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Abstract
This paper concerns undergraduate mathematics students’ understandings of refuta-
tion and their related performance in abstract conditional inference. It reports on 
173 responses to a refutation instrument that asked participants to: 1) state ‘true’ or 
‘false’ for three statements, providing counterexamples or reasons if they thought 
these false (all three were false); 2) evaluate possible counterexamples and reasons, 
where reasons were ‘corrected’ versions of the statements but not valid refutations; 
and 3) choose which of the counterexamples and the corrected statements were bet-
ter answers, explaining why. The data show that students reliably understood the 
logic of counterexamples but did not respond normatively according to the broader 
logic of refutations. Many endorsed the corrected statements as valid and chose 
these as better responses; we analyse their explanations using Toulmin’s model of 
argumentation. The data further show that participants with better abstract condi-
tional inference scores were more likely to respond normatively by giving, endors-
ing, and choosing counterexamples as refutations; conditional inference scores also 
predicted performance in a proof-based course.

Keywords  Argument · Counterexample · Conditional inference · Reasoning · Logic · 
Refutation

Introduction

Refutation is an important part of mathematical reasoning. In mathematics educa-
tion, it is often discussed in terms drawn from Lakatos’s seminal Proofs and Refuta-
tions (Lakatos, 1976). Lakatos characterises mathematical development as a process 
in which conjectures, proofs and refutations inform one another in multiple ways: 
mathematicians find global counterexamples to conjectures and clarify definitions to 
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refine concepts; they analyse proofs to identify implicit lemmas, identify local coun-
terexamples to suspect lemmas, and improve conjectures by incorporating unfalsi-
fied lemmas as conditions; they use insights so developed to extend concepts, bring-
ing counterexamples into the domains of deeper, deductively generated theorems.

Research in mathematics education that builds on Lakatos (1976) has developed 
in several directions. Some researchers have studied characteristics of counterex-
amples that support conceptual change by convincingly refuting naïve conceptions 
(Balacheff, 1991; Peled & Zaslavsky, 1997; Zazkis & Chernoff, 2008). Some have 
designed task structures or teacher input to encourage students to generate coun-
terexamples and modify conjectures and/or proofs (Buchbinder & Zaslavsky, 2011; 
Koichu, 2008; Komatsu, 2016, 2017; Lin, 2005; Reid, 2002; Stylianides & Ball, 
2008; Yang, 2012; Yopp, 2013). Some have sought to engage students in the full 
range of authentic mathematical activity as characterised by Lakatos, designing col-
laborative inquiry-based learning in which students identify and use local and global 
counterexamples to clarify conceptual meanings and to test and revise conjectures  
and proofs (Komatsu & Jones, 2022; Larsen & Zandieh, 2008; Stylianides & Stylianides,  
2009; Yim et al., 2008).

In most cases, the focus of this work has been epistemological: researchers want 
to improve mathematical knowledge, and they seek to elicit and address refutations 
in service of that goal. Where the focus has been logical, it has usually been on help-
ing students to understand the status of counterexamples in relation to general state-
ments (Peled & Zaslavsky, 1997; Stylianides & Stylianides, 2009; Yopp et al., 2020; 
Zazkis & Chernoff, 2008) or on the importance of checking for counterexamples 
to steps in deductive arguments (Alcock & Weber, 2005; De Villiers, 2004; Ko & 
Knuth, 2013; Weber, 2010). It has less commonly addressed the logic of proposed 
refutations that are not counterexamples, although students and teachers have been 
observed to produce such alternatives, typically of two types. First, they might claim 
that a statement is false because no known theorem proves it. This has been reported 
in cases involving geometry (Potari et al., 2009) and inequalities and absolute values 
in calculus (Giannakoulias et al., 2010). Second, they might offer amended conjec-
tures, in effect ‘correcting’ original, false conjectures. Creager (2022), for instance, 
reported on interviews in which pre-service teachers refuted geometry conjectures; 
of 32 arguments brought forth, 12 involved providing a conjecture with an alter-
native conclusion. Lin (2005) reported on a survey in which over 2000 7th  and 
8th graders considered the conjecture ‘a quadrilateral, in which one pair of opposite 
angles are right angles, is a rectangle’; 32% of 7th graders and 16% of 8th graders 
disagreed with the conjecture and explained by providing an alternative conclusion.

We believe that this second phenomenon merits deeper investigation, and were 
initially brought to this view by responses to test items in the first author’s real anal-
ysis course. Students were asked to examine various statements, to state ‘true’ or 
‘false’ for each one and, if they stated ‘false’, to give a counterexample or a brief 
reason. Three items from the course appear below, with students’ purported refuta-
tions in the form of corrected statements.

•	 For all y ∈ ℝ , the sequence (yn) → ∞.
	   FALSE. Reason: It should be ‘For all y > 1 , the sequence (yn) → ∞’.
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•	 Every sequence has an increasing subsequence.
	   FALSE. Reason: It should be ‘Every sequence has a monotonic subsequence’.
•	

∑∞

n=1
an converges if and only if 

(
an
)
→ 0.

	   FALSE. Reason: It should be ‘ 
∑∞

n=1
an converges if and only if its sequence of 

partial sums converges’.

The statements are indeed all false, and all three reasons are true theorems 
or correct definitions. They thus have epistemological value: the first two might 
result from successful heuristic refutation in Lakatos’s (1976) sense, and they all 
show that students have paid attention in the course. However, as refutations per 
se, they are logically inadequate because none rules out the possibility that the 
original statement is also true. In the analysis course, such responses were not 
occasional idiosyncratic curiosities – they were common across these items and 
others of similar structures.

We believe that this phenomenon deserves research attention because it is not 
obvious to what extent students providing corrected statements believe them to be 
logically adequate refutations. The above responses are spontaneous and short, so 
they give little information on the underlying reasoning. They might come to mind 
for students who then think no further. They might arise when students fail to find 
counterexamples and consequently give statements that they at least know are cor-
rect. They might arise from successful heuristic refutation in which students identify 
counterexamples, use these to inform corrections to the statements, and write down 
the correct versions as outcomes of that process. In the last two cases, we do not 
know to what extent students engage with the relevant logic. Maybe they do not 
think about it at all. Maybe they think about it and believe that their answers do 
logically contradict the original statements. Maybe they think about it and believe 
that their answers contradict the originals via looser conversational norms (Grice, 
1989), assuming that a reader would infer that by correcting to ‘ y > 1 ’ they intend to 
exclude counterexamples among the cases where y ≤ 1.

This is important because, whether we intend to enforce logical precision or to 
allow more ‘natural’ communication, we do want undergraduate mathematics stu-
dents to know that mathematicians notice cases in which an alternative claim does 
not logically refute a conjecture and that they might value corrected statements with-
out deeming them valid refutations. For educational purposes, it would therefore be 
useful to know how accessible this view is based on students’ current understand-
ings. This information is not inferable from spontaneous student responses as cited 
in the above research and anecdotal observations, because these provide no informa-
tion on understandings of the relative value of different potential refutations: if a 
student provides a corrected statement, we learn nothing about whether they would 
also endorse a counterexample or vice versa, and nothing about which they think is 
the better refutation and why. We also learn nothing about whether their responses 
are related to their broader logical reasoning skills and mathematical performance.

We therefore designed a novel refutation instrument to investigate whether the 
logical issue was relatively easy to address – perhaps students would immediately 
realise that counterexamples were preferable – or whether corrected statements were 
endorsed as valid refutations, even in the face of alternatives. We used this, along 
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with a standard abstract conditional inference task as a measure of logical reasoning, 
to address the following research questions.

1.
     (a) 	   How prevalent are counterexamples and corrected statements when students

attempt to refute a statement?
(b)	 When presented with both counterexamples and corrected statements, what 

proportions of students evaluate these as valid?
(c)	 When asked to choose between counterexamples and corrected statements, 

what proportions of students deem each better?

2.	 How do students explain their reasons for deeming counterexamples or corrected 
statements better?

3.	 Are student responses to refutation tasks systematically related to their perfor-
mance in abstract conditional inference?

4.	 Do refutation responses and abstract conditional inference performance predict 
course grades?

Below, we expand on the relevant research and set up a frame for analysis using 
Toulmin’s (1958) model of argumentation.

Theoretical Background

Refutations and Counterexamples

As noted above, research on the logic of refutations has usually focused on counter-
examples. There has been concern that students might be reluctant to reject state-
ments based on one or two counterexamples: Galbraith (1981) reported that some 
students aged 12–17 preferred to classify statements as partially right; Zeybek 
(2017) observed that pre-service primary teachers with less well-developed deduc-
tive reasoning skills tended to believe that more counterexamples would strengthen 
refutations; and Ko and Knuth (2013) found that two of 16 mathematics majors 
accepted a proof and a counterexample for the same statement. Stylianides and Al-
Murani (2010), in contrast, found that although some high-attaining year 10 students 
expressed agreement with or uncertainty about arguments for and against the same 
proposition, when followed up in interviews they recognised the inconsistency.

Overall, research is somewhat mixed but broadly consistent with the idea that 
in simple enough cases and when not fooled by salient examples in which a state-
ment is true, students can apply the basic logic of counterexamples. Roh and Lee 
(2017), for instance, reported that undergraduates introduced and used counterex-
amples when considering possible definitions of sequence convergence. Yopp et al. 
(2020) reported that eighth graders could be trained to use ‘eliminating counterex-
amples’ as a framework for constructing or critiquing arguments for general claims. 
Hamami et  al. (2021) reported that adults without specialist mathematics training 
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produced counterexamples when rejecting inferences about topological relations, 
though performance was impaired when counterexamples were ‘further from’ start-
ing configurations. At a larger scale, Hoyles and Küchemann (2002) reported that of 
2600 year 8 students presented with a simple false conjecture in number theory, 36% 
gave valid counterexamples. Küchemann and Hoyles (2006) reported that of 1500 
students presented with a simple false conjecture in geometry, 42% of year 8 stu-
dents and 56% of year 10 students gave valid counterexamples. Lin (2005) reported 
that of 2200 students presented with false geometry conjectures, between 4 and 34% 
of seventh and eighth graders gave counterexamples. In teacher education, Peled 
and Zaslavsky (1997) found that experienced teachers were almost universally able 
to give valid counterexamples. However, counterexamples might not be frequent in 
teaching: Zodik and Zaslavsky (2008) reported that of 604 teacher-produced exam-
ples across 54 observed lessons, only 18 were counterexamples.

We might therefore expect mathematics undergraduates to have limited experi-
ence in working with counterexamples, but to be able to handle the logic in simple 
cases. We might, however, expect them to have trouble generating counterexam-
ples in more complex cases. Researchers have noted that mathematics undergradu-
ates might fail to identify local counterexamples when validating purported proofs, 
and thus fail to recognise flaws in those arguments (Alcock & Weber, 2005; Ko & 
Knuth, 2013). They have also reported that it can be challenging for advanced stu-
dents or for teachers to coordinate all conditions in a problem in order to produce 
valid counterexamples, for example in geometry problems with multiple compo-
nents (Buchbinder & Zaslavsky, 2011; Komatsu et al., 2017; Potari et  al., 2009), 
in problems involving continuous or quadratic functions (Ko & Knuth, 2009; Lee, 
2017), and in purported proofs in calculus involving inequalities and absolute val-
ues (Giannakoulias et al., 2010).

Arguments and Warrants

To consider counterexamples alongside alternative refutations in a theoretically 
coherent way, we follow other researchers in employing Toulmin’s (1958) model of 
argumentation. Toulmin’s full model appears in Fig.  1, which represents data put 

data

backing

warrant

rebu�al

qualifier conclusion

Fig. 1   Toulmin’s model of argumentation



	 International Journal of Research in Undergraduate Mathematics Education

1 3

forth in support of a conclusion, perhaps with a suitable qualifier; the data and con-
clusion are linked by a warrant, possibly with backing, and there might be a rebuttal 
capturing conditions under which the warrant would not adequately justify the con-
clusion based on the data.

In mathematics education, this model has been used in various contexts, includ-
ing those involving refutation. Hoyles and Küchemann (2002), for instance, used 
it to model student arguments about whether an implication and its converse are 
equivalent. Giannakoulias et al. (2010) modelled arguments teachers formulated to 
convince hypothetical students that there were errors in written proofs. Inglis et al. 
(2007) pointed out that although various researchers have modelled mathematical 
arguments using only data, warrants, and conclusions, mathematical practice is bet-
ter understood using the full model because both novice and expert mathematicians 
do use non-absolute arguments that admit rebuttals, so we should avoid assuming on 
limited evidence that qualifiers are absolute. We respect this point and in theoretical 
discussions we consider all six components; in analysing arguments that students 
put forth when evaluating and choosing between refutations, we simplify our dia-
grams by representing only those components that students invoke and those that are 
listed in the task.

In theoretical discussion, we also use the distinction Toulmin (2003) draws 
between warrants and backing, characterising warrants as ‘hypothetical, bridgelike 
statements’, whereas backing ‘can be expressed in the form of categorical state-
ments of fact’ (p.98). Toulmin (1958) notes (pp.102–103) that an argument can be 
in the form with ‘data, warrant, so conclusion’, as in ‘(D) Petersen is a Swede, (W) 
A Swede is almost certainly not a Roman Catholic, so (C) Petersen is almost cer-
tainly not a Roman Catholic’, or in the form ‘data, backing, so conclusion’, as in 
‘(D) Petersen is a Swede, (B) The proportion of Roman Catholic Swedes is min-
ute, so (C) Petersen is almost certainly not a Roman Catholic’. This distinction is 
not straightforward – there are different possible relationships between warrants and 
backing (e.g. Castaneda, 1960; Simpson, 2015) – but in this form it is useful when 
we consider explanations students give to justify their choices between counterex-
amples and corrected statements.

We apply Toulmin’s model now to consider arguments about mathematical state-
ments of the form ∀xS(x) . Refuting such a statement means arguing for the conclu-
sion that ∀xS(x) is false. When a student offers a counterexample x0 or a corrected 
statement ∀xT(x) , these function as data in support of that conclusion, and this is all 
we see of the argument; see Fig. 2.

0

∀ ( )

is false
∀ ( )

Fig. 2   Arguments that ∀xS(x) is false, where data is a counterexample or a corrected statement
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When the data is a counterexample x0 , a mathematically valid argument can 
be completed. The implicit warrant is the principle that a valid counterexample x0 
refutes a general statement ∀xS(x) , with factual backing that S(x0) is, indeed, false. 
Such an argument admits no rebuttal so is a valid refutation (the statement ∀xS(x) is 
refuted because the argument that it is false admits no rebuttal); see Fig. 3. When 
the data is a corrected statement ∀xT(x) , the rest of the argument is less obvious. The 
student presumably intends to rely upon the fact that ∀xT(x) is true, which is factual 
so in Toulmin’s terms is understood as backing. The warrant is implicit, and several 
different warrants might be intended. Students might intend to say that ∀xS(x) and 
∀xT(x) cannot both be true, so that the truth of ∀xT(x) implies the falsity of ∀xS(x) 
in a logical sense. Or they might intend to align with Grice’s (1989) maxims for 
communication, relying on the assumption that if ∀xT(x) is true, it is uncooperative 
instead to say ∀xS(x) , so that the truth of ∀xT(x) implies the falsity of ∀xS(x) in a 
conversational sense. Or they might rely on an assumed didactic contract (Brous-
seau, 1997), asserting that, because ∀xT(x) is correct, it should be viewed favourably 
as a replacement for ∀xS(x) , without much notion of implication. In any of these 
cases, the argument does admit a rebuttal, because a true mathematical statement, 
even if closely related to an original, proves that original false only if the two are 

( 0) is false

counterexample 
disproves 
statement

0

∀ ( )
is false

∀ ( )

implicit
warrant

∀ ( )

is true

unless 
∀ ( ) does 
not contradict 

necessarily

perhaps

no 
rebu�al

Fig. 3   Warrants, backing and rebuttals for arguments that ∀xS(x) is false, where data is a counterexample 
or a corrected statement
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contradictory (the statement is not refuted because the argument that it is false does 
admit a rebuttal); again, see Fig. 3.

This breakdown makes clear the complex interactions between mathematical 
and everyday arguments. If a student refutes a statement by correcting it, this 
might indicate a failure of logical reasoning. But it might indicate that the stu-
dent did not attempt logical reasoning due to the salience of an argument with an 
alternative warrant or backing. Or it might indicate that they did attempt logical 
reasoning and perhaps get it right, but did not express this conventionally. We 
think that these distinctions are important because learning in academic disci-
plines involves learning about the weight given to different types of justification. 
In mathematics, we care about clear communication, and we certainly care about 
true statements. But valid logic – in the mathematical rather than the everyday 
sense – trumps everything.

Conditional Inference

Logical reasoning, then, is crucial in making theoretical sense of refutations. But 
does it have a statistically significant effect on students’ refutation attempts? Are 
students with better logical reasoning skills more likely to understand refutations in 
a mathematically normative way?

We investigated this by relating students’ refutation responses to their perfor-
mance on a standard conditional inference task, for which sample items appear in 
Fig. 4. Each item presents two premises concerning an imaginary letter-number pair, 
where the major premise is a conditional. The instructions read ‘If you think the 
conclusion necessarily follows, please tick YES, otherwise tick NO’. The inferences 
are modus ponens (MP, top left), denial of the antecedent (DA, top right), affirma-
tion of the consequent (AC, bottom left), and modus tollens (MT, bottom right).

Fig. 4   Four items from the conditional inference task used in this study (Evans et al., 1995)
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Such tasks are very common in research on the psychology of reasoning, though 
they vary in content and their handling of negation (Evans et al., 1996). Our task had 
abstract content (as opposed to everyday real-world content) and implicit negation (an 
explicit negation of ‘The letter is B’ would be ‘The letter is not B’ rather than ‘The 
letter is H’ as appears in Fig. 4). Across such tasks, educated adults almost always 
correctly endorse MP inferences. But, beyond that, their responses vary systemati-
cally with content (E.g., Evans et al., 2015) and they do not reason in ways that align 
with the material conditional interpretation accepted as normatively correct (e.g., 
Oaksford & Chater, 2020). For instance, Evans et al. (2007) used an abstract task like 
ours and found that (non-mathematics) undergraduates endorsed only 50% of valid 
MT inferences, and endorsed 47% of invalid DA and 74% of invalid AC inferences.

We used this specific task for both theoretical and practical reasons. Theoreti-
cally, many mathematical theorems and conjectures can be expressed in the form 
of a universally quantified conditional ‘ ∀x, if P(x) then Q(x) ’. The quantifier is often 
omitted (Solow, 2005), which can cause miscommunication when students inter-
pret the conditional predicate ‘if P(x) then Q(x) ’ as lacking a truth value (Durand-
Guerrier, 2003; Hub & Dawkins, 2018). Nevertheless, a valid counterexample can 
be understood as an x0 for which P(x0) but not Q(x0) , and rejecting invalid inferences 
is closely related to recognising that ‘ ∀x, if P(x) then Q(x) ’ is not necessarily refuted 
by ‘ ∀x, if U(x) then Q(x) ’ or by ‘ ∀x, if P(x) then V(x) ’. We might therefore predict 
that students with better abstract conditional inference skills would work in more 
mathematically valid ways with refutations. Our research tests this prediction.

Practically, it has been established that performance in abstract conditional infer-
ence is linked to performance in mathematics. Research in the UK and Cyprus 
(Attridge & Inglis, 2013; Attridge et al., 2015) has shown that studying mathemat-
ics intensively at age 16–18 leads to better rejection of DA and AC inferences, but 
equivalent or poorer endorsement of MT inferences. Research at the undergradu-
ate level has found that better rejection of invalid inferences predicted better per-
formance on a proof comprehension test and in a proof-based course (Alcock et al., 
2014). So, mathematics students can be expected to have better than average but 
imperfect conditional inference skills, and differences in these are known to have 
measurable effects on their performance in educationally relevant tasks. We extend 
this research by testing the relationship between abstract conditional inference skill 
and interpreting refutations.

Method

Participants and Administration

Our research took place in a real analysis course at a UK university. Approximately 
two thirds of the class of over 200 were first-year students spending 75–100% 
of their study time on mathematics; the remainder were second-year students on 
degree programmes with about 50% mathematics. All of the programmes, like 
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many UK mathematics-focused programmes, required high prior mathematical 
attainment. The majority of participants therefore had an A or A* grade in A level 
Mathematics and A or B grades in their two1 other A level subjects (or the equiva-
lent, if they were from overseas); some had taken an extra A level and/or an A 
level in Further Mathematics, but neither this nor special entry examinations were 
required. These students were all in one class because the UK higher education 
system operates a cohort model, meaning that students on a specific programme all 
attend core courses together.

Our study used two paper instruments, administered at different times so that par-
ticipants would be less likely to perceive them as linked. Both instruments provided 
informed consent information and asked for participants’ university ID numbers; 
both ended with tick-boxes for agreement to data being used and to our acquiring 
their grades from the university’s system once the course finished. Participants com-
pleted the refutation instrument in 15 min in week 3 of the course; 173 agreed that 
their data could be used. They completed the abstract conditional inference instru-
ment in 10 min in week 1 of the course; 157 of the 173 agreed that their data could 
be used, and 151 of these gave permission to access their course scores.

Refutation Instrument

We designed a refutation instrument with items structured similarly to those for 
which we had previously observed invalid refutations. Because we wanted to pro-
vide early collective feedback, our items used content from the first two weeks of the 
course. We refer to them as the reciprocal item, absolute value item, and sequence 
item respectively:

•	 If x < 3 then 1∕x > 1∕3.
•	 ∀a, b ∈ ℝ, |a + b| < |a| + |b|.
•	 A sequence 

(
an
)
 is increasing if and only if ∀n ∈ ℕ , an+2 ≥ an.

All three items are false (assuming universal quantification – we provide a note 
on this in the Results).

The refutation instrument contained four main pages. The initial response page 
showed all three items, spread out with space for responses. Participants were asked 
to ‘Answer TRUE or FALSE to each question. For those that are FALSE, give a 
counterexample or a brief reason.’ This instruction matched that used in the course 
on weekly non-assessed retrieval practice quizzes, so we used it here to avoid over-
looking of or confusion over unfamiliar instructions. We acknowledge, however, that 
it might be read as implicitly condoning responses of both types. We consider impli-
cations of this in our interpretations.

1  UK students specialise early. Because most students take only three A levels at ages 16–18, they arrive 
at university having already studied much of the material that would appear in the first 1–2 years of a 
US calculus sequence. Degree programmes often begin with courses covering the later parts of such a 
sequence, together with linear algebra and other proof-based courses.
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After the initial response page, the refutation instrument had three evaluation 
and forced choice pages. Each showed one item again, together with two possible 
responses: FALSE with a counterexample and FALSE with a corrected statement. 
The counterexamples and corrected statements appear below

Reciprocal item
FALSE. Counterexample: If x = −2 then 1∕x = 1∕ − 2 < 1∕3.
FALSE. Reason: It should be ‘If 0 < x < 3 then 1∕x > 1∕3’.
Absolute value item
FALSE. Counterexample: If a = 1 and b = 6 then |a + b| = 7 and |a| + |b| = 7.
FALSE. Reason: It should be ‘ ∀a, b ∈ ℝ, |a + b| ≤ |a| + |b|’.
Sequence item
FALSE. Counterexample:
The sequence 1, 3, 2, 4, 3, 5, 4, 6,… satisfies the condition but is not increasing.
FALSE. Reason:
It should be ‘A sequence 

(
an
)
 is increasing if and only if ∀n ∈ ℕ , an+1 ≥ an’.

The layout for the evaluation and forced choice pages is illustrated in the 
Appendix (Fig. 9). As shown there, participants were asked, separately for each 
counterexample and reason, to select one option from:

•	 The answer is correct and the counterexample [reason] is valid;
•	 The answer is correct but the counterexample [reason] is invalid;
•	 The answer is incorrect.

They were then asked to make a forced choice, stating which response was bet-
ter and why.

We intended the three evaluation options to make clear that correct/incorrect 
applied to the answer ‘FALSE’ and valid/invalid applied to the refutation pro-
vided by the counterexample or corrected statement; as this is arguably the only 
obvious interpretation for the counterexample, we expected that offering parallel 
options for the corrected statement would reinforce it. We intended that the forced 
choice would be interpreted as asking which of the counterexample and corrected 
statement constituted the better refutation. Under these interpretations, evaluat-
ing the corrected statement as valid would indicate reliance upon logically inap-
propriate warrants – as discussed under "Arguments and Warrants" above – and 
the explanations provided in the forced choice would provide insight into which 
warrants were invoked. However, as with many surveys, we cannot guarantee that 
every participant interpreted the questions as intended. Because participants were 
not explicitly asked whether the corrected statement proved the original false, it 
could be that some interpreted ‘valid’ as asking whether it was mathematically 
correct in isolation, and ‘better’ as asking about general mathematical quality 
rather than value as a refutation. We consider implications of these possibilities 
across our results sections, and draw the relevant issues together when discussing 
relationships between refutation responses and conditional inference task scores.
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We constructed six versions of the refutation instrument, each with a differ-
ent permutation of the three items. For each evaluation and forced choice page 
in each version, copies were created with the order of the counterexample and 
corrected statement randomised. To discourage participants from going back to 
change initial ‘TRUE’ responses, each evaluation and forced choice page ended 
with a space for participants to state that they would change their initial answers.

Conditional Inference Instrument

To measure conditional inference, we used a short version of the Abstract Con-
ditional Inference Task (Evans et  al., 1995), as used previously by Inglis and  
Simpson (2008) and Attridge and Inglis (2013). This comprised 16 items including  
those in Fig. 4, four each for MP, AC, DA, and MT inferences. The 16 items form 
the more difficult half of the original task because negations in the minor premise 
are implicit. The order of the items was randomised at the participant level.

Results

We present the results in four stages corresponding to our research questions. The 
section "Initial, Evaluation and Forced Choice Responses" presents quantitative 
data from the initial response, evaluation and forced choice stages of the refuta-
tion instrument. The section "Explanations for Forced Choices" presents qualita-
tive detail on the explanations students gave for their forced choices. The sec-
tion "Conditional Reasoning and Refutation" presents statistical analyses relating 
refutation responses to performance on the conditional inference instrument. Sec-
tion  "Conditional Inference, Refutation and Course Scores" presents statistical 
analyses relating both refutation responses and performance on the conditional 
inference instrument to course performance.

Table 1   Initial responses for the true/false task

CEX Stated False and Gave Counterexample, CS Stated False and Gave Corrected Statement, Both Stated 
False and Gave Counterexample and Corrected Statement

CEX CS Both True Other

Reciprocal 119 (69%) 5 (3%) 8 (5%) 38 (22%) 3 (2%)
Absolute value 61 (35%) 43 (25%) 26 (15%) 34 (20%) 9 (5%)
Sequence 25 (14%) 72 (42%) 12 (7%) 35 (20%) 30 (17%)
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Initial, Evaluation and Forced Choice Responses

Initial Responses

The 173 initial responses are summarised in Table  1. The two columns on the 
right show that about one fifth of participants incorrectly answered ‘true’ for each 
item (these were not the same participants each time – 19 answered ‘true’ twice 
and none answered ‘true’ three times); smaller numbers gave responses not clas-
sifiable according to our main distinctions. The three columns to the left show 
counts of participants who correctly answered ‘false’, split according to whether 
they provided counterexamples (including single counterexamples or correctly 
specified classes), corrected statements, or both.

Table 1 shows that participants were most likely to give normatively valid refu-
tations for the reciprocal item. Of the 132 who gave a classifiable answer while 
avoiding the incorrect ‘true’ response, 127 (96%) included valid counterexamples 
(no participant wrote that the statement was neither true nor false, so it appears 
that these students did assume universal quantification). Only 3% gave a corrected 
statement alone, and only 5% gave both one or more counterexamples and a reason. 
This demonstrates understanding of the logic of counterexamples: most partici-
pants provided them in this simple case and most did not feel the need to elaborate 
by providing a corrected statement.

In more complex cases, however, the picture was different. For the absolute value 
item, 25% gave a corrected statement alone and, of the 130 who gave a classifiable 
answer while avoiding the ‘true’ response, 87 (67%) included valid counterexam-
ples. This difference could be because a valid counterexample requires two numbers 
and is thus harder to generate, or because this item is more obviously related to a 
theorem from the course so that a corrected statement is more accessible. For the 
sequence item, 42% gave a corrected statement alone and, of the 109 who gave a 
classifiable answer while avoiding the ‘true’ response, only 37 (34%) included valid 
counterexamples. Again, this could be because a valid counterexample requires a 
sequence that is considerably harder to generate, or because this item is obviously 
related to a definition from the course. It is also worth noting that this item attracted 
more responses not classifiable according to this simple scheme.

Overall, initial responses were in line with our expectation that mathematics 
undergraduates would understand the logic of counterexamples but would be less 
likely to provide them when they are harder to construct or when corrected state-
ments are likely to come to mind. Our interpretation is cautious because, as noted 
above, the task instruction might have discouraged critical evaluation of corrected 
statements. The next stage of our instrument addressed that in one way by asking 
explicitly for evaluations.

Evaluation Responses

The evaluation stage of the refutation instrument confronted every participant with 
both valid counterexamples and corrected statements that were not valid refutations.
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Table 2 summarises the evaluation data, with normatively correct responses 
shaded.2 For all three items, almost all participants agreed that the answer 
FALSE was correct, at least for the simpler cases; numbers were slightly lower 
for the mathematically most complex item. However, most participants did not 
respond in a normatively correct way regarding validity. For instance, for the 
reciprocal item, 44 participants (26%) gave the normatively correct response, 
evaluating the counterexample as valid and the corrected statement as invalid. 

Table 2   Evaluation responses for the true/false task

Counterexample

CV CI I

Reciprocal Corrected 

statement

CV 119 (69%) 6 (3%) 0 (0%)

CI 44 (26%) 0 (0%) 0 (0%)

I 2 (1%) 0 (0%) 1 (1%)

Counterexample

CV CI I

Absolute 

value

Corrected 

statement

CV 114 (66%) 12 (7%) 5 (3%)

CI 36 (21%) 2 (1%) 0 (0%)

I 2 (1%) 0 (0%) 1 (1%)

Counterexample

CV CI I

Sequence Corrected 

statement

CV 95 (55%) 15 (9%) 13 (8%)

CI 33 (19%) 2 (1%) 1 (1%)

I 4 (2%) 5 (3%) 4 (2%)

Blank or unreadable responses account for totals < 100%
CV answer correct and counterexample/reason valid, CI answer correct and counterexample/reason inva-
lid, I answer incorrect

2  This table appeared in an early conference presentation of parts of this work, together with qualitative 
detail on the response types that is not presented here; see Alcock and Attridge (2022).
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Far more, 119 (69%), evaluated both the counterexample and the corrected state-
ment as valid. This pattern was repeated across all three items.

At this evaluation stage, participants were not giving spontaneous responses; 
the design was intended to encourage critical reflection on both possibilities. 
These data therefore present stronger evidence that participants did not relia-
bly recognise the logical inadequacy of corrected statements as refutations. We 
remain cautious, because the initial task instruction might have nudged partici-
pants toward positive views of both counterexamples and reasons and because 
some might have applied valid/invalid to the corrected statement in isolation 
rather than as a refutation. If participants did interpret the questions as asking 
about validity as refutations, we believe that the scale on which they endorsed 
both provides educationally useful information and makes it interesting to see 
whether, when forced to choose, they would come down in favour of counter-
examples (see the section  "Forced Choice Responses") and how they would 
explain their choices (see the section  "Explanations for Forced Choices"). If 
participants did not interpret the questions as asking about validity as refuta-
tions, this indicates that they were less sensitive to the question of mathemati-
cal refutation than we might hope, despite the parallel evaluation options for 
the counterexample and the corrected statement. This raises a question about 
whether logical reasoning performance – measured here with our abstract con-
ditional inference task – influences sensitivity to the issue of refutation (see the 
section "Conditional Reasoning and Refutation").

Forced Choice Responses

The forced choice stage of the refutation instrument asked participants to compare 
counterexamples and corrected statements directly and decide which was better. 
Table 3 summarises the responses.

For each item, when forced to choose, a majority judged the counterexample bet-
ter. But these majorities were not overwhelming: a substantial minority in each case 
judged the corrected statement better (a small number refused to choose). This held 
even for the reciprocal item, for which only 3% had initially given a corrected state-
ment alone: 31% nevertheless judged the corrected statement better. This provides 
yet stronger evidence that some students either do not reason well enough to recog-
nise the logical inadequacy of corrected statements as refutations – perhaps relying 
upon warrants that should carry less weight than mathematical logic – or are not 
sensitive to the mathematical issue of refutation (or both). To gain insight into these 
possibilities, we turn to a qualitative analysis of the explanations students gave for 
their forced choices.

Table 3   Forced choice 
responses

Blank or unreadable responses account for totals < 100%

Item Counterexample Corrected Statement Both

Reciprocal 112 (65%) 53 (31%) 6 (3%)
Absolute value 100 (58%) 64 (37%) 5 (3%)
Sequence 92 (53%) 71 (41%) 6 (3%)
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Explanations for Forced Choices

The initial, evaluation and forced-choice data show the prevalence of corrected 
statements in spontaneous responses and the value participants attached to counter-
examples and corrected statements individually and comparatively. For information 
on their underlying reasoning, we turn to the explanations for their forced choices. 
In the section "Response Types", we qualitatively categorise these explanations, pro-
viding illustrations. In the section "Proportions of Explanation Types and Toulmin 
Analysis", we document the prevalence of explanations of different types and con-
sider common types in relation to Toulmin’s model.

Response Types

The forced-choice explanations were typically single sentences and straightfor-
ward to classify qualitatively. We identified 11 explanation types, and below we 
present a descriptive analysis showing illustrations for each type for each item 
(reciprocal, absolute value, and sequence) where these are pertinent to our anal-
yses. We group the illustrations under explanations from those who judged the 
counterexample better, explanations from those who judged the corrected state-
ment better, and (smaller in number) explanations exhibiting more serious misun-
derstandings, or refusals to choose, or nothing beyond the evaluation responses. 
Because randomisation affected participants’ use of referents – the ‘first answer’ 
for some was the second for others – we write CEX where they referred to the 
counterexample and CS where they referred to the corrected statement.

Of the participants who judged a counterexample better, some explained only 
in relation to the counterexample (Type 1). Others commented additionally on the 
logical inadequacy of the corrected statement (Type 2).

Type 1: CEX disproves the statement

•	 ‘CEX, because it gives a specific counterexample to disprove the statement.’
•	 ‘CEX because it uses a clear example to show it’s false.’
•	 ‘CEX – valid counter example.’

Type 2: CEX disproves the statement + CS does not

•	 ‘CEX is better. It proves that the statement is false, whereas CS just provides 
an alternative true statement.’

•	 ‘CS states something with no reasoning or evidence whereas CEX gives evi-
dence in the form of an example proving the statement to be wrong.’

•	 ‘CEX as it provides a reason for why the original statement is wrong. CS just 
states the actual definition, it does not prove the statement is wrong.’

Participants who judged the corrected statement better gave a wider variety of explana-
tions. Some, as anticipated, cited its status as correct (Type 3). Others focused on general-
ity, judging the corrected statement more general (Type 4) or critiquing the counterexample 
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as insufficiently general (Type 5). Some focused on expression, judging the corrected state-
ment to have better terminology or notation (Type 6) or considering the counterexample 
‘unfinished’ because it was not explicitly related to the statement (Type 7).

Type 3: CS is correct

•	 ‘CS because it amends the false statement to make it true.’
•	 ‘CS because it gives the true definition of the statement.’
•	 ‘CS as it is the correct definition.’

Type 4: CS is more general

•	 ‘CS answer is better because it generalises the explanation rather than giving 
only one example.’

•	 ‘CS as it is more general and applies in all cases.’
•	 ‘The CS, as it is more general and “mathematicians like to generalise”.’

Type 5: Single counterexample is unsatisfactory

•	 ‘CS because it shows a range of values for which x satisfies the equation and not 
just one value.’

•	 ‘CS, since it actually means that the inequality is satisfied ∀a, b ∈ ℝ, whereas 
the second just takes two random integers from infinite amount of numbers.’

•	 [N/A for sequence item]

Type 6: CS uses better terminology or notation

•	 [N/A for reciprocal item]
•	 ‘CS as it shows the student fully understands the “formula”.’
•	 ‘CS: better terminology.’

Type 7: CEX is unfinished

•	 ‘CS gives more detail whereas CEX just stops.’
•	 ‘CS, as CEX is unfinished, in CEX they haven’t compared the values with the 

initial statement.’
•	 ‘CS is better as, although the counterexample is correct, it doesn’t explain why it 

disproves it, the actual definition for increasing must be included also.’

Alternative interpretations were evident in other responses. Small numbers of 
participants explicitly misinterpreted some aspect of logic in either the counterex-
ample or the reason (Type 8); these are less pertinent to our analyses but are illus-
trated below for interest. Small numbers responded in terms of personal preferences, 
or refused to choose, or gave explanations that did not go beyond their evaluations; 
we refer to these later as types 9, 10 and 11 but omit illustrations.

Type 8: Logic misunderstood
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•	 ‘CS because it gives a restricted domain so out of this range it must not be valid.’
•	 ‘The CS is better because the CEX implies that |a + b| =|a| +|b| and not that can 

also be |a + b| <|a| +|b|.’
•	 ‘The CS isn’t true as you could have a sequence an = 1, 1, 2, 2, 3, 3,… which is 

increasing but does not have an+1 ≥ an.’

Overall, some responses showed good understanding of the logic of refutations. 
Some did not, but are reasonable in relation to Toulmin’s model of argumentation 
– see below – or indicate a lack of sensitivity to the issue of mathematical refutation 
– see the section "Conditional Reasoning and Refutation".

Table 4   Proportions of forced-choice response types for reciprocal, absolute value, and sequence items

Type Reciprocal Abs value Sequence

1: CEX disproves the statement 58 (36%) 55 (32%) 56 (32%)
2: CEX disproves the statement + CS does not 46 (27%) 41 (24%) 26 (15%)
3: CS is correct 26 (15%) 25 (14%) 47 (27%)
4: CS is more general 15 (8%) 14 (8%) 8 (5%)
5: Single counterexample is unsatisfactory 2 (1%) 4 (2%) 0 (0%)
6: CS uses better terminology or notation 0 (0%) 5 (3%) 1 (1%)
7: CEX is unfinished 1 (1%) 6 (3%) 1 (1%)
8: Logic misunderstood 8 (5%) 6 (3%) 15 (8%)
9: Personal preference 7 (4%) 4 (2%) 7 (4%)
10: Both are valid 5 (3%) 5 (3%) 3 (2%)
11: Nothing added beyond evaluation response 5 (3%) 8 (5%) 9 (5%)

∀ ( )

∀ ( )

is false

0

counterexample 
disproves 
statement

( 0) is false

∀ ( )

∀ ( )

is false

0

counterexample 
disproves 
statement

( 0) is false

∀ ( ) does 
not disprove Type 1 Type 2

Fig. 5   Toulmin diagrams for explanations provided by participants who judged counterexamples better
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Proportions of Explanation Types and Toulmin Analysis

The proportions of explanations of each type were broadly predictable based on par-
ticipants’ evaluation and forced choice responses. They are summarised in Table 4.

If we assume that participants’ explanations were about which was the better 
refutation then, as in the section  "Arguments and Warrants", they can be repre-
sented using Toulmin’s (1958) model with the counterexample and/or corrected 
statement as data and ‘ ∀xS(x) is false’ as conclusion. We make this assumption in 
Figs. 5 and 6, representing components explicitly addressed in the explanations in 

Type 6
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Fig. 6   Toulmin diagrams for explanations provided by participants who judged corrected statements better
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black and those offered in the task but not explicitly addressed in grey; all other 
components we omit.

Figure  5 represents explanations from participants who judged counterexamples 
better. Most fleshed out the mathematically normative argument discussed in the sec-
tion "Arguments and Warrants". Encouragingly, up to about 40% of these participants 
provided not only a warrant for the counterexample-based argument (Type 1) but also 
an explicit rebuttal of the corrected statement-based argument (Type 2).

Explanations from participants who judged corrected statements better are repre-
sented in Fig. 6. The largest proportion focused on correctness of the corrected state-
ment (Type 3). As discussed in the section "Arguments and Warrants", this amounts 
to providing an argument of the form ‘D, B, so C’, where backing is provided but 
the warrant is implicit. A warrant could be the relatively naïve notion that correct-
ness is valued in mathematics, or a more sophisticated communicative principle that 
correcting something about the statement implies that there were counterexamples 
in the scope of the original statement but outside that of the corrected version. Of 
participants who focused on generality, most explained that the corrected statement 
is more general (Type 4), again providing an argument of the form ‘D, B, so C’ 
– the student who noted that “mathematicians like to generalise” provided a warrant 
too. Smaller numbers explained instead that a single counterexample is unsatisfac-
tory (Type 5), thereby providing a logically invalid rebuttal to the counterexample-
based argument; this doubt over single counterexamples has been noted elsewhere 
and represents a non-normative understanding of the relevant logic, but it was not 
prevalent in our data. Of participants who focused on mathematical expression, 
some explained that the corrected statement uses better mathematical terminology 
or notation (Type 6), again providing an argument of the form ‘D, B, so C’, presum-
ably with the intended warrant that good terminology and notation are mathemati-
cally valued. Others explained that the counterexample was unfinished or inadequate 
(Type 7), which amounts to a didactic contract-based rebuttal to the counterexam-
ple-based argument, addressing presentation rather than logical validity.

Seen in this way, the explanation types – especially those most prevalent – are 
predictable based on the earlier research and the theoretical analysis presented in 
the section "Arguments and Warrants". The fact that they all appeared confirms the 
potential complexity that students face in reasoning about refutations.

This analysis, however, assumes that students were indeed reasoning about refuta-
tions, so that their explanations referred to arguments with the conclusions of the form 
‘ ∀xS(x) is false’. We think this assumption sensible for Type 1 and Type 2 explanations, 
which explicitly stated that a counterexample proved its original statement false (Type 
1) and, in some cases (Type 2), that the corresponding reason did not. It is less sensi-
ble for Type 3 – Type 7 explanations. If some participants applied ‘better’ to qualities 
of the corrected statements in isolation rather than as refutations, then their explana-
tions might be better understood as arguments in which the conclusion is ‘the corrected 
statement is better mathematics’ rather than ‘ ∀xS(x) is false’. This raises the question of 
what drives sensitivity to refutation as an issue in mathematics, which we address next.



1 3

International Journal of Research in Undergraduate Mathematics Education	

Conditional Reasoning and Refutation

All undergraduate students have been exposed to mathematical education in which cor-
rectness, generality and good presentation have been valued. So all might reasonably 
cite such issues when judging one mathematical response better than another, thereby 
failing to show sensitivity to logically valid refutation as an issue that should take math-
ematical precedence. Our remaining data provide information on whether this hap-
pens at random, or whether better attention to mathematically acceptable refutation is 
systematically associated with better logical reasoning as measured by performance in 
abstract conditional inference. In the section "Conditional Inference Performance", we 
summarise participants’ performance on the abstract conditional inference task; in the 
section "Refutation Scores", we relate this to their refutation responses.

Conditional Inference Performance

Conditional inference scores for the 157 participants who allowed use of their data 
are summarised in Fig. 7 and Table 5. Figure 7 shows a broad distribution of total 
scores, with mean 10.22 out of 16 (SD = 2.25). Table 5 counts participants responding 
in a normatively correct way to 0, 1, 2, 3 or 4 items for modus ponens, denial of the 

Fig. 7   Counts of total scores out of 16 for normatively correct responses on the conditional reasoning 
instrument

Table 5   Numbers (and percentages) of participants giving 0, 1, 2, 3 and 4 normatively correct responses 
on MP, DA, AC and MT items, with mean score out of 4

0 1 2 3 4 Mean (SD)

MP 3 (1.7) 2 (1.2) 11 (6.4) 34 (19.7) 109 (63.0) 3.58 (0.73)
DA 19 (11.0) 35 (20.2) 33 (19.1) 34 (19.7) 38 (22.0) 2.26 (1.34)
AC 34 (19.7) 40 (23.1) 35 (20.2) 26 (15.0) 24 (13.9) 1.81 (1.35)
MT 11 (6.4) 23 (13.3) 33 (19.1) 54 (31.2) 38 (22.0) 2.57 (1.17)
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antecedent, affirmation of the consequent, and modus tollens inferences. Both overall 
scores and the breakdown by inference type are approximately as expected given ear-
lier research (e.g., Attridge & Inglis, 2013); performance was somewhat better than 
has been observed in non-mathematics-student samples, but far from normatively 
perfect.

Refutation Scores

To link conditional reasoning to refutation responses, we constructed three refutation 
scores, each in the range 0–3. Initial score counts the number of items for which par-
ticipants included a single counterexample or a correctly specified class of counterex-
amples. Evaluation score counts the number of items for which participants endorsed 
only the counterexample – not the corrected statement – as a valid refutation. Choice 
score counts the number of items for which participants judged the counterexample 
better. Score distributions are summarised in Table 6 (which takes a by-participant 
perspective in contrast with the by-item perspective in earlier sections).

The distribution of initial scores shows that most participants included at least one 
counterexample, confirming that most could apply the logic of counterexamples in some 
cases; only 13% did not, which is partly attributable to erroneous ‘true’ responses. How-
ever, the distribution of evaluation scores shows that most participants did not make nor-
matively correct evaluations: 60% never accepted the counterexample and rejected the 
corrected statement (unsurprisingly, given that the most common response on all items 
was that both counterexample and corrected statement were valid). The distribution of 
choice scores shows that 81% of participants judged the counterexample better at least 
once, but only 35% chose it for all three items. In fact, only 9 participants (5%) scored 
3 out of 3 for all three stages. Overall, this confirms that most participants responded 
according to the mathematical logic of refutations sometimes but not reliably.

Conditional Inference and Refutation Scores

To investigate whether better logical reasoning predicts more normatively correct 
refutation responses, we conducted Spearman correlations between abstract con-
ditional inference score and each of the refutation scores, correcting for multiple 
comparisons by using ∝ = 0.05/3 = 0.0167. Abstract conditional inference score 
was significantly related to initial score (rs(157) = .273, p = .001), evaluation score 
(rs(157) = .192, p = 0.016) and choice score (rs(157) = .224, p = .005); students with 

Table 6   Distributions of initial, evaluation and choice scores out of 3

0 1 2 3 Mean (SD)

Initial 23 (13%) 69 (40%) 62 (36%) 19 (11%) 1.45 (0.86)
Evaluation 104 (60%) 35 (20%) 16 (9%) 18 (10%) 0.70 (1.01)
Choice 33 (19%) 36 (21%) 44 (25%) 60 (35%) 1.76 (1.13)
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higher conditional inference scores were more likely to give counterexamples, evalu-
ate only counterexamples as valid, and choose counterexamples as better refutations. 
The correlations are fairly small: in Fig. 8, the line of best fit in the Initial Score plot 
shows that participants who gave three counterexamples on average answered two 
more conditional inference items correctly than those who gave none, and the bub-
ble plots show the wide spread of conditional inference scores for all four possible 
refutation scores. However, this shows that participants with better abstract condi-
tional inference scores were more likely to answer across all three tasks in ways in 
line with mathematically valid refutations. This means that they were more likely to 
interpret our questions as intended and answer them in normative ways.

Fig. 8   Bubble plots showing conditional reasoning score against initial, evaluation and choice scores. 
Note. Bubble area represents the number of participants with each pair of scores
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Conditional Inference, Refutation and Course Scores

We use this short final Results section to take a step back, relating both conditional 
reasoning and refutation scores to a standard measure of learning: performance in the 
analysis course. For the 151 participants who gave permission to access their course 
scores, we first ran a Pearson correlation between course grade (scored 0–100) and 
abstract conditional inference score (0–16). This revealed a significant positive cor-
relation with a medium effect size, r(141) = .355, p < .001; participants with bet-
ter conditional inference performance tended to achieve higher grades. In line with 
the results in Alcock et  al. (2014), this shows that conditional reasoning predicts 
grades in a proof-based course. We then ran Spearman correlations between course 
grade (scored 0–100) and initial score (0–3), evaluation score (0–3) and choice score 
(0–3). We found small positive correlations between course grade and initial score, 
rs(151) = .150, p = .067, between course grade and evaluation score, rs(151) = .125, 
p = .127, and between course grade and choice score, rs(151) = .192, p = .018. These 
were all in the expected direction but not significant with alpha level corrected to 
0.0167.

Discussion

This paper addresses an issue that we believe is important but under-examined: that of 
whether students understand the logic of refutations. We designed a novel three-stage 
instrument to assess not only spontaneous refutations, but also how students evaluate 
counterexamples and corrected statements, and which they think better and why. We 
related students’ explanations for their choices to Toulmin’s model of argumentation, 
and their refutation responses to performance on an abstract conditional inference task.

On the one hand, we found some results indicating mathematically appropriate 
understandings of refutation. In the initial stage of our refutation instrument, many 
students gave valid counterexamples. Some gave both valid counterexamples and 
corrected statements, which might be considered the perfect response (cf. Lakatos, 
1976). Where students gave only corrected statements, almost all were true, show-
ing that students could incorporate lemmas appropriately and/or had learned course 
material. Large majorities of students evaluated counterexamples as valid, and more 
than half chose them as the better refutations, explaining that they proved the origi-
nal statements false and in some cases supplying rebuttals to arguments based on 
corrected statements. This last finding especially is encouraging for classroom prac-
tice: if similar tasks were used in discussion-based activities, we would expect a 
focus on mathematically valid refutation to be common enough to support student-
generated normative arguments.

On the other hand, our results provide a sense of where students respond to refuta-
tions in mathematically normative ways and where they do not. Students were less likely 
to provide counterexamples where requirements were more complex and statements 
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were more obviously related to a theorem or definition from the course. Large majori-
ties evaluated corrected statements as valid, and substantial minorities judged them 
better than the counterexamples. On this evidence, it seems that students might benefit 
from input encouraging them to recognise that a statement that is correct, general and 
expressed using good terminology and notation might nevertheless fail to refute a related 
statement. We consider it important to provide this input. Mathematics instructors might 
not always want to focus on logical warrants – in classroom communities, norms regard-
ing correctness, generality and expression must be developed too. And they almost cer-
tainly will not want to devalue corrected statements – building mathematical theory is 
an important part of the job. But they will want students to develop a sense of priority 
in mathematical warrants, recognising that an alternative statement is a valid refutation 
only if it logically contradicts an original. And they will want students to develop the 
skills to work out whether and when this is the case.

In research terms, our data leave questions open because they do not allow us to 
disaggregate the effects of some variables. First, our more complex statements were 
also more closely related to course material; in future studies, this could be controlled 
by avoiding statements close to course material or by matching course-based state-
ments and more neutral-content statements for complexity. Second, our task instruc-
tions might have implicitly condoned acceptance of both counterexamples and reasons, 
leading more students to accept invalid refutations than would otherwise have been the 
case; future studies might use a more neutral request to ‘justify your answer’, might 
explicitly ask whether a corrected statement proves the original false, or might use 
interviews to explore student views in more depth. Third, now that we have a pool of 
student explanations, a follow-up study might ask participants to evaluate, rank or com-
pare these. Again, interview studies could explore student views in more depth.

Interview studies do not, however, provide information at scale (usually). We 
consider scale a strength of our study: while our participant numbers are not in 
the thousands like some school-based studies of proof and refutation (Hoyles & 
Küchemann, 2002; Küchemann & Hoyles, 2006; Lin, 2005), we believe that hav-
ing 173 participants provides a sense of the range and prevalence of arguments that 
might be produced elsewhere.

More importantly, this scale enabled us not only to study participants’ refuta-
tion responses but also to relate these systematically to performance on a standard 
abstract conditional inference task. We established statistically that conditional infer-
ence skill predicts refutation responses: students with higher conditional inference 
scores were significantly more likely to give counterexamples, evaluate only coun-
terexamples as valid, and judge counterexamples to be better. This is theoretically 
pertinent to the issue of learning about the relative mathematical value of differ-
ent justifications. As noted earlier, corrected statements have epistemological value: 
teachers and researchers might recognise their role in mathematical theory-building 
(De Villiers, 2004; Yang, 2012) and perhaps therefore consider single counterexam-
ples unsatisfactory stopping points (Creager, 2022; Lee, 2017; Peled & Zaslavsky, 
1997; Zeybek, 2017). Indeed, researchers have designed tasks with the explicit 
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goal of having students construct amended conjectures (Koichu, 2008; Yang, 2012; 
Yopp, 2013). Here, the fact that participants with better conditional inference scores 
were more likely to value counterexamples – despite possible ambiguity in our task 
instructions – indicates that better logical reasoning makes people more likely to 
override didactic messages they might have received about correctness, generality 
and expression, and expect a logically warranted refutation.

This does not mean, of course, that each individual would always respond in the 
same way, which returns us to considerations central in Toulmin’s (1958) work. Toulmin 
wanted to understand arguments made by real people about situations with varied sub-
stantive content. We believe that this might be pertinent in understanding how our results 
contrast with other extant work. Specifically, our participants produced counterexamples 
at fairly high rates, where teachers in some studies did not (e.g., Giannakoulias et  al., 
2010). This could be related to the wider argumentative context. In studies of refutation, 
teachers have often been asked to refute hypothetical student-produced arguments. While 
this can be done with counterexamples, it makes sense that teachers might attempt instead 
to infer students’ reasoning and explain why it does not apply, focusing on inferred war-
rants rather than rebuttals of the main statement. In such contexts and in ours, it might 
therefore be illuminating to follow other research on proof (e.g., Healy & Hoyles, 2000) 
by manipulating who students and teachers are asked to address: do they give and endorse 
different refutations if answering for a mathematician, a fellow student, or a younger stu-
dent, for instance?

In all, our study addressed understanding of refutations. It used an original three-
stage instrument to collect not only spontaneous refutation attempts but also sepa-
rate and comparative evaluations of counterexamples and corrected statements. By 
using Toulmin’s model of argumentation, we offered a theoretically coherent picture 
of where students focus when evaluating refutations and how non-logical warrants, 
backing and rebuttals might draw attention away from mathematically valid logic. 
We also used the scale of our study to establish that logical reasoning as measured 
using a standard abstract conditional inference task significantly predicts norma-
tively valid responses to possible refutations. Our research suggests a number of 
possible avenues for productive future enquiry, as outlined in this discussion. We 
suggest that research might profitably elucidate what it takes to ensure that students 
see past non-logical considerations and engage with mathematical logic, and what it 
takes to help them understand that logic well enough to recognise when two state-
ments are and are not contradictory.
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