which can be discretized with mixed finite elements (see, e.g., [43]), and
has been adapted to include perfectly matched layers [44].

3 Model discretization

The differential or variational formulations presented in the previous section, when
complemented with proper initial and/or boundary conditions, provide a unique wave
field that is complete in the sense that it can be determined for any point x of the domain
� and any time t ≥ t0, where t0 is the initial time of observation (for convenience,
we consider t0 = 0 from here on). Since those initial-boundary value problems rarely
have an analytical solution, we must resort to approximate solutions.

For some methods such as finite-difference and mimetic methods, the approximate
solution corresponds to an array of coefficients Un

j such that Un
j ≈ u(x, tn) for any

point x in a subset X j that usually consists of a single point x j , but could also be
an edge, face, or a three-dimensional shape. The differential/integral operators are
approximated or replaced with discrete operators defined at the sets X j for any j and
at t = tn, n = 0, 1, . . ..

For another group of methods that is considered in this survey, we have a finite
expansion of functions in the form

u(x, t) ≈ uN (x, t) =
N∑

j=0

û j (t)φ j (x), (39)
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where φ0(x), . . . , φN (x) are previously chosen functions, while û0(t), . . . , ûN (t)
are time-dependent coefficients to be determined. Pseudospectral and finite-element
methods fall into this category. Through expansion (39), time and space are separately
handled, in analogy with the method of separation of variables for partial differential
equations. The spatial operators are applied to functions φ j (x) in original form, i.e.,
they are not discretized, though the operator evaluation may depend on interpolation
or numerical integration.

To determine the arrays Un
j or the coefficients û j (t), each method relies on a par-

ticular approximation principle, but most methods need to discretize the independent
variables, space and time. Time and space sampling could be required in the approxi-
mation principle, in auxiliary calculations, or in the output generation.

3.1 Spatial discretization

The main requirements for the discretization in space are that the waves and the
medium heterogeneities must be sufficiently sampled. While the former is strongly
dependent on the chosen numerical method, the latter is similar for most methods.

The geological model is usually discretized in a finite number of cells (also referred
to as elements or blocks) where, ideally,

• there are no restrictions on the material variability;
• interfaces and structures can be honored;
• different rheologies can be easily handled.

Following [2], we classify the ensemble of all cells of a domain, called the mesh or
grid, as structured or non-structured. A structured mesh is obtained by the mapping
from the integer set {0, 1, . . . , N1}×· · ·×{0, 1, . . . , Nd} to an d-dimensional domain
�. For example, a cubic mesh with uniform spacing h can defined by the mapping
of each {i, j, k} ∈ {0, . . . , N }3 to the vertex (x0 + ih, y0 + jh, z0 + kh). As data
structures, these meshes are uniquely defined by arrays with the coordinates of the
vertices. The cells are understood to be formed by points whose coordinates have
adjacent indices in a Cartesian fashion.

On the other hand, non-structured meshes do not have a Cartesian structure, hence
the coordinates are not sufficient to identify the mesh. Usually there is one mapping
from {0, 1}d , or another reference cell, for each cell in the mesh. Despite their com-
plexity, non-structured meshes conformmore easily to interfaces and structures, while
structuredmeshes usually need a large amount of grid nodes to avoid the staircase effect
[45].

3.2 Temporal discretization

The discretization of the time variable can be done in a straightforward manner: a
uniform partition of the interval [0, T ] into N intervals with time step �t = T /N :

0 <= t0 < t1 < · · · < tN = T , tn = n�t, (40)

123



Numerical modeling of mechanical wave propagation 471

where T is the final time of the simulation. The time step will depend on the smallest
grid length in space and the chosen approximation method for the time derivatives,
and in general it can be dynamically selected by means of error estimators [46–48].

One of the greatest difficulties with temporal discretization is the situation where
some elements in the spatial grid are extremely small (such as slivers generated from
3D unstructured mesh-generation codes [49]), forcing an equally small time step and
undermining the efficiency of thewave-propagation simulation. This hasmotivated the
development of local time-stepping schemes [50–54], where the time step is smaller
where the grid is refined and larger where the grid is coarse.

4 Temporal discretizationmethods

In the following we review the methods for approximation of time derivatives that
are most frequently used in seismic wave propagation. These methods are typically
applied to the following second-order linear system of ordinary differential equations
(ODEs):

Mü + Cu̇ + Ku = f , (41)

where thematricesM, K, andC are known as themass, stiffness, and dampingmatrices,
respectively. The latter arises from the discretization of viscous terms such as in Eqs.
(22) and (24b), but also absorbing boundary conditions, such as (33). One can also
seek the block vector v = {u, u̇}� by solving a first-order system of the form

v̇ + Av = f , (42)

which is also the kind of system of ODEs that arises from velocity-stress and velocity-
displacement formulations (27)–(28). The convenience of system (42) resides on the
fact that it is a particular case of the classical equations

v̇ = f (t, u), (43)

for which a vast literature is available (see, e.g., [55]). On the other hand, system
(41) as well as and its generalization to time-dependent coefficient matrices [56] and
non-linear internal forces [57], among others, has been thoroughly studied by the
community of structural dynamics.

For simplicity, temporal discretization methods will be described for the case of
a uniform partition (40). Perhaps the most popular method is the leapfrog scheme,
where the approximation un ≈ u(tn) over the time partition is determined from the
centered finite-difference approximation

M
un+1 − 2un + un−1

�t2
+ C

un+1 − un−1

2�t
+ Kun = f n, n = 1, 2, . . . , (44)

which is present in some of the pioneeringworks on computational seismology [58,59]
and has been employed in several different approaches (e.g., [60–62]).
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Some schemes such as leapfrog can be written as multi-step methods of the form

k∑
l=0

Blun+1−l = bn, n = 1, 2, . . . (45)

If B0 = I in (45), the scheme is called explicit, otherwise, it is implicit. In the
literature of finite-element methods, the concept of explicit is extended to the cases
where B0 is diagonal [63,64]. In general, we may refer as explicit a method that does
not require solving a linear system in any step of the computation of un+1. For instance,
when M = I and C = 0, then leapfrog method (44) becomes explicit:

un+1 = �t2 f n + (2I + �t2K)un − un−1. (46)

4.1 Newmarkmethods

The leapfrog method is one member of a family of time-integration methods known
as Newmark methods [65]. As described, e.g., in [64], the Newmark method for (41)
with parameters β and γ can be written as follows:

ũ = un + �tvn + �t2

2
(1 − 2β)an, (47a)

ṽ = vn + (1 − γ )�tan, (47b)(
M + γ�tC + β�t2K

)
an+1 = F − Cṽ − Kũ (47c)

un+1 = ũ + β�t2an+1, (47d)

vn+1 = ṽ + γ�tan+1, (47e)

where an ≈ ü(tn) and vn ≈ u̇(tn). The Newmark scheme naturally provides approxi-
mations for not only displacement, but also velocity and acceleration, which are useful
to the inversion of three-component data [66]. The leapfrog method corresponds to
β = 0 and γ = 1/2. Another well-known method from the Newmark family is the
average-acceleration method [67], which corresponds to β = 1/4 and γ = 1/2. This
method has been applied to acoustic and elastic wave propagation [68,69]. The New-
mark scheme has also been interpreted as a time-staggered velocity-stress algorithm
with the purpose of implementing absorbing boundary conditions [70].

Newmark methods are at most second-order accurate [67], i.e., un − u(tn) =
O(�t2), and the use of higher-order methods may increase the computational effi-
ciency despite their higher cost [71]. In the following we review several high-order
temporal discretization methods.

4.2 Lax–Wendroff methods

One of themost traditional high-order approaches are the Lax-Wendroff methods [72],
which use spatial derivatives to replace high-order time derivatives. This principle is

123



Numerical modeling of mechanical wave propagation 473

also present in the arbitrary high-order derivatives (ADER) method [73,74] and nearly
analytical discrete methods [75,76].

This scheme has been widely employed to second-order equations in the form

v̈ + Av = f , (48)

which can be derived from (41) in the absence of damping (C = 0) as, e.g., in [54]. If
the spatial discretization is performed with finite differences [71,77], then M = I and
there is no need of transformations from (41) to (48). Most authors have considered
the acoustic wave equation [54,71,77,78], but the Lax-Wendroff approximation has
also been applied to the elastic wave equation [79,80].

Following [77], let us derive the fourth-order Lax–Wendroff method for (48). We
refer to [78] for higher-order approximations. A standard Taylor expansion of the
second-derivative term in (48) yields

v̈(tn) = v(tn+1) − 2v(tn) + v(tn−1)

�t2
− �t2

12

∂4v

∂t4
(tn) + O(�t4). (49)

On the other hand, v̈(tn) = f (tn)−Av(tn) and, by taking a second-order derivative
of this expression, we find

∂4v

∂t4
(tn) = f̈ (tn) − Av̈(tn) = f̈ (tn) − A ( f (tn) − Av(tn)) . (50)

By combining (49) and (50), we arrive at the following explicit scheme:

vn+1 − 2vn + vn−1

�t2
+ Avn − �t2

12
A2vn = f n + �t2

12

(
f̈ n − A f n

)
. (51)

The vector f̈ n can be approximated by a second-order scheme [81]. The use of the
Lax–Wendroff scheme has also been investigated in the first-order scheme (42), not
only for acoustic waves [82], but also for structural dynamics [83] and viscoacoustic
waves [84].

4.3 Runge–Kutta and symplectic methods

The Runge–Kutta (RK) methods [55] can be readily applied to system (42). For
instance, the classical fourth-order RK method is given as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vn+1 = vn + 1
6 (F1 + 2F2 + 2F3 + F4),

F1 = �t ( f (tn) − Avn) ,

F2 = �t
(
f (tn + 1

2�t) − A(vn + 1
2 F1)

)
,

F3 = �t
(
f (tn + 1

2�t) − A(vn + 1
2 F2)

)
,

F4 = �t ( f (tn + �t) − A(vn + F3)) .

(52)
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The RK discretization for first-order systems in the form (42) has been used in
conjunction with pseudospectral [85], finite-element [86], and discontinuous Galerkin
[87,88] methods. The extension of RK methods to the second-order system (41) can
be done by 2-step schemes known as Runge–Kutta–Nyström methods [89,90], which
have been thoroughly developed in the context of Hamiltonian systems [91],

{
d p
dt
dq
dt

}
= J−1

{
∂ H
∂ p
∂ H
∂q

}
, J =

[
0 I
−I 0

]
. (53)

Let Φ : ( p0, q0) → ( p(t), q(t)) be the flow map defined by the solution
( p(t), q(t)) to (53) with initial conditions p(t) = p0 and q(t) = q0. Its Jacobian
Φ′ satisfies (Φ′)�JdΦ′ = J, and if the same property holds for the flow map produced
by a numerical method for (53), then this method is called symplectic [92,93]. Sym-
plectic schemes have slower error growth and preserve conservative quantities, which
makes theman attractive choice for long-time simulations [94,95]. These schemes have
also been proposed for the more general Birkhoffian systems [96], with application to
poroelastic wave propagation [97].

The implicit, fourth-order Störmer–Numerov method, which has been applied to
acoustic and elastic waves [98–100], is an example of a symplectic method [101]. The
Störmer–Numerov approximation for system (48) is the following:

vn+1 − 2vn + vn−1

�t2
+ 1

12
A (vn+1 + 10vn + vn−1) = 1

12

(
f n+1 + 10 f n + f n−1

)
.

(54)
Makridakis [98] has extended this method to solve system (41), where the damping

term accounts for absorbing boundary conditions.

4.4 Approximation of evolution operators

Another family of high-order methods is based on approximations of matrix power
series that are present in the analytical solutions of systems of ODEs. As shown
for instance in [102], the analytical solution of system (48) with initial conditions
v(0) = v0 and v̇(0) = v00 can be written as

v(t) = C(A, t)v0 + S(A, t)v00 +
∫ t

0
S(A, t − τ) f (τ ) dτ, (55a)

C(A, t) =
∞∑

k=0

(−1)kAk t2k

(2k)! , S(A, t) =
∞∑

k=0

(−1)kAk t2k+1

(2k + 1)! . (55b)

If a is a scalar, then C(a, t) = cos(a1/2t) and S(a, t) = sin(a1/2t)/a1/2. Taking
into account the temporal discretization (40), the solution (55) may be represented as
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follows:

v(tn+1)− 2C(A,�t)v(tn)+ v(tn−1) =
∫ �t

0
S(A, τ )[ f (tn+1 − τ)+ f (tn−1 + τ)] dτ.

(56)
In order to derive numerical schemes from the recursive form (56), we may deter-

mine approximations to C(A, t) and S(A, t), and select quadrature schemes to deal
with the source term [102]. For instance, when f = 0 and the rational approximation

cos(a1/2t) ≈ 1 + (β − 1/2)at2

1 + βat2
, (57)

then (56) leads to the following implicit scheme:

(I + β�t2A)vn+1 = 2(I + (β − 1/2)�t2A)vn − (I + β�t2A)vn−1, (58)

which corresponds to the Störmer–Numerov method (54) when β = 1/12 and has
been revisited in [81,103]. Baker et al. [104] studied sufficient conditions for the
convergence of rational-approximation methods in the homogeneous case. One of
the high-order schemes that satisfies these conditions is defined by the following
approximation:

cos(a1/2t) ≈ 1 + (2β − 1/2)at2 + (β2 − β + 1/24)a2t4

(1 + βat2)2
, β = 5 + √

15

60
, (59)

which leads to 6th-order accuracy. Some classical methods are related with Tay-
lor approximation of evolution operators [8,105]. Indeed, a Taylor approximation
of degree m ≥ 1 for (56) in the case f = 0 yields

vn+1 − 2vn + vn−1

�t2
− 2

m∑
k=1

(−1)k t2(k−1)

(2k)! Akvn = 0, (60)

which are the leapfrog and Lax–Wendroff scheme when m = 1 and m = 2, respec-
tively. Besides rational (Padé) and Taylor expansions, Chebyshev expansions can also
be employed [106]. Such an approach is known in the seismic exploration literature
as the rapid expansion method [107].

One can also consider the approximation of exponential operators associated with
the analytical solution of the first-order system (42):

v(t) = exp(At)v0 +
∫ t

0
exp(A(t − τ)) f (τ ) dτ, exp(At) =

∞∑
k=0

Ak tk

k! . (61)

Similarly as in (55), several approximations for exp(At) may be employed, such as
Taylor, Fourier [105], Chebyshev [105,107,108], and rational [109,110] expansions.
Besides using a truncated expansion of the matrix operator, one may also split the
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matrices in diagonal and non-diagonal parts, leading to a fixed-point iteration method
[111].

5 Spatial discretizationmethods

The numerical methods described next provide approximations of the mathematical
models described in Sect. 2 as the systems of ODEs (41) or (42).

5.1 Finite-differencemethods

Most time-discretization schemes described in Sect. 4 are based on finite-difference
approximations of time derivatives. These formulas are based on Taylor-series expan-
sions that are combined to reach the desirable accuracy. For instance, the expansion

f̈ (x, t) = f (x, t − �t) − 2 f (x, t) + f (x, t + �t)

�t2
+ �t2

24

(
∂4 f

∂t4
(x, t̄1) + ∂4 f

∂t4
(x, t̄2)

)
,

(62)
where tn−1 ≤ t̄1 ≤ tn and tn ≤ t̄2 ≤ tn+1, leads to the finite-difference formula

f̈ (x j , tn) ≈ f (x j , tn−1) − 2 f (x j , tn) + f (x j , tn+1)

�t2
(63)

over a space-time grid defined by the points (x j , tn) = (x0+ j�x, n�t). This scheme
is second-order accurate if f has continuous fourth-order derivatives. By applying the
same approximation to the second partial derivative in space, we arrive at the following
finite-difference approximation of the scalar wave equation (1):

un−1
j − 2un

j + un+1
j

�t2
− c2

un
j−1 − 2un

j + un
j+1

�x2
= f n

j . (64)

At the time step n ≥ 1, Eq. (64) for 0 < i < N complemented with boundary con-
ditions lead to the fully discrete system (44). For instance, under boundary conditions
u(x0, t) = u(xN , t) = 0, we have un = un

1, . . . , un
N−1, M = I, C = 0,

K = c2

�x

⎡
⎢⎢⎢⎢⎢⎣

2 −1 0 · · · 0
−1 2 −1 · · · 0
...

. . .
. . .

. . .
...

0 · · · −1 2 −1
0 · · · 0 −1 2

⎤
⎥⎥⎥⎥⎥⎦

, f n =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f n
1

f n
2
...

f n
N−2

f n
N−1.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(65)

In the simpler situation where c = 1, f = 0, and �x = �t , Eq. (64) reduces to

un−1
j + un+1

j − un
j−1 − un

j+1 = 0, (66)
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Fig. 1 Stencil of the staggered
scheme (68). Circles and squares
represent the nodes where
velocity and stress are evaluated,
respectively

xj

t

t

xj+1

n

n+1

which is considered in the seminal paper by Courant et al. [112]. The same formula
along with the centered finite-difference approximation of first-order derivatives was
used in the approximation of the elastic wave equation in cylindrical coordinates [58]
and in 2D Cartesian coordinates [113]. Alford and co-authors proposed schemes with
fourth-order accuracy in space for both acoustic [59] and elastic [114] wave equations,
with the purpose of improving accuracy (in particular, reducing numerical dispersion).

For the velocity-stress formulation (27) of the elastic wave equation, the use of
staggered grids [115] is a standard practice [116–119]. A related approach seeks
second-order accurate finite-difference formulas with a lower number of grid points,
leading to simplicial grids [120]. Igel [2] illustrates staggered grids with the 1D elastic
wave equation (2), whose velocity-stress form is

ρ
∂

∂t
v = ∂σ

∂x
+ f ; ∂

∂t
σ = μ

∂v

∂x
. (67)

The space and time derivatives may approximated by centered finite differences
with spacing �x/2 and �t/2, respectively (Fig. 1):

ρ j
v

n+ 1
2

j − v
n− 1

2
j

�t
=

σ n
j+ 1

2
− σ n

j− 1
2

�x
+ f n

j ;
σ n+1

j+ 1
2

− σ n
j+ 1

2

�t
= μ j+ 1

2

v
n+ 1

2
j+1 − v

n+ 1
2

j

�x
.

(68)
In this manner, v and σ are computed on disjoint spatial grids with spacing �x

rather than �x/2, reducing computer memory requirements. For higher dimension,
one may need to interpolate stress components from separate grids to evaluate stress-
strain relations [8].

The staggered formulation has been applied to anisotropic [121–123], viscoelas-
tic [124–126], and poroelastic [127–129] models in velocity-stress form as in (67).
Wave equations in second-order form may also be considered through an equivalent
staggered-grid scheme [130]. Another extension is given by the rotated staggered grids
[131], which have shown to be useful to anisotropic media, especially in the study of
shear-wave splitting [132]. Staggered grids handle more easily boundary conditions
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and interfaces [117,119,133–135], in addition that their numerical error is less sensi-
tive to Poisson’s ratio [119]. They also provide a natural framework for implementing
non-uniform or discontinuous grids [136–139].

As illustrated in scheme (64), the mass matrix M is typically the identity matrix in
finite-difference methods, thus it is natural to consider explicit temporal discretization
schemes. On the other hand, implicit schemes require an efficient implementation to
handle the additional cost of solving linear systems, and a common approach is to use
sequential splitting techniques [140].

Splitting methods have their roots in the classical alternating-direction [141,142]
and fractional-step [143] methods, which have been gathered as locally one-
dimensional (LOD) methods [144]. LOD has been extended from parabolic to
hyperbolic problems [145–147], including high-order time discretizations [148]. Per-
haps the first high-order ADI method for the acoustic wave equation is due to Ciment
and Leventhal [148], though other works have previously considered extending ADI
methods from parabolic to hyperbolic problems [145–147]. More recently, these
methods have employed to seismic wave-propagation problems [81,103,149]. Wave
equations with viscous terms have been considered in [150].

Another splitting approach due to Strang [151] and Marchuk [152] has also been
adopted in wave-propagation problems [153]. A related technique has been employed
to separate the stiff from the nonstiff part of the velocity-pressure poroacoustic wave
equations, so that Biot’s slow wave can be numerically modeled [154]. A theoretical
framework to analyze splitting methods for general second-order systems of ODEs
has been proposed in [155].

For instance, let us review the splitting of scheme (58) for system v̈ + Av =
0 following [81], in the case where A is the two-dimensional, second-order finite-
difference operator

Av = Axv + Ayv, (69)

where un = Axvn and wn = Ayvn are given as follows:

un
j,k = c2j,k

vn
j−1,k − 2vn

j,k + vn
j+1,k

�x2
, wn

j,k = c2j,k
vn

j,k−1 − 2vn
j,k + vn

j,k+1

�y2
. (70)

Note thatAx andAy involve approximations of the x− and y− directions, respectively.
Scheme (58) is approximated as the following three-step formula:

vn+1,0 = 2(I − (1/2)�t2A)vn − vn−1, (71a)

(I + β�t2Ax )vn+1,1 = vn+1,0 + 2β�t2Axvn − β�t2Axvn−1, (71b)

(I + β�t2Ay)vn+1 = vn+1,1 + 2β�t2Ayvn − β�t2Ayvn−1. (71c)

Note that step (71a) is explicit whereas steps (71b)–(71c) involve tridiagonal linear
systems. The error of (71) with respect to (58) is O(�t4) [81].

As pointed out by Emerman et al. [156], schemes such as (71) may allow larger
time steps than explicit schemes but have very low accuracy. Thus implicit methods
must employ high-order finite-difference approximations (see, e.g., [103]) in order to
become competitive.
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A well-known limitation of traditional finite-difference methods is that they
poorly handle irregular interfaces, topography, or boundary conditions, and several
approaches have been proposed to circumvent these difficulties [157]. Alterman and
Nathaniel have addressed the case of a constant slope by means of a change of coordi-
nates [158]. Ilan has adapted the work in [158] to standard Cartesian coordinates, and
by allowing a non-uniform grid, has extended it to polygonal topography. It is worth
noting that several schemes have been proposed for non-uniform finite-difference
grids [159–161]. Jih et al. [162] revisited the same issue and proposed local changes
of coordinates, which allow the use of a uniform grid. This technique evolved to
boundary-conforming grids defined by curvilinear coordinates [163–167], motivated
by the work by Fornberg [168]. Additional approaches are hybrid finite-difference
and finite-element/discrete-wavenumber methods [169], the vacuum method [170],
the interface method [171,172], and the use of non-matching grids [173].

5.2 Pseudospectral methods

As mentioned in Sect. 3, another approach to discretize the initial-boundary value
problems arising from wave-propagation models is to employ the finite expansion
(39). The schemes that follow this approach are known as spectral methods [174–
176], and are essentially characterized by the choice of the basis functions φ j (x) and
the way to determine the expansion coefficients û j (t) (1 ≤ j ≤ M).

The classical choices for the approximation space are orthogonal trigonometric or
polynomial functions, while the approaches to determine the expansion coefficients
are classically divided into tau [177], Galerkin [178], and collocation [179] methods.

Both tau and Galerkin methods choose the coefficients such that the solution sat-
isfies the variational formulation in the approximation space, and they differ on how
boundary conditions are handled. Currently, the tau method is seldom used [180]. The
Galerkin method is better known in the form of finite- and spectral-element meth-
ods, which use piecewise-polynomial interpolation basis functions and are discussed
later on. The Galerkin technique has also been proposed with wavelet basis functions
[181–185]. Global orthogonal polynomials are rarer, and are mostly applied to waves
in fluids [186]. On the other hand, spectral methods with the collocation technique,
which became known as pseudospectralmethods [187], have achieved great popularity
thanks to the Fast Fourier Transform (FFT) algorithm [188].

In the one-dimensional case, a pseudospectral method is essentially defined from a
set of functionsφ0, . . . , φN that are orthogonal with respect to some inner product 〈·, ·〉
and collocation points x0, . . . , xN that are chosen such that the orthogonal projection

uN (x) =
N∑

j=0

û jφ j (x), û j =
〈
u, φ j

〉
〈
φ j , φ j

〉 , (72)

which corresponds to the best approximation of a function u(x) in the vector space
spanned by {φ0, . . . , φN } [1], satisfies uN (xi ) = u(xi ) for 0 ≤ i ≤ N .

In seismic wave propagation, the earlier works are due to Gazdag [45], Kosloff
and Baysal [60], which was generalized to account for anisotropy [189] and viscosity
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[19,190]. They considered Cartesian grids with uniformly spaced collocation points
and complex Fourier basis functions, and the resulting method be interpreted as the
limit of finite differences with infinite order of accuracy [191].

In the Fourier pseudospectralmethod, the basis functions areφ j (x) = exp(iκ( j)x),
with κ( j) = 2π j/(N�x). The corresponding collocation points are x j = a + j�x ,
which have uniform spacing�x = (b−a)/N over the interval [a, b]. For convenience,
the indices run from 0 to N − 1 so that N coincides with the number of subintervals.
The relationship between uN (x j ) and û j can be written in terms of the discrete Fourier
transform pair

v̂ j =
N−1∑
k=0

vk e−i 2πN jk, v j = 1

N

N−1∑
k=0

v̂k ei 2πN jk . (73)

The expansion coefficients are determined from a system of algebraic equations that
is obtained by evaluating the differential equations at the collocation points, which
requires evaluating derivatives of the expansion uN . The Fourier method is more natu-
rally derived by approximating the computation of spatial derivatives in the frequency
domain. For instance, the approximate solution to (6) with leapfrog time discretization
in two dimensions [45] can be written as

un+1
j,k = 2un

j,k − un−1
j,k + �t2Fn

j,k + V 2
j,k�t2(DX un

j,k + DZ un
j,k), (74)

where (x j , zk) = ( j�x, k�z) (0 ≤ j < Nx , 0 ≤ k < Nz), tn = n�t (0 ≤ n < N ),
and

DX un
j,k = −1

Nx

1

Nz

−Nx /2−1∑
ĵ=Nx /2

Nz/2−1∑
k̂=−Nz/2

κ2
x (ĵ ) ûn

ĵ ,k̂
ei[κx (ĵ )x j +κz(k̂)zk ], (75a)

DZ un
j,k = −1

Nx

1

Nz

−Nx /2−1∑
ĵ=Nx /2

Nz/2−1∑
k̂=−Nz/2

κ2
z (k̂) ûn

ĵ ,k̂
ei[κx (ĵ )x j +κz(k̂)zk ], (75b)

with κx (ĵ ) = 2πĵ/(Nx�x) and κz(k̂) = 2π k̂/(Nz�z), while ûn
ĵ ,k̂

is defined by the

2D discrete Fourier transform

ûn
ĵ ,k̂

=
Nx −1∑
j=0

Nz−1∑
k=0

un
j,k e−i[κx (ĵ )x j +κz(k̂)zk ]. (76)

The calculations from (75) and (76) can be efficiently carried out with the FFT algo-
rithm. This algorithm requires O(N log N ) operations, which is significantly lower
than the O(N 2) operations of matrix-vector multiplication for large N . On the other
hand, thismethod assumes periodic boundary conditions, demanding additional strate-
gies to implement realistic ones (see, e.g. [192]).

To circumvent this problem, Raggio [193] proposed the Chebyshev pseudospectral
method. Chebyshev basis functions have also been used in only one spatial direction,
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either on polar [85] or Cartesian [68] coordinates in order to better handle free-surface
boundary conditions. Its extension to three-dimensional problems can be found in
[194].

TheChebyshev basis functions in the interval [−1, 1] are Tj (x) = cos( j cos−1(x)),
while the collocation points are x j = cos( jπ/N ), 0 ≤ j ≤ N . Herein, N denotes the
maximal polynomial degree. The coefficients û j in (72) are

û j = 2

N

N∑
l=0

1

clc j
f (xl)Tj (xl), c j =

{
1, 0 < j < N ,

2, j = 0, N .
(77)

These coefficients can be written as

û j =
N∑

l=0

vl
1

c j
cos

(
jlπ

N

)
, vl = 2

cl
f (xl), (78)

which is related to the real part of the discrete Fourier transform. The coefficients of
the derivatives of uN can be computed from û j through recursive relations [195].

The fact that the collocation points x j are clustered at the boundary implies that
the distance between grid points can be very small, which in turn leads to a small
time step as well. For this reason, a stretching transformation should be employed
[196,197]. An alternative approach uses the tau method with Legendre polynomials
[198], but the Chebyshev pseudospectral method has become more popular as it can
be implemented with the FFT algorithm.

As finite-difference methods, pseudospectral methods benefit from staggered grids
[199–201]. Their classical implementations were also limited to regular grids, and one
alternative to avoid such a restriction is to employ curvilinear coordinates [168,202].
Another approach is to resort to domain decomposition, which was proposed for the
elastic wave equation initially for isotropic media [203,204] and later to viscoelastic
[205,206] and poroelastic [207] media. Another benefit of using domain decompo-
sition in pseudospectral methods is that the resulting wave operator is not entirely
global, avoiding non-causal interactions of the propagating wavefield with parameter
discontinuities in the model [200].

The Fourier pseudospectral method has been recently generalized to handle frac-
tional derivatives, which are useful to model attenuating media without the need of
memory variables [208–210].

5.3 Finite-elementmethods

As mentioned in the previous section, finite-element methods [63,64] belong to the
family of Galerkinmethods, and typically use continuous Lagrange interpolation basis
functions, which are associated with the spatial grid. The earliest applications of finite
elements to seismic wave-propagation problems are due to Lysmer and Drake [211] in
the frequency domain, and to Smith [212] in the time domain. Later works addressed
several relevant aspects of seismic modeling with finite elements [5,213,214].
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In the following we describe a finite-element approximation of the variational prob-
lem (37). The first step is to decompose the spatial domain � into ne non-overlapping
elements �e such that � = ∪�e. Physical elements �e are mapped through a trans-
formation x = Λe(ζ ) onto a reference element �̂ where computations are actually
performed. The approximate solution may be written as

ũ(x, t) =
ne⋃

e=1

ũe(x, t), ũe(x, t) =
ndof∑
j=1

ũe
j (t)Φ

e
j (x), (79)

where the union operator denotes that ũ is defined in � and ũ(x, ·) = ũe(x, ·) for
any x ∈ �e. Moreover, ndof is the number of element degrees of freedom. The basis
functions satisfy Φe

j (Λ
e(ζ )) = Φ̂ j (ζ ), where Φ̂ j is the Lagrange interpolation vector

function associated with the j-th degree of freedom in a space of polynomial, vector-
valued functions in �̂. For instance, if the polynomial degree is one and the spatial
dimension is two with �̂ = [−1, 1]× [−1, 1], then Φ̂ j (ζ ) = Φ̂ j (ξ, η) are the bilinear
interpolation functions

Φ̂1(ζ ) =
{

ϕ1(ξ)ϕ1(η)

0

}
, Φ̂5(ζ ) =

{
0

ϕ1(ξ)ϕ1(η)

}
, (80a)

Φ̂2(ζ ) =
{

ϕ2(ξ)ϕ1(η)

0

}
, Φ̂6(ζ ) =

{
0

ϕ2(ξ)ϕ1(η)

}
, (80b)

Φ̂3(ζ ) =
{

ϕ2(ξ)ϕ2(η)

0

}
, Φ̂7(ζ ) =

{
0

ϕ2(ξ)ϕ2(η)

}
, (80c)

Φ̂4(ζ ) =
{

ϕ1(ξ)ϕ2(η)

0

}
, Φ̂8(ζ ) =

{
0

ϕ1(ξ)ϕ2(η)

}
, (80d)

where ϕ1(ζ ) = (1 − ζ )/2 and ϕ2(ζ ) = (1 + ζ )/2, for ζ ∈ [−1, 1]. The coefficients
ũe

j (t) are determined from the following Galerkin approximation of (37):

∂2

∂t2

∫
�

ρw · ũ d� +
∫

�

(ε(w)) · (CDũ) d� =
∫

�

w · f d� ∀ w ∈ Ṽ , (81)

where Ṽ is the subspace of H1
0 (�)d of continuous piecewise-polynomial functions

built from local functions Φ̃
e
j (x). After algebraic manipulations, Galerkin equation

(81) are written as the system of ordinary differential equations

MÜ + KU = F, (82)

where M, K, and F are the global mass matrix, stiffness matrix, and load vector,
respectively. Initial conditions U(0) = U0 and U̇(0) = U̇0 must be provided. They
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are built through a summation process of elemental matrices and vectors,

M =
ne∑

e=1

M̃
e
, K =

ne∑
e=1

K̃
e
, F =

ne∑
e=1

F̃
e
, (83)

where M̃
e
, K̃

e
, and F̃

e
are the elemental mass matrix, stiffness matrix, and load vector

in sparse global form, that is, only non-zero entries are used and they are mapped
into appropriate global locations by a connectivity map from local to global nodes
[215]. The dense elemental arrays Me, Ke, and Fe are defined by the contributions
from element �e to the integrals in (81),

Me
i, j =

∫
�e

ρΦe
i ·Φe

j d�, K e
i, j =

∫
�e

(DΦe
i ) · (CDΦe

j ) d�, Fe
i =

∫
�e

Φe
i · f d�,

(84)
for 1 ≤ i, j ≤ ndof . These integrals are computed in the reference element �̂ through
standard changes of variables [64].

In general, finite-element basis functions are defined from linear, quadratic and
cubic polynomials over triangular or quadrilateral elements (tetrahedral or hexahe-
dral in 3D, though other elements such as pyramids and wedges can be used [216]).
Low-order finite-element methods are comparable to centered finite differences [213]
and thus have low accuracy, but can be useful when the problem geometry leads to
highly refined and irregular meshes [217,218]. One alternative to improve the perfor-
mance of low-order finite elements is to enrich the approximation space [219–222]. It
is worth noticing that isogeometric analysis, a finite-element approach integrated with
computer-aided design [223], has been shown to provide a better geometric represen-
tation than traditional finite elements. Several authors have studied this technique in
wave-propagation problems [224–226].

5.4 Spectral-element methods

Unlike pseudospectral methods, the use of high-order finite elements was not common
in the literature of computational seismology at least until the 1990s, mostly because
there were concerns about their accuracy [227].

Standard high-order finite-element bases are based on equally spaced polynomial
interpolation, which is an ill-conditioned problem [228,229]. This can be noticed from
the behavior of Lagrange basis functions of degree N at the reference element [−1, 1]
with equally spaced points j/N , 0 ≤ j ≤ N . As shown in Fig. 2, the Lagrange
functions associated with the element midpoint begin to oscillate as N increases,
similarly to the Runge phenomenon.

A classical approach to circumvent this problem is to use the Chebyshev collocation
points

ζ j = − cos( jπ/N ), 0 ≤ j ≤ N , (85)

rather than equally spaced points, as shown in Fig. 3.
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Fig. 2 Lagrange basis functions of degree N = 2, 4, 8 with equally spaced points
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Fig. 3 Lagrange basis functions of degree N = 2, 4, 8 with Chebyshev points

The use of Chebyshev points as well as other orthogonal polynomial roots was
initially regarded as unnecessary [230], but in the work of Patera and co-workers
[231–233], these points provided the link between finite-element and pseudospectral
methods, with the appeal of having the geometric flexibility of the former and the
rapid convergence properties of the latter.

Later on, the spectral-element method with Chebyshev collocation points was
adapted to wave-propagation problems [69,234–237], where their low numerical
dispersion was pointed out. Another strand, which evolved from multi-domain pseu-
dospectral methods [238] and high-order, mass-lumped finite-element methods [239],
led to the spectral-element methods with Legendre collocation points [240–242].
Moreover, Laguerre spectral elements have been proposed to handle infinite domains
[243]. Jabobi polynomials have also been employed but are less common [244].

Spectral elements are usually quadrangular or hexahedral, so that the Lagrange
shape functions Φ̂ j (ζ ) = Φe

j (Λ
e(ζ )), defined in the reference element �̂ = [−1, 1]2 or

[−1, 1]3, are built from tensor products of one-dimensional Lagrange shape functions
ϕi (ζ ) of degree N such that ϕi (ζ j ) = δi, j , as in as in (80). The collocation points ζi

(0 ≤ i ≤ N ) are given by (85) for Chebyshev elements, while for Legendre elements
these points are the solutions to

(1 − ζ 2)L ′
N (ζ ) = 0, (86)

where L N (ζ ) is the N th degree Legendre polynomial [1].
The standard implementations of spectral-elementmethodswith Chebyshev (SEM-

GLC) and Legendre (SEM-GLL) collocation points may be classified as consistent
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and lumped finite elements, respectively. In other words, the mass matrix in (83)
for Chebyshev elements is calculated without approximations (assuming piecewise
constant density) and is non-diagonal, while for Legendre elements this matrix is
approximated through reduced integration by a diagonal matrix. SEM-GLL has been
adapted to triangular meshes [245–248], but the selection of collocation points is more
complex and may lead to non-diagonal mass matrices.

The computation of elemental matrices in SEM-GLC is based on the properties
of Chebyshev polynomials Tj (cos θ) = cos( jθ). In particular, the Lagrange shape
functions ϕi (0 ≤ i ≤ N ) are obtained by choosing u in (72) such that u(x j ) = δi, j .
It follows from (72) and (77) that

ϕi (ζ ) = 2

N

N∑
j=0

1

ci c j
Tj (ζi )Tj (ζ ) =

N∑
j=0

si, j Tj (ζ ), c j =
{
1, 0 < j < N ,

2, j = 0, N ,
(87)

so that the entries of the elemental mass matrix in [−1, 1] are

M̂i, j =
∫ 1

−1
ϕi (ζ )ϕ j (ζ ) dζ =

N∑
j=0

si, j

∫ 1

−1
Ti (ζ )Tj (ζ ) dζ. (88)

The integral in (88) equals 0 if i + j is odd, and (1 − (i + j)2)−1 + (1 − (i −
j)2)−1 otherwise [215,231]. These formulas have been generalized to take into account
variable material properties, which are represented by expansions in basis functions
that do not necessarily coincide with those from the wave field [215,249].

Because fully discrete SEM-GLC schemes are implicit in time, they need efficient
linear-system solvers. Some useful strategies are the element-by-element formulation
and suitable factorizations of matrix-vector products [250,251]. Moreover, uncondi-
tionally stable time-integration schemes should be chosen to allow the use of large
time steps.

For SEM-GLL, the standard practice is to employ the GLL quadrature

∫ 1

−1
f (ζ ) dζ ≈

N∑
k=0

f (ζk)wk, wk = 2

(N + 1)N

1

L2
N (ζk)

, (89)

with ζ j satisfying (86). This formula is exact if f is a polynomial of degree≤ 2N −1.
In particular, the calculation

M̂GL L
i, j =

N∑
k=0

ϕi (ζk)ϕ j (ζk)wk ≈
∫ 1

−1
ϕi (ζ )ϕ j (ζ ) dζ (90)

is not exact, since ϕiϕ j has degree 2N . On the other hand, since ϕi (ζ j ) = δi, j , we
have M̂GL L

i, j = w jδi, j , i.e., M̂GL L is diagonal. The diagonality of the mass matrix was
crucial in the success of spectral elements in computational seismology.
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The spectral-element method has been implemented for anisotropic, visco- and
poroelastic wave propagation [61,252,253] and the advent of collaborative codes and
platforms [254, Appendix A] has encouraged its application in several studies of
regional and global seismology [6,255–257]. This method has also been widely used
in conjunction with adjoint methods [258,259].

5.5 Finite-volumemethods

The finite-volume method for elastic wave propagation was initially proposed by
Dormy and Tarantola [260] for the velocity-displacement formulation (28) and later
by Tadi [261] for the second-order formulation (15).

In [260], the main motivation to introduce the finite-volume method was to gen-
eralize minimum grid, second-order finite differences [120] to unstructured grids and
irregular boundaries. The key idea was to use the divergence theorem to obtain deriva-
tive estimates of a field from its values at surrounding grid points, rather than Taylor
series expansions. On the other hand, the main concern in [261] was the enforcement
of traction boundary conditions.

By using the ADER method [73,74] and a reconstruction algorithm to introduce
high-order numerical fluxes, Dumbser et al. [262] have obtained higher accuracy both
in space and time. Later on, Zhang and co-authors [263,264] proposed a high-order
finite-volume method that combines the reconstruction algorithm from [262] and the
element subdivision algorithm from the spectral volume method [265]. The finite-
volume method has been used in studies of dynamic rupture [266], hypoelastic [267],
and poroelastic media [268].

As in [269], let us introduce the finite-volumemethods through the one-dimensional
conservation law

u̇(x, t) + ∂ f (u(x, t))

∂x
= 0. (91)

Given a uniform spatial grid with spacing �x , let C j = [x j−1/2, x j+1/2] be a grid
cell (or finite volume) centered at node x j . By integrating both sides of (91) over C j ,
we find

∂

∂t

∫
C j

u(x, t) dx = f (u(x j−1/2, t)) − f (u(x j+1/2, t)). (92)

A subsequent integration from tn to tn+1 yields

∫
C j

u(x, tn+1) dx −
∫
C j

u(x, tn) dx =
∫ tn+1

tn
f (u(x j−1/2, t)) − f (u(x j+1/2, t)) dt,

(93)
which can be written as

U n+1
j − U n

j = �x

�t

(
Fn

j−1/2 − Fn
j+1/2

)
, (94)

where

U n
j = 1

�x

∫
C j

u(x, tn) dx (95)
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is the average approximation of the unknown field u(x, tn) at C j , while

Fn
j±1/2 = 1

�t

∫ tn+1

tn
f (u(x j±1/2, t)) dt (96)

are the average fluxes at x j±1/2. Assuming that Fn
j±1/2 approximately depends only on

the adjacent average valuesU n
j andU n

j±1, we arrive at the finite-volume approximation
of (94):

U n+1
j = U n

j + �x

�t

(
F(U n

j−1, U n
j ) − F(U n

j , U n
j+1)

)
, (97)

where the numerical-flux function F(U−, U+) approximates the average fluxes (96).
For instance, let us consider the linear case f (u) = au with a > 0, which is a one-way
wave equation. Taking into account that the information propagates from the left to the
right for a > 0, an effective choice is the upwind flux F(U−, U+) = f (U−) = aU−,
leading to the scheme

U n+1
j = U n

j − a�x

�t

(
U n

j − U n
j−1

)
, (98)

which coincides with the classical upwind finite-difference method. In the case where
a may change sign, we choose F(U−, U+) = max{a, 0}U− + min{a, 0}U+, so that

U n+1
j = U n

j − �x

�t

(
max{a, 0}�U n

j−1/2 + min{a, 0}�U n
j+1/2

)
. (99)

The jumps�U j−1/2 = U n
j −U n

j−1 and�U j+1/2 = U n
j+1−U n

j can be interpreted as
waves moving across cells C j and C j+1 with opposite senses; in general, the numerical
flux is driven by the solution of a Riemann problem [269].

Let us now consider the 1D elastic wave equation (67) in the homogeneous case,
which can be written in a matrix form similar to (91);

u̇ + ∂

∂x
Au = 0, u =

{
v

σ

}
, A =

[
0 −1/ρ

−μ 0

]
. (100)

From the eigenvalue decomposition A = RΛR−1, the vector w = R−1u satisfies

w =
{

w+
w−

}
, ẇ± ± cS

∂

∂x
w± = 0, cS =

√
μ

ρ
. (101)

We can apply the upwind scheme (99) to either w+ or w−:

W n+1
+,i = W n

+,i −
�x

�t
cS�W n

+,i−1/2, W n+1
−,i = W n

−,i −
�x

�t
(−cS)�W n

−,i+1/2. (102)

The matrix form of (102) yields an upwind scheme for w:

Wn+1
j = Wn

j − �x

�t

([
cS 0
0 0

]
�Wn

j−1/2 +
[
0 0
0 −cS

]
�Wn

j+1/2

)
(103)
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Bymultiplying both sides of (103) byRon the left and replacing the jumps�Wn
j±1/2

with the jumps R−1�Un
j±1/2 in terms of the average approximations of u(x, tn), we

arrive at the scheme

Un+1
j = Un

j − �x

�t

(
A+�Un

j−1/2 + A−�Un
j+1/2

)
(104)

for the original field u, where

A+ = R
[

cS 0
0 0

]
R−1, A− = R

[
0 0
0 −cS

]
R−1. (105)

The extension of the finite-volume method to 2D and 3D can be obtained through
the divergence theorem [2,260].

5.6 Discontinuous Galerkinmethods

The discontinuous Galerkin method (DG) incorporates the concept of numerical
fluxes across element interfaces from the finite-volume method into the finite-element
framework. In particular, computations are done on reference element to increase com-
putational efficiency. It is well-suited for parallelization due to the local character of
the scheme and low amount of communication. Because continuity between elements
is not required, the choice of spatial meshes is more flexible. On the other hand, these
methods require more degrees of freedom than continuous methods. In the acoustic
case, for instance, each node from an internal edge is associated with two or more
local degrees of freedom, rather than a single global degree of freedom.

As finite-volume methods, DG was initially designed for transport problems
[270,271]. Interior penalty methods, another class of discontinuous Galerkin approx-
imations, were independently developed for elliptic and parabolic problems [272].
While the former is based on suitable approximation of fluxes across elements, the
latter concerns weakly imposing continuity between them. We refer to Arnold et al.
[273] for a unified framework for these approaches as well as other discontinuous
Galerkin formulations.

The earliestDGmethods for seismicwave propagation followed the interior-penalty
approach [274–278]. They have been developed for second-order formulations. How-
ever, the most popular DG method in computational seismology is derived from
first-order, conservation law formulations [74,279]. It employs piecewise high-order
polynomial approximation, as spectral-element methods, together with the ADER
time-integration approach. The resulting method achieves arbitrary high approxima-
tion order in space and time. In contrast with spectral elements, which rely onLagrange
interpolation functions,ADER-DGmethods followamodal rather thannodal approach
[2], i.e., they rely on orthogonal polynomial basis functions, in particular for triangu-
lar and tetrahedral elements [280,281]. Hence, these methods benefit from automatic
mesh generators of unstructured triangular and tetrahedral meshes, which are usually
higher developed than those for quadrilateral and hexahedral elements, for example
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with optimizedmesh partitioning techniques based on graph theory [262]. This allows,
for instance, precise digital elevation models for the topography of the free surface.

A more recent version of DG, termed hybridizable discontinuous Galerkin (HDG),
employs Lagrange multipliers over element boundaries and can provide a higher con-
vergence rate [88,100,282]. As shown in [283], HDG is related to the earlier staggered
discontinuous Galerkin methods [284–286].

There have been several applications of DG beyond the isotropic wave equation,
such as anisotropic [287], viscoelastic [288], and poroelastic [289,290] waves. A uni-
fied Riemann solver has been recently proposed to couple these media [291]. Wilcox
et al. [87] consider a velocity-strain (rather than velocity-stress) formulation, which
allows coupling elastic and acoustic media. As pointed out by [2], DG is very well
suited to dynamic-rupture problems [292–295] and has also benefited from the avail-
ability of open-source codes [126,296,297].

In order to compare spectral-element and discontinuous Galerkin methods [2], let
us derive the elemental equations for a nodal upwind DG method for the 1D elastic
wave system (100). Let�e be an interior subinterval of the domain andΦe

1, . . . ,Φ
e
ndof

as in (79). We perform the scalar product of both sides of (100) with a test function
Φe

i and integrate by parts in �e, so that

∫
�e

(
Φe

i · ∂

∂t
ũe − ∂

∂x
Φe

i · Aũe
)

dx + Φe
i (xe

R) · Aũe(xe
R) − Φe

i (xe
L) · Aũe(xe

L) = 0,

(106)
where xe

L and xe
R are the left and right endpoints of�e. The latter terms are not present

on standard finite- and spectral-element methods as they cancel out with contributions
from adjacent intervals. In the discontinuous case, adjacent elements are no longer
connected through continuity conditions, which are replaced with numerical fluxes.
Similarly to (104), the undefined boundary terms of (106) can be approximated as
follows (Fig. 4):

Aũe(xe
R) ≈ A+ũe(xe

R) + A−ũe+1(xe+1
L ), (107a)

Aũe(xe
L) ≈ A−ũe(xe

L) + A+ũe−1(xe−1
R ). (107b)

By introducing numerical fluxes (107) and the expansion (79) into (106) , we find

ndof∑
j=1

(
∂

∂t
ũe

j (t)
∫

�e
Φe

i · Φe
j dx − ũe

j (t)
∫

�e

∂

∂x
Φe

i · AΦe
j dx

)

= Φe
i (xe

R) ·
(

ũe
i (t)A

+Φe
i (xe

R) + ũe+1
i(R)(t)A

−Φe
i(R)(xe

R)
)

−Φe
i (xe

L) ·
(

ũe
i (t)A

−Φe
i (xe

L) + ũe−1
i(L)(t)A

+Φe
i(L)(xe

L)
)

. (108)

where the indices i(R) and i(L) satisfy Φe+1
i(R)(xe+1

L ) = Φe
i (xe

R) and Φe−1
i(L)(xe−1

R ) =
Φe

i (xe
L), respectively. Equation (108) is the same for the spectral-element method,

except that the terms in the right-hand side are not present.
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Fig. 4 Upwind contributions of
a scalar, discontinuous
piecewise-polynomial field ũ at
the endpoints of element �e ,
when the velocity is positive
(a+) or negative (a−). Adapted
from [2, p. 259]

5.7 Other methods

We close this section reviewing some families of numerical methods that are conceptu-
ally diverse from the ones presented above though their computational implementation
may be developed from traditional spatial discretizations.

5.7.1 Physics-compatible numerical methods

Physics-compatible (also called mimetic or conservative) numerical methods are
techniques that try to preserve (mimic) the fundamental physical and mathematical
properties of continuous physics models in their finite-dimensional algebraic repre-
sentations.

The numerical methods presented above, such as finite differences (FD), finite vol-
umes (FV) and finite elements (FE), evolved separately until recently, but in recent
years the need to develop more complex algorithms for solving new challenging real
problems prompted the search for better and more robust schemes. Investigations and
experience on the computational behavior of standardmethods (stability, convergence,
numerical errors, and efficiency) demonstrated that solving a physical problem by dis-
crete models reproducing fundamental properties of the original continuum model
allows for the best results. Among the important properties to be preserved are topol-
ogy, conservation of energy,monotonicity, stability, maximumprinciples, symmetries,
and involutions of continuum models. For this purpose, differential geometry, exter-
nal calculus, and algebraic topology are the main mathematical tools for developing
compatible discretizations.

Examples are compatible methods for spatial discretizations, variational and geo-
metric integrators, or conservative finite-volume, finite-element and spectral-element
methods, etc. The design principles for the development of mimetic discretization
methods are described in books [298–300] and the references therein, while a general
introduction and overview of spatial and temporal mimetic/geometric methods can be
found in [301–307].
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The general approach in developing compatible numerical schemes is to formulate
the PDEs,which describe the continuummodels, using invariant first-order differential
operators, such as the divergence of vectors and tensors, the gradient of scalars and vec-
tors, and the curl of vectors. The next step is to work out the compatible discretizations
by using equivalent discrete forms of these invariant operators. The divergence, gra-
dient, and curl differential operators satisfy certain integral identities (such as Green’,
Gauss’, and Stokes’ theorems) that are closely related to the conservation laws of the
continuum models.

Therefore, the equivalent discrete forms of these integral identities are used in
building the compatible discrete divergence, gradient, and curl operators since they
must satisfy such discrete integral identities. Furthermore, other approaches have also
been used, for example, based on algebraic topology, variational principles, or discrete
vector calculus as well as for extending the mimetic approach to more general grids
including polygonal, polyhedral, locally refined, and non-matching meshes.

For the sake of clarity, we show below the application of the basic principles of
mimetic discretizations using the scalar wave equation (6) as described by Solano–Feo
et al. [308].

Let us initially consider a one-dimensional grid with points x0, . . . , xN and uniform
spacing h. We denote the mimetic approximations of a scalar function u at the grid
points and their midpoints as u = u0, . . . ,uN and ū = u1/2, . . . ,uN−1/2, respec-
tively. We may define the discrete divergence and gradient operators through central
finite differences as

vi+1/2 = (Du)i+1/2 = ui+1 − ui

h
, vi = (Gu)i = ui+1/2 − ui−1/2

h
, (109)

which can be written in matrix form as v̄ = Du and v = Gū. The discrete divergence
and operators yield grid functions defined at midpoints and node values, respectively
(Fig. 5). Left- and right-sided approximations should be employed to define the gra-
dient operator at the grid endpoints, and two- and three-dimensional operators can be
constructed with the aid of Kronecker products [299]. Solano–Feo et al. [308] pointed
out that these operators satisfy the discrete integral identity

〈Du, v̄〉hdQ + 〈Gū, v〉hdP = 〈Bu, v〉hd−1I, (110)

where B is a boundary operator, 〈u, v〉A = u�Av denotes a discrete inner product
with weighting matrix A, d = 1, 2, or 3 is the spatial dimension, Q (P) is the diagonal
matrix containing quadrature weights of the compound midpoint (3/8 Newton–Cotes)
rule, and I is the identity matrix.

Let us now proceed to the mimetic approximation to (6), considering the leapfrog
scheme in time. By writing �u = div(∇u), the Laplacian operator can be approxi-
mated by the compound discrete operator DG, leading to the explicit scheme

ūn+1 − 2ūn + ūn−1

�t2
− āDGūn = f̄ n, (111)

where ā = c2(x1/2), . . . , c2(xN−1/2).
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Fig. 5 Discrete divergence (D) and gradient (G) operators in a 1D staggered grid

More details can be found in [299,308] and references therein. Mimetic principles
have been applied to modeling wave-propagation problems by many authors [309–
312]. Mimetic finite differences are particularly effective to handle topography and
boundary conditions [313–315].

5.7.2 Cell method

It has been observed that many physical theories have a very similar formal structure
from a geometric, algebraic, and analytical point of view. This principle led to the Tonti
diagrams [316], a classification scheme of the physical quantities and the physical
theories in which they are involved, such as equations of equilibrium, continuity and
motion. These equations can be reformulated in a finite grid using basic concepts of
algebraic topology such as completely discrete functions defined on a combination of
elements of the grid rather than functions in the continuum. It is therefore possible
to directly establish a set of algebraic relations between physical variables associated
with the geometric elements of the problem and which are suitable for numerical
simulations.

The cell method (CM) [317–321] is a computational method based on such direct
algebraic formulation developed by Enzo Tonti [317,322–325]. Using directly the
experimental laws, it avoids discretizing the differential equations used in a continuum
formulation, and is physically compatible by construction. CM is therefore a mimetic
method.

In practice, the CM at first accepts the idea of an approximate solution and focuses
on single limited parts of the analyzed domain: the cells. After dividing the domain
into cells (named as primal cell complex) a second subdivision is made, coupling a
piece of each cell to each of its nodes. With this last subdivision, a domain area is
attributed to each node of the primal cell complex, thus creating a second cell system,
called the dual system (Fig. 6). In fact, there is full reciprocity (duality) between the
geometric elements of the two systems of cells: a cell of the dual system (considered as
“tributary region”) remains connected to each node of the primal system; vice versa:
to each node of the dual system correspond cells of the primal system. Therefore the
geometric elements of the primal system (points P , lines L , surfaces S, and volumes
V ) correspond to the geometric elements of the dual system (respectively volumes Ṽ ,
surfaces S̃, lines L̃ , and points P̃).

The cell method, in addition to its simplicity, has close compatibility with the phys-
ical and experimental reality as a consequence of connecting the physical quantities to
the geometric elements of the twocell systemswith the same logicwithwhich the quan-
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Fig. 6 Domain partition in the cell method: the primal complex (left), primal and dual complexes (center),
and tributary regions of some nodes of the primal complex (right)

tities are investigated experimentally. The association between quantities involved in
a physical problem and the geometric elements of the two cell complexes is illustrated
and effectively summarized in the Tonti diagrams.

In summary, spatial and temporal quantities are represented by sets of topological
entities (cells) of multiple dimensions called primal and dual cell complexes, and
a system of inner and outer orientations are assigned to such cell complexes. The
physical variables are associated with spatial and temporal elements according to the
following classification:

• Configuration variables: geometric and kinematic variables that describe the con-
figuration of the (wave) field, such as displacement;

• Source variables: static and dynamic variables that describe the sources of the
field, such as force and mass flow;

• Energy variables: variables that are obtained from the product of configuration and
source variables, such as work and kinetic energy.

Configuration variables are associated with elements of the primal cell complex,
while source/energy variables are associated with elements of the dual complex. The
constitutive and balance laws are then imposed, leading to algebraic equations for the
variables of interest.

5.7.3 Homogenization andmultiscale methods

Two approaches have been proposed to handle medium heterogeneities that must be
taken into account in the wave simulation, but would need a mesh refinement that is
impractical to implement. These methods essentially convert the material properties
in a fine scale, where relevant variability occurs, into equivalent ones in a coarse scale
corresponding to the target wavelength. In general, physical laws may be different in
fine and coarse scales [326].

One of these approaches can be seen as a generalization of averaging techniques
[327] and lead to the homogenizationmethods [328–332]. Through asymptotic theory,
they obtain effective equations at the macroscopic level that qualitatively account for
the fine scales. The asymptotic expansion of order zero usually corresponds to the
classical averaging techniques. Though these methods are not restricted to periodic
media, they have been mostly developed for rectangular and cuboid grids [333–335].

The second approach obtains the effectivemediumbynumericallymodeling thefine
scales [336]. There are several methods that follow this approach, such as numerical
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upscaling [337,338], heterogeneous multiscale method [339,340], multiscale finite
elements [341], multiscale coupling methods [342], and Fast Fourier homogenization
[343]. These techniques are especially useful to finely layered, randomly oriented, and
fractured media [344,345].

Homogenization methods have the advantage of a lower computational cost. On
the other hand, methods that numerically evaluate the contribution of fine scales to the
macroscopic model can be more flexible with respect to the mesh geometry [346].

6 Numerical approximation of boundary conditions

This section concerns the implementation of the free-surface and computational
boundary conditions mentioned in Sect. 2.4. They can also be handled directly at
the discrete level, rather than being based on the discretization of analytical bound-
ary conditions [29,347]. An important class of such methods use an artificial layer
surrounding the domain to attenuate reflected waves.

6.1 Free-surface boundary conditions

Free-surface conditions can be easily imposed in numerical methods based on vari-
ational formulations, such as finite/spectral elements and discontinuous Galerkin
methods. As an illustration, let us consider the variational formulation of the elas-
tic wave equations (9) with boundary conditions

σ (u) · n = 0 on �1, (112a)

u = 0 on �2, (112b)

where �1 ∪ �2 = ∂� and �1 denotes the surface boundary. in the space

W =
{
w ∈ H1(�)d ; w = 0 on �2

}
. (113)

We have from divergence theorem that, for any w ∈ W ,

∫
�

w · (∇ · σ (u)) d� =
∫

�1

w · (σ (u) · n) d� +
∫

�2

w · (σ (u) · n) d�

−
∫

�

ε(w) : σ (u) d�. (114)

The first and second boundary integrals in the right-hand side of (114) vanish due
to (112a) and (113), respectively, so that we arrive at the same variational formulation
as in (37), except that w ∈ W . A similar result applies to the velocity-stress and
velocity-displacement formulations.

Other methods such as finite differences need some strategy to handle z-derivatives
present on condition (112a). This condition becomes, for instance in the 2D isotropic
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case,

σzz = λ
∂ux

∂x
+ (λ + μ)

∂uz

∂z
= 0, σxz = μ

(
∂ux

∂z
+ ∂uz

∂x

)
= 0. (115)

For a free-surface condition over z = 0, the x-derivatives can be approximated using
grid points over this line. For the z-derivatives, one can extend the grid above z = 0
and impose the skew-symmetry of the stress components to evaluate the variables over
these additional points [119,157], or to employ one-sided finite-difference expansions
to avoid extending the grid [348]. Another approach is to use extrapolation based on
characteristic variables [118], which has also been used on pseudospectral methods
[68,107,349]. In the finite-volume method, the free-surface boundary condition may
be imposed by solving an inverse Riemann problem [262].

6.2 Absorbing boundary conditions

The classical absorbing boundary conditions were initially implemented on finite-
difference methods for the scalar wave equation, with one-sided difference formulas
at the boundary [24,28,32]. Later on, these conditions were implemented on finite-
difference methods for the two- and three-dimensional elastic wave equation [350,
351].

Engquist–Majda conditions (33) have been widely employed by other spatial
discretization techniques, such as pseudospectral methods [352,353], finite ele-
ments [35,354], spectral elements [61,355,356], and discontinuous Galerkin methods
[88,285].

High-order local absorbing boundary conditions have been mostly implemented
with finite-difference and finite-element methods [357–359], but have also been con-
sidered in other methods [360,361].

It is worth noting that absorbing boundary conditions often involve first-order time
derivatives, leading to second-order linear systems of ODEs (41) where the damping
matrix C is present [98]. We refer to [36] for conditions for first-order hyperbolic
problems.

6.3 Absorbing layers and PML

An alternative to designing non-reflecting boundary conditions is to extend the com-
putational domain by surrounding with a layer where the wave field is subject to some
form of filtering that attenuates the waves generated by reflection at the outer layer
boundary (Fig. 7). This technique can be traced back to the works of Petschek and
Hanson [362,363] and became popular in exploration geophysics after the method of
Cerjan et al. [192]. The latter attenuates the numerical solution at the end of each time
step by multiplication of a factor that tapers gradually towards the center of the grid
[364], as suggested by the shading pattern in Fg. 7.

Rather than post-processing the wave field, wave attenuation may be obtained by
adopting a modified governing equation in the absorbing layer, as proposed in [364–
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Fig. 7 Sketch of an absorbing
layer (shaded) surrounding a
rectangular domain with a
homogeneous grid. In the upper
right, the idealized effect of the
absorbing layer on waves
reflected by the outer boundary

366]. For instance, the acoustic wave equation (7) can be modified in the absorbing
layer as follows:

∂

∂t

(
1

ρc2
u̇

)
− ∇ ·

(
1

ρ
∇u

)
+ 2γ u̇ − γ 2u = f , (116)

where the parameter γ (x) is chosen to achieve the best amplitude elimination [364].
Sarma et al. [367] developed modified equations for finite-element methods under the
framework of Rayleigh damping.

A disadvantage of absorbing layers is that, while waves going through themmay be
effectively damped, spurious reflections occur at the interface between the domain and
the absorbing layer. This limitation motivated the development of perfectly matched
layers (PML), which were originally proposed to electromagnetic waves [368] and
later extended to acoustic and elastic waves [44,369–371].

Following [372], let us illustrate a PML for the scalar wave equation (6). Firstly,
this equation is rewritten as a first-order system and is Laplace transformed:

− iωv̂ = −∇û, −iωû = −c2∇ · v̂. (117)

For simplicity, consider the layer portion adjacent to the boundary x = 0. In this
part of the layer, system (117) is modified as follows:

(−iω + ω1(x1))v1 = − ∂ û

∂x1
, (−iω + ω1(x1))û1 = −c2

∂v̂1

∂x1
, (118a)

−iωv j = − ∂ û

∂x j
, −iωû j = −c2

∂v̂ j

∂x j
( j = 2, 3), (118b)

where û j ( j = 1, 2, 3) are auxiliary variables such that û = û1 + û2 + û3, while
ω1 is a function that vanishes along with its derivative at the interface (for instance,
ω1(x1) = Ax1). Finally, the equations in time domain are obtained by applying the
inverse Laplace transform to (118):

v̇1 + ω1(x1)v1 = − ∂u

∂x1
, u̇1 + ω1(x1)u1 = −c2

∂v1

∂x1
, (119a)

v̇ j = − ∂u

∂x j
, u̇ j = −c2

∂v j

∂x j
( j = 2, 3). (119b)
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In general, we split the derivative operators and the unknowns on components that
are normal and tangential to the boundary and apply a complex change of variables in
the normal direction [44,373]. Moreover, the modified equations may be obtained on
second-order formulations of the wave equation [373].

Later on, the convolutional perfectlymatched layer (CPML)was developed to avoid
spurious reflections at grazing incidence. This method was originally proposed to the
elastic wave equation in the velocity-stress formulation [374] and later extended to the
displacement formulation [375] and to poroelastic [376] and viscoelastic [377] media.
Kristek et al. [378] explored the relationship between PML and CPML.

Another approach that uses an absorbing layer applies high-order local NRBCs
on two parallel artificial boundaries, and it is known as double-absorbing-boundary
method [379]. Thismethod has been evaluated in 2Dand 3D seismicwave-propagation
benchmark problems [380,381].

7 Numerical errors

Convergence analyses have been proposed for most of the fully discrete methods
outlined in the previous section. In the following we list some of these works:

• Finite-difference methods: [382,383].
• Pseudospectral methods: [1,174].
• Finite-element methods: [42,384–386].
• Spectral-element methods: [387–390].
• Finite-volume methods: [269,391].
• Discontinuous Galerkin methods: [100,274,275,277].

However, convergence analysis usually does not guide the practitioner in the choice
of discretization parameters for a wave-propagation simulation. Such an information
is mostly provided by stability analysis (often a constituent part of convergence proofs
[392]) and dispersion analysis.

7.1 Stability

Numerical stability, or the sensitivity of the numerical solution to perturbations, is an
essential feature on numerical wave simulations, where such perturbations should not
grow over time. The analysis of numerical stability of time-dependent problems is
usually done through Von Neumann analysis [393], the matrix method [394], and the
energy method [395].

Let us illustrate these analyses with the explicit finite-difference scheme (64) in the
absence of source terms. In Von Neumann (or discrete Fourier) analysis, we represent
the numerical solution in the form

un
j ← û0eαtn eikx j = û0ξ

neikx j , (120)

and refer to the method as stable if the amplification factor ξ = un+1
j /un

j = exp(α�t)
satisfies |ξ | ≤ 1 for any k [393], and unstable otherwise. By substituting (120) into
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(64), we obtain the following equation for the amplification factor [393,396]:

ξ2 − 2Aξ + 1 = 0, A = 1 − 2r2 sin

(
k�x

2

)
, r = c�t

�x
. (121)

The solutions ξ = A ±√
A2 − 1 satisfy |ξ | ≤ 1 if the space and time steps �x and

�t are chosen such that

r = c�t

�x
≤ 1, (122)

coinciding with the CFL stability criterion [112]. Similarly as in [396], the amplifica-
tion factor of the implicit version of scheme (64) in the absence of sources,

un−1
j − 2un

j + un+1
j

�t2
= c2

un+1
j−1 − 2un+1

j + un+1
j+1

�x2
, (123)

satisfies ξ2(1 + 4A) − 2ξ + 1 = 0, where A = r2 sin(k�x/2), hence

|ξ | =
∣∣∣∣∣
1 ± 2

√
Ai

1 + 4A

∣∣∣∣∣ = 1. (124)

Therefore, the implicit scheme (123) is unconditionally stable, i.e., it is stable for
any combination of the grid parameters �x and �t . For this reason, implicit schemes
may be an attractive choice despite their higher computational cost. However, one
must keep in mind that numerical dispersion, presented in the next section, constrains
the choices of the grid parameters for both explicit and implicit methods.

A general form of this procedure can be found in many textbooks (e.g., [397]).
The simplicity of Von Neumann analysis has made it the most frequently used tool
for stability analysis of finite-difference methods as well as other techniques [80,
277,398,399]. However, since the free-space solution in the form (120) is essentially
limited to unbounded or periodic domains, boundary conditions are not taken into
account. Moreover, the simplicity of Von Neumann analysis is limited to equations
with constant coefficients.

While equations for heterogeneous media can be handled by considering the
“frozen-coefficient” equations [400,401], the analysis of boundary conditions require
alternative techniques. Even though Von Neumann conditions are sufficient in partic-
ular wave-propagation problems, in general the boundary conditions are stable only
for a certain range of elastic parameters [402].

One of these alternatives is the matrix method, whose mostly well known source is
the book by Mitchell [394] as well as other textbooks [401,403], though its main idea
is present in earlier works [404–406]. The matrix method analysis is carried out in the
physical domain (writing the equations in matrix form) rather than the wave number
domain, and has been considered in [153,156,240,261].

Recalling that the matrix form of (64) with homogeneous boundary conditions is
un+1 −2un +un−1 +�t2Kun = 0, with K given in (65), we have the following single
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step equation:

vn+1 = Avn, A =
[
Q −I
I 0

]
, vn =

{
un

un−1

}
, (125)

where Q = 2I − �t2K. It then follows that ‖vn‖ = ‖Anv0‖ ≤ ‖An‖‖v0‖, where ‖ · ‖
denotes a vector norm and its inducedmatrix norm (i.e., ‖A‖ = sup{‖Av‖ ; ‖v‖ = 1}.
A necessary (but in general not sufficient) condition for the boundedness of ‖vn‖ is
ρ(A) ≤ 1, where ρ(A) is the spectral radius of A.

The eigenvalues ofA satisfy λ2−μλ+1 = 0, whereμ is an eigenvalue ofQ, thus to
ensure |λ| ≤ 1 we must have |μ| ≤ 2. Since the eigenvalues of K are 2−2 cos( jπ/N )

for 1 ≤ j ≤ N − 1 [407], it follows that r ≤ 1/ sin2((π/2)(N − 1)/N ), which is
nearly the same as condition (122).

A drawback of thematrixmethod is the need to analyze largematrices, and there are
some approaches that alleviate the underlying computational cost. Ilan andLoewenthal
[402] restricted the analysis to a portion of the domain close to the boundary. On the
other hand,Kamel [408] proposed to seek the largest eigenvalue through powermethod
[228], which is interpreted as updating an initial data through successive time steps.

As pointed out in [401,409], the condition ρ(A) ≤ 1 assures that ‖An‖ remains
bounded as n increases but, under this condition, ‖An‖ may initially increase before
decreasing. Griffiths et al. [409] point out that the condition ‖A‖ ≤ 1 is a sufficient
one, and suggest an intermediate condition of the form ‖Ak‖ ≤ C .

Let us proceed to the energy method, which seeks a discrete quadratic form that
does not grow or moderately grows with time and in the same time bounds from above
the discrete L2 norm [410]. In the context of the previous examples, the discrete L2

norm and inner product are

‖un‖h = 〈un, un〉1/2h , 〈un, vn〉h = �x
N−1∑
j=1

un
jv

n
j . (126)

Let us consider Eq. (1) in the absence of sources with boundary conditions u(a) =
u(b) = 0. By multiplying both sides of (1) by u̇ and integrating by parts over [a, b],
we find ∫ b

a
ü(x, t)u̇(x, t) dx +

∫ b

a
c2

∂u

∂x
(x, t)

∂ u̇

∂x
(x, t) dx = 0. (127)

It then follows that

d E

dt
(t) = 0, E(t) = 1

2

∫ b

a
u̇(x, t)2 dx + 1

2

∫ b

a
c2

(
∂u

∂x
(x, t)

)2

dx, (128)

i.e., the quadratic form E(t) (the total energy) is constant over time. Note by writing
c2 = μ/ρ in analogy with (2) that the first and second terms in E(t) are associated
with kinetic and potential energy, respectively. In general, E(t) may not be associated
with a physical energy [410,411].

Analogously to (127), we multiply (64) by the centered-difference approximation
(un+1

j − un−1
j )/(2�t) and sum from j = 1 to j = N − 1 arriving at the discrete
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energy conservation

En+1/2
h − En−1/2

h

�t
= 0, En+1/2

h = 1

2

∥∥∥∥un+1 − un

�t

∥∥∥∥
2

h
+ 1

2

〈
c2D+un+1, D+un

〉
,

(129)
where (D+un) j = (un

j+1 − un
j )/�x for 1 ≤ j ≤ N − 1. Moreover, we have the

(energy) inequality

En+1/2
h ≥

(
1 − c2�t2

�x2

)∥∥∥∥un+1 − un

�t

∥∥∥∥
2

h
+ c2

2

∥∥D+un+1/2
∥∥2

h >
c2

2

∥∥D+un+1/2
∥∥2

h ,

(130)
if (122) holds. Since En+1/2

h remains bounded due to (129), so does ‖D+un+1/2‖h .
The details of (129)–(130) are available in Sec. 9.2 of [412], where the general het-
erogeneous case is considered.

The energy method has been successfully used to analyze problems with free-
surface [413], PML [414,415], and absorbing boundary conditions [28,37,379,411,
416]. Besides finite differences, the analysis with energy method is present in finite
[35] and spectral [417] elements, finite volumes [266], and discontinuous Galerkin
methods [418]. On the other hand, since this method indirectly bounds some norm of
the numerical solution, the stability condition is sufficient, but not necessary [410].

Finally, let us point out that other approaches are very well suited to the stability
analysis of boundary conditions, such as the normal-mode (also known as GKS or
GKSO) analysis [32,419,420] and the geometric stability condition [421,422].

7.2 Dispersion and numerical anisotropy

Dispersion analysis is an important tool for assessing the quality of approximation
of numerical methods, providing an estimate of the minimum number of grid points
per wavelength required to prevent waves from traveling with incorrect speed. A
continuous or discrete wave model is dispersive if the wave speed depends on its
wavelength.

Let us initially remain on the same 1D problem as in the previous section, recalling
that the plane-wave solution (5) satisfies the dispersion relation ω = ±cκ , thus the
phase and group velocities,

cph = ω

κ
, cgr = dω

dκ
, (131)

coincide and are constant. On the other hand, if un
j = exp(−i(ωhtn − κx j )) then

scheme (64) in the absence of sources yields

sin

(
ωh�t

2

)
= ±r sin

(
κ�x

2

)
, (132)
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Fig. 8 Numerical dispersion of
the explicit, second-order
finite-difference method with
r = 0.5

with r defined as in (121). It follows from (132) that the numerical phase and group
velocities satisfy

cph
h

cph
= 1

rπ H
sin−1 (r sin (π H)) ,

cgr
h

cgr
= cos(π H)

cos
(
sin−1 (r sin(π H))

) , (133)

where H = κ�x/(2π). Noting that exp(κx) has period (wavelength) 2π/κ , we have
that G = 2π/(κ�x) = 1/H is the number of grid points per wavelength.

If r = 1, then cph
h = cph and cgr

h = cgr , as long as H ≤ 1/2 (since sin x is not
invertible for 0 ≤ x ≤ L if L > π/2). The bound H ≤ 1/2, or G ≥ 2, is known as the
Nyquist limit. The result for r = 1 is exceptional and is not necessarily observed on
less trivial problems [401]. When r < 1, numerical and exact phase/groups velocities
do not coincide. The dispersion error is illustrated with r = 1/2 in Fig. 8. For instance,
when H = 0.2 (i.e., G = 5 grid points per wavelength), the relative errors of phase
and group velocity are approximately 5% and 15%, respectively.

A comprehensive review of the dispersion analysis of finite-difference schemes of
higher order and spatial dimension is available in [412]. Trefethen presents in [423] a
comprehensive review of group-velocity analysis of finite-difference schemes for the
acoustic wave equation, plus a relationship between group velocity and GKS stability
for first-order hyperbolic systems. Numerical dispersion has also been studied beyond
the acoustic case [122,125,128,213].

Kosloff and Baysal [60] presented the numerical dispersion relations of 1D and 2D
Fourier pseudospectral method using a similar procedure as above, while Fornberg
[191] focused on the dispersion of the spatial discretization. Spa et al. [424] consid-
ered fully discrete schemes with Lax-Wendroff and rapid expansion methods. The
numerical dispersion in the case of Chebyshev collocation points has not been studied
in the classical works, though an analysis of its multidomain version has been recently
proposed [425].

The numerical dispersion of finite-element methods of degree one can be done
exactly as finite-difference methods; that is, to plug the discrete plane wave into the
finite-element stencil assuming an infinite, periodic mesh (see, e.g., [213]). For 1D
quadratic meshes and certain triangular meshes we must separate the nodes into sets
which share the same degrees of freedom and are located at the same cyclically repeat-
ing location in the mesh pattern [426]. In this case, the numerical dispersion relation
is expressed by an eigenvalue problem, whose solutions are analogous to the acous-
tic and optical branches from the theory of wave propagation into crystal structures
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[427,428]. Finite elements of higher degree lead to a larger number of solutions, and
the classical interpretation is that only one eigenvalue is physically meaningful (in
the case of the acoustic wave equation), while the others are regarded as spurious
modes [227,429]. For this reason, the use of high-order finite element methods had
been discouraged in numerical wave propagation.

Priolo and Seriani [69,234] performed a dispersion analysis of the 1D spectral-
element method with Chebyshev collocation points by solving the discrete problem
for a large final time, taking a wavelet as the initial condition and periodic boundary
conditions. The final approximate and exact solutions are transformed into the Fourier
space and the amplitude and the phase of their ratio is found for several wave numbers
and degrees of polynomial approximation. The results are similar to the theoretical
estimates presented in [191].

Mulder [430] applied the discrete Fourier transform sampled in the mesh nodes
to the spatial operator and matched its eigenpairs with the transformed plane waves
and their normalized wave numbers. Under this setting, the spurious modes provide
reasonable approximations of particular eigenvectors of the exact operator. On the
other hand, the spatial operator must be properly ordered to assure eigenpair matching.
It is not trivial to find such an ordering for 2D or 3D problems.

A commonpractice in the dispersion analysis of spectral-element and discontinuous
Galerkin methods is to select the eigenvalue mode that approximates the dispersion
relation of the continuous wave equation [235,277,412,431], and locating these modes
is also not trivial in general. Cohen et al. [432] use a Taylor series expansion. Abboud
and Pinsky [433] writes the amplitude-variable discrete plane wave as a linear combi-
nation of discrete plane waves and classify the modes with the dominating coefficient
of the combination (see also [434]). Seriani and Oliveira [435] identify these modes by
a Rayleigh quotient approximation of the constant-amplitudemode. A similar analysis
was done for the elastic wave equation [99,436]. The Rayleigh-quotient technique has
also been employed in other Galerkin-type methods [225,437].

Another related form of error is numerical anisotropy, which is present when the
speed of the approximate wave solution depends on the propagation direction in a
different fashion than the exact solution’s speed [397,438,439].

Let us illustrate numerical anisotropy with the two-dimensional version of the
previous example. Let κ = κ {cos θ, sin θ}� be a wave vector with magnitude κ and
propagation direction given by the angle θ . It follows from the dispersion relationω =
±cκ of the scalar wave equation (6) that the phase and group velocity do not depend
on θ . On the other hand, by substituting un

j,k = exp(−i(ωhtn −κ(x j cos θ + yk sin θ)))

into the 2D version of (64) we find

sin

(
ωh�t

2

)
= ±

√
r2x sin

2
(

κ�x cos θ

2

)
+ r2y sin

2
(

κ�y sin θ

2

)
, (134)

where rx = c�t/�x and ry = c�t/�y. Thus the numerical phase and group veloci-
ties will depend on θ , even if rx = ry = 1. The detailed study of numerical anisotropy
of this scheme is available in [59], and the three-dimensional case readily follows by
considering κ = κ {cos θ sin φ, sin θ sin φ, cosφ}�.
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Fig. 9 Percent phase-velocity error of the explicit, second-order finite-difference method with r = 0.5 in
two (left) and three (right) dimensions. The black, blue, and red graphs correspond to H = 0.3, H = 0.2,
and H = 0.1, respectively

A convenient way to represent an angle-dependent dispersion relation is a polar
diagram [397]. Similarly to [2], Fig. 9 shows percent phase-velocity errors of the 2D
and 3D versions of the finite-difference scheme (64) in polar form.

Numerical dispersion analysis usually assumes homogeneous media and uniform
rectangular/cuboid grids, but more general scenarios have also been considered in
many studies, such as nonuniform grids [439,440], interfaces [441–443], distorted
elements [412,444,445], and periodic composite materials [446,447].

7.2.1 Mass lumping and blending

Finite-element methods for second-order wave equations lead to systems of ODEs in
the form (41) where the mass matrix M is usually non-diagonal. The mass-lumping
technique approximates M by a diagonal matrix M̃, allowing the use of explicit-time
stepping schemes. The classical approach is to row-lump the mass matrix [63,64,428],
i.e.,

M̃i, j =

⎧⎪⎨
⎪⎩

N∑
k=0

Mi,k, i = j,

0, i �= j .

(135)

This concept has also been proposed to discretize the same integral formulations
that lead to finite-volume methods [448,449].

In addition to the algebraic form (135), the approximate diagonal mass matrix may
be obtained through reduced integration [450]. For high-order finite elements, the nat-
ural choice is to employ a Gauss–Lobatto–Legendre quadrature and shift the degrees
of freedom so that they coincide with the quadrature nodes [239]. This procedure is
followed in GLL spectral-element methods, as mentioned in Sect. 5.4.

Mass lumping significantly affects the numerical dispersion of finite elements. As
illustrated in Fig. 10, the numerical phase velocity is higher than the actual phase
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Fig. 10 Rayleigh-quotient dispersion analysis of GLC spectral-element methods of degree N = 1, 2, 4, 8
using the leapfrog time integration CFL parameter is r = 0.5/N [452]. Left: consistent mass matrix; right:
lumped mass matrix

Fig. 11 Rayleigh-quotient
dispersion analysis of optimal
blended GLC spectral-element
methods of degree
N = 1, 2, 4, 8 using the leapfrog
time integration CFL parameter
is r = 0.5/N [452]

velocity when a consistent matrix is used but lower when row lumping is employed.
Usually the consistent mass matrix produces leading phase and group error, while the
lumped mass matrix produces lagging phase and group error [451].

It is natural to seek a combination of lumped and consistent mass matrices that
balances the over- and undershoots of these approaches, reducing numerical disper-
sion [213,428,452,453]. For instance, Fig. 11 shows the numerical phase velocity of
the optimal blended operators [452] for the same example provided in Fig. 10. The
dispersion remains lower than consistent and lumped elements until nearly the limit
of π grid points per wavelength for Chebyshev collocation points [454].

An alternative approach is to seek the coefficients of the mass and stiffness matrices
that minimize dispersion [254]. The search for optimal operators is well known in the
context of finite-difference methods [455–458] and can be performed in a framework
that is valid for most numerical methods [459].

8 Final remarks

Most numerical methods presented in this survey have reached comparable levels of
efficiency and scope, and continue to evolve. Multiscale and multiphysics modeling
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should push for further improvement of these techniques, and community coding
shortens the gap between theoretical advances and practical applications.

It is worth noting that some ideas developed for a method have been transferred
to others. The concept of staggered grids from finite differences has been useful to
pseudospectral methods, which in turn contributed back through curvilinear coordi-
nates. Spectral elements have inspired discontinuous Galerkin methods to seek higher
accuracy by using orthogonal polynomials, which is also a contribution from pseu-
dospectral methods. Such an exchange corroborates the relevance of each family of
methods to the overall progress of numerical modeling.
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