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Abstract
Coming from a social perspective, we introduce a classroom organizational frame, 
where students’ proofs progress from collaborative construction in small groups, 
through whole-class presentation at the board by one of the constructors, to a pos-
teriori reflection. This design is informed by a view on proofs as successive social 
processes in the mathematics community. To illustrate opportunities for mathemat-
ics learning of proof progressions, we present a commognitive analysis of a sin-
gle proof from a small course in topology. The analysis illuminates the processes 
through which students’ proof was restructured, developed previously unarticulated 
elements, and became more formal and elaborate. Within this progression, the prov-
ers developed their mathematical discourses and the course teacher seized valuable 
teachable moments. The findings are discussed in relation to key themes within the 
social perspective on proof.

Keywords  Commognitive framework · Graduate students · Proof and proving · 
Topology · University mathematics education

Introduction

In their overview of the mathematics education literature in the area of proof, Stylianides 
et al. (2017) identify three broad perspectives: the cognitive – proving as generating a 
logical deduction that links premises with conclusions, the constructivist – proving as 
convincing, and the social – proving as an activity that is embedded in communities. In 
the social perspective,
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[…] the emphasis tends to be on activity rather than understanding […]. In 
particular, a critical point is that individual proof-related tasks (e.g., construct-
ing proofs, reading proofs) are not viewed in isolation (as is often the case 
in the other two perspectives) but in the context of a broader mathematical 
activity. If a student or teacher produces a proof, research in this perspective 
would frequently place emphasis on the meaning of this artifact and how that 
individual and members of his or her community could subsequently use it 
(Stylianides et al., 2017, p. 247, italics in the original).

Stylianides et al. (2017) describe the social perspective as “less developed”, “not 
yet coherent”, and lacking “common, widely used concepts” (pp. 247–248). These 
observations are particularly accurate in the case of university mathematics edu-
cation research, where the cognitive and constructivist perspectives dominate (for 
exceptions, see the work of Herbst, Chazan, and colleagues, e.g., Herbst et al., 2011 
and Hemmi, 2006 for the university setting). This state of affairs paves the way for 
socially oriented studies into proof-based university courses.

Within the social perspective, students are expected to prove in a similar manner 
to that practiced in the mathematics community, and for similar reasons (Stylianides 
et  al., 2017). This expectation has been advocated by many scholars and pursued 
in several studies (e.g., Legrand, 2001). However, in their comprehensive literature 
review, Melhuish et al. (2022) concluded that, in proof-based courses, inquiry class-
rooms have been often positioned as almost a sole alternative to lecturing. Accord-
ingly, research could benefit from expanding the range of ways to engage students 
with proof in a manner that resembles the mathematics community.

This paper draws on De Millo et al.’s (1993) view of proof as a successive social 
process in the mathematics community. Our first goal is to elaborate on this view as 
a preparation for its implementation in proof-based courses. The second goal is to 
introduce proof progressions as a way to organize students’ engagement with proof 
in a classroom. Within this organizational frame, students’ proofs progress through 
three phases: from collaborative construction in small groups, through whole-class 
presentation at the board by one of the constructors, to a posteriori reflection. As 
part of a larger project, we study proof progressions in a course in topology – a 
content area that has been rarely explored in university mathematics education (for 
exceptions, see Gallagher & Engelke Infante, 2021 and Stewart et  al., 2017). Our 
third goal is to illustrate opportunities for mathematics learning and teaching that 
proof progressions entail. To do this, we present a single progression and use the 
commognitive framework to analyze the transformation of the proof and the discur-
sive activity that led to it.

Background

We start with an overview of the main approaches to teaching and learning in proof-
based courses. Then, we synthesize selected views of mathematicians on how proofs 
function in the mathematics community.
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Lecturing and Inquiry in Proof‑Based Courses

Melhuish et al. (2022) reviewed 104 papers published since 2000 on teaching and 
learning in proof-based courses. They concluded that “teaching (proof-based) colle-
giate mathematics is no longer an ‘unexplored practice’. As a field, we have learned 
a lot in the last decade about how these courses are taught and why” (p. 2). And 
while teaching in these courses may be expected to unfold in myriad ways, the 
researchers managed to divide their findings into two broad categories: lecturing and 
inquiry—we structure this section accordingly.

Lecturing is the most researched mode of instruction in proof-based courses (e.g., 
Artemeva & Fox, 2011; Fukawa-Connelly et al., 2017; Johnson et al., 2018). In the con-
text of real analysis, Weber (2004) characterized different styles of proof presentation of 
a single teacher-mathematician1 (specifically, logico-structural, procedural, and seman-
tic). These styles featured in his classroom monologues, leaving little space for students 
to take responsibility for any aspect of proof. Other studies show that the gauge of this 
space may vary, depending on the activities that teacher-mathematicians offer to their 
students (e.g., Johnson et al., 2018). For instance, Fukawa-Connelly (2012) explored a 
course in abstract algebra, where the teacher-mathematician consistently raised ques-
tions and ceded some responsibility for proof to her students. Nevertheless, the findings 
showed that students did not play a significant role in the construction of classroom 
proofs. Other studies (e.g., Dawkins, 2012; Paoletti et al., 2018) also reported on stu-
dents’ limited contribution to the endeavor.

Lecturing is often discussed in relation to teacher-mathematicians’ modelling 
authentic mathematical practice (Melhuish et  al., 2022). This approach to lecturing 
emerges from self-reflective writings (e.g., Krantz, 2015; Pritchard, 2010) and inter-
view studies (e.g., Alcock, 2010; Weber, 2004). For instance, Wood and Weber (2020) 
found that lecturing allows mathematicians to model such key mathematical processes 
as proving and defining, establishing notation, and maintaining rigor. Weber (2012) 
obtained similar findings from the interviews with nine teacher-mathematicians in the 
context introduction-to-proof courses. Overall, they mostly presented proofs to dem-
onstrate ideas and techniques rather than convince students that a particular mathemat-
ical statement is true.

The imperative of lecturing as a means for modelling has not been confined to 
proof or to advanced mathematics courses (e.g., Artemeva & Fox, 2011; Pritchard, 
2010). For example, in the context of functions, Viirman (2021) explored how seven 
teacher-mathematicians introduced new mathematical objects and explained what 
counts as a valid mathematical argument. Of particular interest to our study is that 
Viirman’s participants not only enacted the “rules of the mathematical game”, but 

1   Research usually uses “mathematicians”, “teachers”, and “instructors” to refer to mathematics faculty 
who lead university courses (e.g., Melhuish et al., 2022). While each term is sensible and often consist-
ent with a theoretical lens employed, their singularity unavoidably illuminates one endeavour, leaving the 
other one in the background. With “teacher-mathematicians” we stress the dual professional identity of 
research mathematicians for whom teaching is an integral component of their scholarship.
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also occasionally articulated them on a more general level (e.g., “In mathematics we 
need to state exactly what we mean”, Viirman, 2021, p. 476).

Encyclopedia of Mathematics Education defines inquiry-based mathematics 
education as

[…] a student-centered paradigm of teaching mathematics and science, in 
which students are invited to work in ways similar to how mathematicians and 
scientists work. This means they have to observe phenomena, ask questions, 
look for mathematical and scientific ways of how to answer these questions 
[…], interpret and evaluate their solutions, and communicate and discuss their 
solutions effectively” (Dorier & Maaß, 2020, p. 384).

Broad approaches of a similar kind can be found in Artigue and Blomhøj (2013) and 
Laursen and Rasmussen (2019). In practice, inquiry classrooms often include groupwork, 
student presentations, and active whole-group discussions (e.g., Melhuish et al., 2022). 
Laursen et al. (2014) comment that inquiry-based learning in college mathematics in the 
US has grown from a certain method of instruction, where students were assigned math-
ematical statements to prove, provided with time to do so, and then invited to the board 
to share their proofs. Originally, the other students “would make sure the proof presented 
was correct and convincing” (Jones, 1977, p. 275). The followers of this method often 
modify it make their classrooms more inclusive, collaborative, and dynamic (e.g., Coppin 
et al., 2009). Ernst et al. (2017) maintain that “proof-based courses are a natural setting 
for IBL [inquiry-based learning]. In fact, there is a long tradition of using IBL in these 
courses, where class size and content pressure are typically minimized when compared to 
other courses we teach” (p. 570).

Several studies have focused on proof in inquiry classrooms, while often drawing 
on data collected at the end of a course and describing a range of positive develop-
ments. For instance, these studies report that students grew “a more robust understand-
ing of the functions of proof than previous studies would suggest” (Cilli-Turner, 2017, 
p. 2), developed “an understanding of how [to] correctly use definitions and assump-
tions within the context of their proofs” (Grundmeier et al., 2022, p. 1), and obtained a 
more humanistic and process-oriented view of proof than their peers in a lecture-based 
courses (Yoo & Smith, 2007). That said, Melhuish et al. (2022) stress that the studies to 
date have made modest progress towards an in-depth understanding of the learning and 
teaching processes that unfold in student-centred proof-based courses. The researchers 
also note that the studies have revolved around researcher-driven interventions rather 
than authentic instruction that teacher-mathematicians lead in their classrooms.

To summarize, the readings in the area led us to three conclusions: First, in 
proof-based courses, teacher-mathematicians rarely prove to confirm the validity 
of mathematical statements, but mostly to advance students’ learning. We highlight 
this finding to precede its deeper discussion within the social perspective in “Proof 
Progressions” section. Second, many teacher-mathematicians utilize proof to model 
various mathematical processes for their students. They view this instructional prac-
tice as valuable and useful. Third, research seems to agree that by incorporating a 
range of activities where students actively engage with proof (e.g., proving in small 
groups, proving at the board for the whole class to see, and discussing proofs), stu-
dents are provided with actionable opportunities for mathematics learning. However, 
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little is known about the mechanisms through which classroom organization of 
proof-related activities shapes students’ learning on a micro level. We draw on the 
first two conclusions in “Proof Progressions” section  to justify a particular way 
proof progressions are implemented in our project. The third conclusion inspired us 
to investigate student learning within proof progressions in fine grain.

Proofs as Successive Social Processes in the Mathematics Community

De Millo et al. (1993) describe mathematics as a community project, where proofs 
constitute a “successive social process at work” (p. 272):

No mathematician grasps a proof, sits back, and sighs happily […] [They run] 
out into the hall and [looks] for someone to listen to it. [They burst] into a col-
league’s office and commandeers the blackboard. [They throw their] scheduled 
topic and [regale] a seminar with [their] new idea. [They drag their] graduate 
students away from their dissertations to listen. [They get] onto the phone and 
[tell their] colleagues in Texas and Toronto. In its first incarnation, a proof is a 
spoken message, or at most a sketch on a chalkboard or a paper napkin.
That spoken stage is the first filter for a proof. If it generates no excitement or 
belief among [their] friends, the wise mathematician reconsiders it. But if they 
find it tolerably interesting and believable, [the mathematician] writes it up. 
After it has circulated in draft for a while, if it still seems plausible, [the math-
ematician] does a polished version and submits it for publication (De Millo 
et al., 1993, pp. 301–302).

Generalizing De Millo et al.’s examples, we propose that as a successive social 
process, a proof features in a range of situations that we describe as socially 
organized2, proof-transformative, and sequential. The first descriptor accounts 
for the structuredness of patterned ways in which mathematicians interact with 
proof and each other, ways that have been broadly practiced and are considered as 
common in the mathematics community. For another example of such a socially 
organized situation, consider Thurston’s (1994) provocative depiction of formal 
mathematical presentations:

Organizers of colloquium talks everywhere exhort speakers to explain things 
in elementary terms. Nonetheless, most of the audience at an average collo-
quium talk gets little of value from it. Perhaps they are lost within the first 
5 min, yet sit silently through the remaining 55 min. […] At the end of the 
talk, the few mathematicians who are close to the field of the speaker ask a 
question or two to avoid embarrassment (pp. 165–166).

2   With “socially”, we do not imply that mathematicians necessarily interact in these situations “here and 
now”. We use this descriptor as a reverence to Stylianides et al.’s (2017) social perspective on proof and  
to Sfard’s (1998) approach to learning as participation in a historically-established human endeavor.
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Regarding the transformational aspect of proof, we note that De Millo et  al. 
(1993), Thurston (1994) and others refer to proof as a discursive artefact that math-
ematicians produce and reproduce in different media (e.g., “phone”, “blackboard”, 
“publication”), to different audiences (e.g., “students”, “colleagues” that can come 
from the same or unrelated fields), and with different purposes (e.g., generate belief 
or excitement). Given these differences, it seems unreasonable to expect the proof 
to remain exactly the same in each situation. Thurston (1994) addresses this point 
explicitly when observing that a proof shared in an hour-long talk to colleagues 
from the same subfield can turn into a dozen-page long paper in a research journal. 
Similarly, Raman (2003) distinguishes between private and public aspects of proof 
to stress that mathematicians’ arguments for self-understanding are usually differ-
ent but connected to those they generate for a particular mathematics community. 
A proof may also transform in mathematicians’ interaction, such as a collaboration 
or a peer-review (e.g., Andersen et al., 2021). To resort to a metaphor, we associate 
a proof with an elastic object that mathematicians purposefully manipulate to fit the 
organizational structure of a target social situation.

A proof does not progress arbitrary from one social situation to another; and nei-
ther does it proceed in a particular linear direction. With “proof progression”, we 
are referring to both the chronological shift of a proof from one social situation to 
another (e.g., see De Millo et al.’s shift from the “spoken stage” to “a polished ver-
sion […] for publication”); and also to the transformative developments of a proof. 
These developments are often described in terms of validity, elegance, significance, 
reduction of gaps, and so on (e.g., Andersen, 2020; De Millo et al., 1993; De Villiers, 
1990; Dreyfus & Eisenberg, 1986; Rav, 1999; Thurston, 1994).3

De Milo et  al.’s perspective offers insights into how proof as a social process 
fulfils its often-discussed role in mathematics (e.g., Thurston, 1994). Indeed, in the 
case of each process, proof-constructors validate a particular theorem by means of 
proof and ground it within the broader area. Proof-focused interactions with col-
leagues may lead to conceptual innovations, systematization, and dissemination of 
new results (e.g., De Villiers,  1990). In this way, each proof contributes to math-
ematics as a discipline. At the same time, different phases of the process provide 
mathematicians with the opportunity to engage with it in a range of capacities. This 
engagement is profitable on the individual level: for example, the proof constructors 
receive feedback on their proof, while others may obtain tools that are relevant to 
problems at the heart of their current and future research (see Rav, 1999 for proofs 
as “bearers of mathematical knowledge”, p. 20). In this way, the participation in the 
social process of proof provides mathematicians with opportunities for mathemati-
cal learning. Next, we consider whether and how opportunities of this sort can be 
created in a university mathematics classroom.

3   Evidently, proofs differ in the length of their progression sequences. Given the prolificity of the math-
ematics community, it is somewhat expected that “only a tiny fraction [of proofs] come to be understood 
and believed by any sizable group of mathematicians” (De Millo et al., 1993, p. 298), a number of proofs 
are subsequently contradicted or thrown into doubt, when most are simply ignored.
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Proof Progressions

Building on De Millo et al.’s (1993) view, we propose that a classroom proving can 
be organized as a community project, where students participate in a sequence of 
structured social situations that resemble the successive social processes mathemati-
cians encounter. Specifically, students can construct proofs individually or in small 
groups first, and then present them at the board, followed by a posteriori reflection. 
Such proof progressions are at the heart of our larger developmental research that is 
conducted with a teacher-mathematician, Prof B (for earlier reports from the project 
see Kontorovich, 2021; Kontorovich et al., 2022).

Jaworski (2004) explains that in developmental research, teachers are not just 
subjects in didacticians’ empirical studies but co-learning partners. In these part-
nerships, didacticians and teachers work together and “learn something about the 
world of the other. Of equal importance, however, each may learn something more 
about [their] own world” (Wagner, 1997, p. 16). The developmental aspect pertains 
to a multi-layered inquiry into students’ mathematics, mathematics teaching, and the 
contribution of research to teaching development. In this way, research both charts 
the partners’ developmental process and serves as a vehicle for it (Jaworski, 2004). 
We note that the developmental methodology is consistent with Artigue’s (2021) 
approach to an often-discussed gap between research and practice in the university 
context. Specifically, she suggests,

not think in terms of dissemination of research results, but in terms of collabo-
rative projects, building and negotiating, jointly with mathematicians and other 
university teachers, problématiques that make sense for all those involved, and 
meet their respective interests and needs (p. 14, italics in the original).

Table 1 outlines the structure of the proof progression central to this paper, align-
ing it with authentic practices of the mathematics community. This progression 
has been conceived and honed by Prof B, who was initially inspired by what she 
referred to as the “Moore method” (cf. Coppin et al., 2009)4 and modified it to suit 
her students. Prof B’s reference to this method is hardly accidental: she is a well-
recognized topologist and a regular teacher of a small-size proof-based course in 
topology that brings together graduate students and mathematics majors in the last 
year of their studies. Prof B developed this progression to support her course which 
requires “heaps of proving, which is a common point of weakness for students” (her 
words). As part of the project, we collaboratively unpacked the connections among 
the progression, common practices in the mathematics community, and the social 
perspective on proof.

Clearly, research mathematicians are rarely assigned with statements to prove, and 
they are seldom expected to prove them publicly after just a short time. Accordingly, 
from the social viewpoint, the progression hardly leaves room to pursue the first 
instructional goal of the social perspective: “for students to engage in an authentic 

4   We recognize the pain, harm, and injustices that R. L. Moore’s racism, antisemitism, and sexism 
caused (e.g., Ross, 2007).



	 International Journal of Research in Undergraduate Mathematics Education

1 3

way with proving [including] settling debates about the truth of contentious math-
ematical assertions and for generating and communicating mathematical knowledge” 
(Stylianides et al., 2017, p. 247) (see Legrand, 2001 for scientific debates as an alter-
native design to address this goal). Nevertheless, we construe proof progression as a 
frame that can be implemented in different ways to address a range of goals. Table 1 
shows that the particular implementation is consistent with mathematicians’ views 
of proof as a successive social process. It also provides opportunities to pursue the 
second goal of proving within the social perspective: “providing explanations […], 
illustrating new methods to solve problems […], and deepening one’s understanding 
of concepts” (Stylianides et al., 2017, p. 247). As we noted beforehand, this goal is 
enthusiastically endorsed by some mathematics educators (e.g., Alcock, 2010; Hanna, 
1990) and consciously pursued by many teacher-mathematicians (e.g., Krantz, 2015; 
Pritchard, 2010; Weber, 2004, 2012). Furthermore, the implementation constitutes a 
didactical innovation of Prof B. Thus, by exploring it in its authentic form, we capi-
talize on Melhuish et  al.’s (2022) call “to study the instruction of mathematicians 
who have been implementing student-centered instruction as a regular part of their 
practice” (p. 16).

The progression components and their sequencing are not foreign to the math-
ematics education literature. For example, groupwork, presentations, and whole-
classroom discussions are characteristic to the inquiry paradigm (e.g., Artigue & 
Blomhøj, 2013; Laursen & Rasmussen, 2019). Accordingly, we propose that study-
ing Prof B’s proof progression provides an opportunity to understand how students 
can engage in a social activity that is not unique to our project classroom. Specifi-
cally, this is an opportunity to address another lacuna that Melhuish et  al. (2022) 
identified in their literature review – explicating the learning and teaching processes 
in proof-based courses at a fine-grained level. In the next section, we overview the 
commognitive framework which is our main toolkit to study these processes.

Theoretical Framework

We turn to the commognitive framework (Sfard, 2008) for theoretical foundations 
and analytical tools. Commognition associates mathematics learning with participa-
tion in a collective historically established endeavor, which is consistent with social 
perspective on proof. Indeed, commognition concerns human activities as they 
unfold within a certain social context, construes proof as a publicly accessible arte-
fact that interlocutors can use and reflect upon, and it avoids talking about elusive 
terms, such as understanding (cf. Stylianides et al., 2017). Commognition has been 
acknowledged for its ability to account for the complexity of university mathematics 
education (Nardi et al., 2014) and it has been used to investigate teaching and learn-
ing in proof-based courses (e.g., Brown,  2018; Karavi et  al., 2022; Kontorovich, 
2021; Pinto, 2019). This section gives an overview of the framework, with attention 
to mathematical discourses, learning, proof and proving.
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Mathematical Discourses

Commognition maintains that mathematics as a whole and its sub-fields (e.g., topol-
ogy) can be construed as a discourse. Discourses are defined as, “different types of 
communication, set apart by their objects, the kinds of mediators used, and the rules 
followed by participants and thus defining different communities of communicating 
actors” (Sfard, 2008, p. 93). Operationally speaking, discourses are distinguishable 
through keywords (e.g., “Hausdorff space”) and their use, visual mediators (e.g., 
symbols, diagrams) and their use, narratives endorsed by the mathematical commu-
nity (e.g., a definition, a proof), and characteristic routines (e.g., proving).

Mathematics is replete with special metadiscursive rules (or metarules for short) 
that govern the actions of the discourse participants when producing and substanti-
ating narratives about mathematical objects. More often than not, metarules are con-
straining rather than deterministic, i.e. they illuminate possible options for actions 
without dictating a particular one. Sfard (2008) highlights that it is not uncommon 
for metarules to remain tacit in a discourse community. When a metarule is articu-
lated, its status changes from enacted to endorsed.

Learning

A personal discourse refers to patterns in a communication of a discursant when  
they partake in a mathematical discourse (Sfard, 2008). Lavie et al. (2019) expand the 
commognitive apparatus to account more fully for the fact that discursive regulari-
ties are sensitive to contextual circumstances. The researchers introduce the notion 
of a task situation to refer to “any setting in which a person considers herself bound 
to act—to do something” (p. 159). Lavie et al. argue that one’s capability to act in 
new circumstances stems from experience. Specifically, when an individual recog-
nizes similarities between a current task situation and precedents that they interpret 
as sufficiently familiar to the present one, the individual replicates what was done 
then, while amending their talk and actions to the current circumstances. Eventually, 
Lavie et al. (2019) define a task as an individual’s interpretation of the task situation  
and a procedure as a sequence of replicated actions. The procedure-task pair feeds 
into a definition of a routine: “a routine performed in a given task situation by a 
given person is the task, as seen by the performer, together with the procedure [they]  
executed to perform the task” (Lavie et al., 2019, p. 161).

Let us acknowledge the challenge of implementing the abovementioned constructs in 
data analysis. For example, a commognitive analysis of one’s task, necessitates access-
ing their vision of what they wish to achieve under specific circumstances. This vision is 
clearly sensitive to the task situation that unfolds “here and now”, and thus, inquiring into 
one’s vision (e.g., by explicit questioning) changes the original task situation. Indeed, a 
classic finding in cognitive psychology is that when asked why one took a particular 
action, a person often provides post hoc rationalizations that are likely to be inconsistent 
with their in-the-moment thinking (e.g., Nisbett & Wilson, 1977). In the next section, we 
elaborate on the methods that were employed to cope with these conundra.
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Sfard (2008) defines learning as a lasting change in one’s discourse, i.e. in at least 
one of the four discourse characteristics. This change can be triggered by learning 
opportunities – “circumstances that call for, and support, a change in the learner’s 
participation in a discourse, a transformation that would bring him or her closer to 
the [target] discourse” (Chan & Sfard, 2020, p. 3, italics in the original). Chan and 
Sfard (2020) distinguish between opportunities for a change in the learner’s com-
mand of a discourse and for a change in the discourse itself. Within the former, the 
learner becomes more fluent in the target discourse by realizing the opportunity to 
mathematize according to its metarules. In the latter, the learner enriches their dis-
cursive repertoire with new mathematical narratives and routines.

In the above terms, each phase of a proof progression constitutes a different task 
situation, potentially providing students with opportunities to generate a different 
proof and change the way they partake in a mathematical discourse. The successive 
organization of the progression paves the way for the investigation of transforma-
tions that students’ proofs go through. Proof transformation, students’ and teacher-
mathematician’s routines, and opportunities for mathematics learning are the foci of 
our analysis.

Proof and Proving

In commognitive terms, proving a mathematical statement is an act of endorsing 
a narrative. Endorsable narratives are those that can be rendered as valid or not 
“according to well-defined rules of the given mathematical discourse” (Sfard, 2008, 
p. 224). Nevertheless, it is worth acknowledging that the mathematics community 
has been revising these rules throughout history (e.g., Kleiner,  1991), and even 
today, mathematicians neither agree nor follow the exact same set of proof-related 
rules (e.g., Inglis et al., 2013; Lew & Mejía-Ramos, 2020).

Notwithstanding this variability, for today’s mathematicians, the predominant 
way of proving consists of manipulation with narratives, and it is thus intradiscur-
sive (Sfard, 2008). This process is expected to unfold as a sequence of utterances (or 
sub-narratives), each either an “accepted fact”, or derived from previous utterances 
according to some metarules (e.g., deduction) (cf. Kontorovich & Liu, 2023). Com-
ing from the social perspective, we propose that the decision on whether a substan-
tiation constitutes a proof is a matter of social sanctioning. In Manin’s (1977) words, 
“a proof becomes a proof after the social act of ‘accepting it as a proof’” (p. 48). 
Thus, we use “proof” as a discursive label that a particular community can allocate 
to a narrative that was generated to endorse a mathematical statement (a proposed 
proof or a proving narrative hereafter). Consistently, we use “proving” to refer to a 
discursive activity from which such a proof emanates (cf. Kontorovich, 2021). Note 
that within this approach, the sanctioning community can consist of the individu-
als who propose a proof in the first place. Also, the act of sanctioning is time- and 
context-dependent: to paraphrase a famous saying of Kilpatrick (1985) about math-
ematical problems, a proof “for you today may not be one for me today or for you 
tomorrow” (p. 3).
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Context and Methodological Underpinnings

Our project is contextualized in a semester-long topology course offered by a Math-
ematics Department in a large New Zealand university. The department is rather 
small in terms of the student intake, and this is the only topology course offered. 
Its syllabus consists of standard topics in point-set and algebraic topologies (e.g., 
continuity, convergence, homology). The student cohort typically encompasses a 
mixture of post-graduate students and undergraduates in their final year of a math-
ematics major; four and two students, correspondingly, in the particular semester. 
Prof B—an esteem research topologist and experienced university teacher, leads 
the course. Video-recordings of the course lessons constitute the primary source of 
our data. In the first phase of the project, the recordings were made with a single 
video-camera. We recorded the protagonists who led the discursive activity in the 
whole-class episodes of the lesson; and an arbitrary chosen group when students 
worked collaboratively.

To illustrate the proof progression in-action we chose a single case. Three main 
considerations underpinned our selection. First, while no two progressions were iden-
tical in terms of the protagonists’ interactions and communication, we wanted to share 
a case that would illustrate patterns that featured in other cases as well. Second, we 
wanted to illustrate how students’ proposed proofs progressed through all of the three 
phases. Since for each proof we recorded the collaborative work of a single group, 
the set of cases where a student from the video-recorded group volunteered and was 
selected to prove at the board was rather small. Third, we wanted to present a case the 
analysis of which might contribute to the proof literature; in particular, to its social 
perspective strand. Specifically, we aspired to offer insights regarding the transforma-
tion of the proof and the protagonists’ proving activity alongside the progression.

Eventually, we selected a progression that took place at the end of the first third 
of the semester. This was the fourth progression in the classroom, by then, the stu-
dents were already familiar with the metarules of this activity and the course as a 
whole. The case illustrates several aspects that are characteristic to many progres-
sions that we recorded and witnessed. First of all, it is concerned with arguably a 
simple corollary, and its three phases took around ten minutes; all classroom progres-
sions revolved around mathematical statements of this kind and the work on them 
took less than fifteen minutes. Second, students’ communication is terse and deictic, 
which opens the door to multiple interpretations (more about this shortly). Third, at 
the board, the prover pays limited attention to the class; this was characteristic to this 
and a few other students in the course. As one of the reviewers noted, this pattern 
is not rare among mathematically mature students. Fourth, in spite Prof B’s efforts 
to spur a posteriori discussion, the class remained relatively passive. This occurred 
almost each time when there were no major issues with the proof at the board. In 
turn, the activity of Prof B is characteristic of both the kind of feedback that she pro-
vided on students’ proofs and how she used these proofs in her instruction.

We approached the analysis with two questions: (i) What were the similarities 
and differences between the proposed proofs that emerged in each progression 
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phase? Looking ahead, all three proving narratives were endorsed as “proofs”. 
Accordingly, this question can be rephrased as: how did the students’ proof trans-
form along the progression?; (ii) What discursive moves and routines underpinned 
the proposed proofs?”

We iteratively scrutinized the transcribed data with a focus on the proposed 
proofs and the protagonists’ discursive activity. To address the first question, we 
attended to the discursive features of the proofs that emerged in each phase, includ-
ing their structures and formulations of their sub-narratives. To analyze these for-
mulations, we drew on Sfard’s (2008) construct of objectification as a combination 
of turning one’s talk about mathematical processes into objects (i.e. reification) and 
stripping it from the human agency (i.e. alienation). This construct aligns with a 
broader literature on the characteristics of academic mathematical texts (e.g., for a 
review, see Morgan, 1998).

To address the second question, we aimed to make sense of the students’ proce-
dures and tasks. We divided the transcript into episodes and produced preliminary 
accounts of what the students were doing and what tasks they could have pursued 
with their actions. Some actions featured more than once. Building on their simi-
larities, we iteratively amended our analytical accounts to generate descriptions that 
would fit the patterns. This is how the two main routines, proof-growing and proof-
monitoring, came about (see next sections for details).

Some tasks were explicitly articulated by the students. In other cases, we deduced 
them from the end-points of students’ observable actions, suggesting that the set-
up tasks were achieved. Yet, figuring out the tasks was especially challenging in 
some cases. Theoretically, task-identification requires accessing all precedents and 
past performances that one considers relevant to the current task situation. Lavie 
et al. (2019) maintain that “precedents for whatever happens in this setting should 
come from the same discursive, material, institutional, and historical context” (p. 
160). Accordingly, we drew on the video-recordings of the previous course lessons, 
consultations with Prof B, and teaching-and-learning scenarios that were typical to 
other proof-based courses that the students took earlier.

Within the social perspective, “how and why one proves […] can be viewed 
as inextricably linked to the social context in which proof occurs” (Stylianides 
et  al., 2017, p. 247). In our classroom, this social context was dynamic. Then, 
we also accounted for students’ awareness of how their proposed proofs could 
be used in the next progression phase, and of their peers who were in a similar 
task situation either right now (in the proof construction phase) or a short time 
ago (in the proof-presentation phase). Speaking more generally, we iteratively 
considered students’ tasks through zooming-in and out of institutional settings 
in which the current task situation unfolded: from circumstances determined 
by the protagonists’ ecosystem “here and now”, through an instance that takes 
places in a particular lesson, to a situation that unfolds in a cross-level course 
led by a research mathematician, and so on. Each of these contextual viewpoints 
gave rise to different interpretations of the task, the conditions for its comple-
tion, and the set of relevant precedents. We refer to this interpretative scale as 
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a broader context to stress that it employs data beyond that collected by our 
video-recordings.5

The described analytical procedure resulted in a set of candidates for students’ 
tasks. Then, we scrutinized each of them to determine its consistency with the col-
lected data, as these emerged from the consultations with Prof B, the previous les-
sons, and our familiarity with the relevant institutional setting. In the last stage, we 
collated viable tasks into single analytical accounts and formulated them so that they 
would not sound like the “real” task that the students pursued. In this way, an addi-
tional outcome of our analysis is an illustration of how considering proof-requiring 
task situations from a range of social angles can be used to generate plausible hypoth-
eses about students’ tasks (see Wetherll & Potter, 1988 for a similar operationaliza-
tion of the construct of function of language).

One Proof Progression

This progression unfolded in the lesson on Hausdorff spaces. At the beginning of 
the lesson, Prof B defined Hausdorff spaces as those where open sets separate every 
two elements (i.e., for each pair of points x and y in X, x ≠ y , there are open sets 
U,V ⊂ X such that x ∈ U, y ∈ V  and U ∩ V = ∅ ). After discussing this definition 
and related examples, the students self-divided into pairs, and Prof B invited them 
“to have a go at proving” that if f ∶ X → Y  is a continuous one-to-one function and 
Y  is Hausdorff, then X is also Hausdorff. The protagonists of our case are a doctoral 
student, Grace, and an undergraduate, Jonah (pseudonyms). At that time, Jonah was 
in his last semester and considered continuing to a master’s in pure mathematics. 
Grace was not formally enrolled in the course and sat in on it “to fill holes in [her] 
mathematics education” (her words) as this was the first formal topology course that 
she participated in. Next, we trace their proof as it progressed over three phases out-
lined in Table 1.

Collaborative Proof Construction6

The dyad embarked on the assigned statement as follows:

1 Jonah: Okay, so… [sketches two ovals for the sets X and Y  in his note-
book]

2 Grace: So we want to show that in X , yeah

5   In the context of problem posing, Kontorovich et al. (2012) introduced the notion of considerations 
of aptness to refer to one’s comprehension of implicit requirements that the request to pose problems 
entail. We refer to the same ambiguity in relation to proof-requiring task situations in our progression. 
Overall, our task analysis is consistent with how research operationalizes Brousseau’s (1997) didacti-
cal contract and Herbst and Chazan’s (2011) disciplinary and institutional obligations (2011).
6  An earlier version of this analysis was presented in Kontorovich and Greenwood (2022)
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Jonah completes the diagram reproduced in Fig. 1.

3 Jonah: That’s basically it.
4 Grace: [a] Yeah, that is kind of it, right? [b] Well, if they weren’t disjoint…
5 Jonah: [a] Oh, that’s true. [b] Sounds really simple.
6 Grace: It’s almost too simple. [5-sec pause]
7 Jonah: I feel like, I fee like something’s missing.
8 Grace: Yeah, I feel like something is missing as well. [15-sec pause]
9 Grace: So the function is from X to Y  . You have two points here [in X ], let’s call them little x ,  

little y . [notates the points on the sketch]
10 Jonah: Oh, doesn’t it imply that these two actually are in the same… You have an intersection.
11 Grace: Yeah, that’s seems wrong because then it [the statement] is true for all functions. Oh, but 

the fact that it is a continuous function…
12 Grace: But why do we need one-to-one? I feel that we got to use that.
13 Grace: So, so… Let’s actually do this super logically. We start with two points.
14 Jonah: Yeah.
15 Grace: We want to put an open set around each.
16 Jonah: Yeah, yeah.
17 Grace: We go to  f (x) and  f (y).
18 Jonah: Yeah, yeah.
19 Grace: We put an open set here and here, which we can do because it is Hausdorff.
20 Jonah: Yeah.
21 Grace: We can pull these back and get two open sets here [pre-images in X].
22 Jonah: Yeah.
23 Grace: If there was a point in this intersection but it can’t get mapped to two points.
24 Jonah: Yeah.
25 Grace: One-to-one means that these two… Oh!!! These two can’t get mapped to the same point. 

Because if they got mapped to the same point, this argument wouldn’t work. It has to be 
two different open sets. That’s why [1:1].

26 Jonah: Oh, wait, what? I still don’t see where the one-to-one.
27 Grace: So our argument would fail. If  f  wasn’t … because of if  f  wasn’t one-to-one, then you 

could have  f (x) equals  f (y).
28 Jonah: Oh, oh, oh [as if realizing this]… Yeah.
29 Grace: [a] And then you definitely couldn’t do this picture. [b] So I think that’s where it happened.
30 Jonah: Okay. Right, right. That’s kind of subtle.

Fig. 1   Reproduction of Jonah’s 
diagram
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Next, we consider students’ proving actions and the proposed proof. We start 
with the latter.

Proposed Proof

In  the “Proof and Proving” section, we associated “proof” with a label that some 
community can attach to a narrative endorsing a mathematical statement. The 
exchange between Grace and Jonah demonstrates that such a narrative can emerge in 
fragments and heavily rely on visual mediators (a diagram, in this case). To be able 
to trace the transformations that the proof went through alongside the progression, 
we assemble the fragments that the students articulated into what we consider to be 
the most coherent whole. Specifically, we disregard the order in which the fragments 
appeared (this is in the focus of the next section), and complete the students’ formula-
tions with their apparent intentions. In doing so, we attempt to preserve the original 
formulations as much as possible to show how they transformed in the second phase.

Our assembled version of the proposed proof goes as follows:

(a)	 “We start with” two points, “let’s call them little x , little y ” in X (see [9] and [13]).
(b)	 They “can’t get mapped to the same point” in Y because f  is one-to-one (see [25] 

and [27]).
(c)	 “We put open sets” around f (x) and f (y) , “which we can do because it [ Y  ] is 

Hausdorff” (see [19]).
(d)	 “We can pull these [the open sets] back and get two open sets” in X (see [21]).
(e)	 “If there was a point in this intersection but [it would] get mapped to two points” 

(see [23] and [4b]).

Two aspects of this proposed proof are noteworthy. First, notice the process-centered 
and personified formulations of the utterances (a), (c), and (d). Second, the proof is far 
from elaborate. Indeed, the diagram visualizes that the initial “open sets” around f (x) 
and f (y) are disjoint, but students do not mention this notion. In (d), the openness of 
the pre-images in X is declared but not justified. One could reasonably propose that 
the dyad endorsed this property based on the continuity of f  . We concur, but notice 
that this justification was not articulated. Also, the proof concludes with (e), positing 
that the pre-images in X have no points of intersection. The existence of such a point is 
rejected with a rather general argument. And the proof completes without spelling out 
why the obtainment of two open disjoint sets in X is sufficient to render it a Hausdorff 
space. We make these points not to criticize students’ proof but to prepare the readers 
for the transformation that it undergoes in the next progression phase.

Proving Process

In regard to the proving process the pair went through, we divide their interaction 
into three rounds. The utterances [1–8] constitute the first round. It revolves around 
a diagram, to which both students referred as “basically it” and “kind of it”. In [2], 



1 3

International Journal of Research in Undergraduate Mathematics Education

Grace commences the construction of the proving narrative, but the construction is 
relinquished once Jonah completes the visual. The brevity of students’ utterances 
prevents us from proposing a univocal candidate for the task that that they pursued. 
Yet, their decisive tones, affirming intonations and gestures suggest that the obtain-
ment of the diagram brings the task to a closure. Hence, we conclude that generat-
ing a verbal version of the proof was not necessary for the students at that point. In 
[3–8], the dyad implements what we term as proof-monitoring: a process of “look-
ing back” at the previous discursive activity (i.e. a procedure) to assess whether it 
can be sanctioned as a proof of the assigned statement (i.e. a task). In this round, 
Grace and Jonah look at the diagram for a time, and only the outcomes of this moni-
toring are articulated: both do not identify issues with their proof.

Notwithstanding the affirming proof-monitoring, both agree that “it” (the proof 
or its construction) was “too simple”. Notice the tension between the students not 
identifying a mathematical issue with their proposed proof and still not being sat-
isfied with it. We account for this tension by drawing on the broader context: the 
proof-requiring task situation was set up by a research mathematician in a cross-
level course. From this viewpoint, it can appear unlikely that the dyad could come 
up with a sanctionable proof just in seconds. This hypothesis is consistent with stu-
dents’ decision to continue their proving further, while locating their previous work 
(i.e. the diagram) at the center of their discursive activity.

In [7–8], the holistic “it” turns into a focused “something’s missing”, and the 
identification of a potentially problematic element turns into a task for the sec-
ond round. Pursuing this task is impossible without generating a proving narra-
tive, which happens in [9–11]. We refer to these students’ utterances and actions 
as proof-growing: a procedure through which a proposed proof is not constructed 
“from scratch” but it becomes more extensive, elaborate, and detailed based on pre-
viously conducted work. In this case, Grace uses Jonah’s diagram to name the sets 
and points, and, in [10], Jonah rephrases Grace’s utterance from [4b].

This round ends in [11–12] with Grace identifying that their proposed proof does 
not capitalize on f  being one-to-one. This proof-monitoring is not unlike the one 
in the first round: on the one hand, it shows that Grace does not detect an issue in 
their proposed proof. On the other hand, she expands the scope of her monitoring 
to include the function’s injectivity – a part of the assigned statement that does not 
feature in their proof narrative yet. In our experience, it is typical for mathematically 
mature students to interpret a gap between given conditions and those utilized in 
their work, as a univocal marker of an issue in their mathematics (e.g., Kontorovich, 
2018). That said, both students agree that their proof endorses the assigned statement 
“for all functions”, and injective functions are a subset of “all” – so why wouldn’t 
they see their proving mission as accomplished? As before, we propose that this ten-
sion can be explained by considering the students’ task situation within a broader, 
this time historical, context: not including redundant conditions in a statement and 
proving theorems with a broad scope of applicability is characteristic to many, if not 
most, pure mathematics courses. Drawing on these precedents, the students could 
sense that the validity of the statement “for all functions” would be just too strong 
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considering the statement’s conditions.7 In this way, we account for students’ deci-
sion to initiate another proving round by the mismatch between the proposed proof 
and their previous proving experiences.

Consistently, delineating the role of injectivity becomes the task for the third 
round. The utterances [13–30] capture proof-growing and proof-monitoring, but 
the students’ interaction changes: now Grace leads the implementation of both: she 
narrates one proof element at a time, while Jonah only endorses her statements. In 
[25], this interaction bears fruit: Grace realizes that their diagram had highlighted 
the function’s injectivity at the start, by depicting f (x) and f (y) as distinct points. 
Accordingly, in this round, the students’ proving narrative expanded with a new 
component about a visual element of the diagram that had been taken for granted 
until then.

Proving at the Board8

Almost as Grace and Jonah’s conversation concluded, Prof B asked “who is ready 
to present?” and Jonah volunteered. He approached the board holding the classroom 
notes with definitions and propositions but the notebook with the much-discussed 
diagram remained on the desk.

Table 2 presents the transcript of Jonah’s discursive activity at the board. The col-
umns demarcate between the oral and written components of his communication. In 
some cases, Jonah spoke as he wrote (more or less), while there was an evident time 
gap between his articulated and written narratives in other instances. We use “…” 
to point to cases where Jonah did not continue his oral sentences, “↓” to mark him 
glimpsing at his notebook, and square brackets for our commentary. Throughout the 
whole episode, Jonah stood facing the board and with his back to the class. Figure 2 
presents a snapshot of Jonah’s board on the completion of his work.

Proposed Proof

To be fully consistent with our approach to proof, we should consider Jonah’s dis-
cursive activity at the board in its totality, i.e. as the one that unfolds in different 
media, including the board (e.g., text, diagrams, annotations), oral verbatim (e.g., 
utterances, intonations), gestures, movements, facial expressions, gazes, and so on 
(Kontorovich, 2023; Kontorovich et al., 2022). But given that Jonah’s work on the 
board overlapped and subsumed his communication in other media (see  the next 
section for details), it is sufficient to confine the discussion to his written narrative.

7   This would also entail that all topological spaces are Hausdorff as they can be mapped to a single point.
8  In Kontorovich et al. (2022) we used the data presented in this section to illustrate the potency of 
the commognitive framework to study students’ mathematizing at the board as part of inquiry. Here, 
the focus is on board proving as the second progression phase.
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On the face of it, Jonah’s proof maps rather neatly to the one presented in  the 
previous progression phase, with most components of the two proofs appearing iso-
morphic to each other (i.e. (I)↔(a), (II)↔(b), (III)↔(c), (V)↔(d), (VI-VII)↔(e)). 
Yet, substantial differences can be discerned in regard to restructuring, formaliza-
tion, and growth of the proof from the previous phase:

•	 Recall that in the previous phase, we were the ones to assemble the students’ oral 
fragments spread over three proving rounds into a coherent whole. In this phase, 
Jonah generated a linearly structured proof. For instance, note how effortlessly 
he builds on the injectivity of f  in (II), considering that it took the dyad a while 
to realize the role of this condition.

•	 The formalization aspect is evident in the sub-narratives of the previously pro-
posed proof transforming from being process-centered and grounded in human 
actions to becoming fully objectified (e.g., compare “which we can do because it 
is Hausdorff” in [19] and “ Y  is Hausdorff, so…” in (III)). This change is insepa-
rable from the board-narrative being written and containing multiple symbols, 
compared to its oral predecessor. Together with formal names of mathemati-
cal objects (e.g., “continuity”), the symbols replace the deictic “it”, “they”, and 
“here” that the students used beforehand.

•	 Perhaps the most visible instance of proof growth is evident in the transition 
from “if there was a point in this interaction […] but it can’t” in [23] to the sub-
narrative in (VI)-(VII). These lines declare the sub-proof by contradiction and 

Fig. 2   Snapshot of Jonah’s board (numbering added)
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spell out its steps. The board-diagram also grows new visual elements and anno-
tations compared to its predecessor in Fig. 1.

That said, Jonah’s proof preserves some of the gaps that featured in the previous 
phase. For instance, both proofs are silent regarding how the fact that f −1(U) and 
f −1(V) are disjoint yields the Hausdorff-ness of X.

Proving Process

Jonah’s proving unfolds smoothly in [1–5], where he unpacks the notions of “ Y  is 
Hausdorff”, “ f  is one-to-one”, and “ f  is continuous” into detailed statements about 
open sets and points. However, the central problem of the assigned statement (cf. 
Selden & Selden, 1995) is in showing that the pre-images of U and V  are disjoint. 
A diagram played a key role in Jonah’s collaboration with Grace, and thus, it is not 
surprising that he generates one at the board as well (see [5]). But this diagram does 
not help, and Jonah resorts to his notebook. We do not find it arbitrary that he stum-
bled where he did since this is the element of the proof that the Jonah and Grace did 
not substantiate in the previous phase. A short glance at his notebook affords Jonah 
to complete the proof rather effortlessly (see [8–11]). He concludes the writing with 
“*☐” and instantly goes back to his seat while cracking a smile to our video-cam-
era, which suggests that he was content with the work. Thus, we propose that Jonah 
proved the statement, in his eyes at least.

Several aspects of Jonah’s proving are noteworthy. While proving publically, 
he made almost no effort to acknowledge the rest of the class. We also notice his 
reluctance to use the notes that he made when collaborating with Grace. We account 
for these aspects by proposing that Jonah’s task at the board was to autonomously 
generate a self-contained written narrative that the class would endorse as a proof. 
This task is consistent with Jonah standing with a back to the class, often block-
ing the text that he put on the board with his body; initially dupicating his writing 
orally without additional elaborations; and gradually “turning off” the oral compo-
nent. This task is consistent with the broader view on students’ board-proving in 
our project: the proof-presentation phase followed on from proof-construction that 
the whole class engaged in just a short time ago. Thus, as Prof B put it, the proofs 
at the board were expected to not only “present the main ideas”, something thas is 
legitimate in proof-construction, but “to stand alone”. In our case, this expectation 
translated to the generation of written narratives that the class would sanction as a 
proof in the following phase without using the prover’s commentaries. We also note 
that, in the previous phase, Grace did most of the “heavy lifting” in turning Jonah’s 
initial diagram into a proving narrative. Thus, Jonah’s volunteering to the board and 
the half-hearted usage of the notes may also relate to his wish to generate a proof of 
the same mathematical statement on his own.

A Posteriori Discussion

The following exchange unfolded once Jonah returned to his seat:
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1 Prof B: Very nice, beautifully laid out. But I do have two quibbles. Anybody? [3-sec pause] And this 
is just for me. [10-sec pause]

2 Rick: You want to specify the quantifiers?
3 Prof B: Yep, but I’ll let you off. The other thing, I do think people write this but I’m not keen on 

this either cause it sort of says x doesn’t equal y , and y is not in X , but doesn’t really say 
anything about where x comes from.

4 Jonah: I wanted to say that.
5 Prof B: I’ve seen people write that, but yeah yeah, I’m not [keen on this]. So, I would recommend 

[adds on the board, see Fig. 3] and they’re different, yeah?

We consider this last progression phase from the perspective of proof transforma-
tion and opportunities for mathematics learning. The first thing Prof B does is sanc-
tions Jonah’s proposed proof and even dubs it as a “beautifully laid out” one. Yet, 
she does not move on before drawing the classroom attention to two “quibbles”. As a 
result, Jonah’s proof transforms through Prof B reformulating its first sub-narrative. 
This transformation instantiates a proof-growing routine in a way that is not very dif-
ferent from how Grace and Jonah implemented it in the first progression phase: Prof 
B did not introduce a new element to a proof but built on and amended Jonah’s previ-
ous work. Evidence of proof-monitoring feature in Prof B’s move as well: she sug-
gests that while Jonah’s symbolic statement “ x ≠ y ∈ X ” would be accepted by some, 
it will raise an issue for others due to the unspecified residence of x . And while there 
is no doubt regarding the notational camp to which Prof B belongs, she does not posi-
tion herself as the ultimate authority on the matter. In the post-lesson reflection, Prof 
B argued that the same correction is likely to be made if Jonah submitted his proof 
to a topology journal. Accordingly, we suggest that she monitored Jonah’s proof not 

Fig. 3   The proof with Prof B’s addendum
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only through the lens of a teaching-and-learning situation that unfolded in the class-
room, but also from a broader perspective of a professional topological discourse. 
This perspective is appropriate to an advanced mathematics course that is taken by 
research students and undergraduates in the last stages of their degrees.

Regarding opportunities for mathematics learning, Prof B’s “quibbles” revolve 
around notational metarules. In the post-lesson reflection, she explained that the first 
“quibble” pertains to a common issue of “unspecified quantifiers”, i.e. situations 
where mathematicians do not spell out whether their statement refers to all, some, 
or particular cases. She discussed this issue several times with the class, which is 
evident in Rick guessing this “quibble” right away. In the second “quibble”, Prof 
B draws students’ attention to two competing metarules to denote the act of taking 
two distinct elements from the same set (i.e. “ x ≠ y ∈ X ” and “ x, y ∈ X and x ≠ y”), 
critiques one of these metarules, and positions the other as a preferable alternative. 
We see this instructional move as her way to model how students can select between 
competing metarules (cf. Viirman, 2021).

Lastly, Prof B draws classroom’s attention to the particular metarules due to 
Jonah’s proof deviating from them. However, note that their applicability goes 
beyond the particular mathematical statement under discussion. Furthermore, notice 
that Prof B “let off” the first metarule and addressed the second one more sugges-
tively than prescriptively. Accordingly, we conclude that drawing class attention to 
these metarules was not less important for her than making the specific proof abide 
by them.

Discussion

In this section, we discuss our main arguments and findings with attention to four themes 
that Stylianides et al. (2017) render as critical to research within the social perspective:

(1) understanding mathematical practice with respect to proof, especially 
mathematicians’ reasons for engaging in proving; (2) identifying what prov-
ing is for students and teachers (rather than assuming a priori that proving is 
convincing; (3) designing classroom environments where proof can be seen 
as a tool for generating and communicating mathematical knowledge; and (4) 
creating social norms with respect to proof that invite students to prove and 
provide learning opportunities for students when engaged in proving activities. 
(p. 247–248)

In regards to (1), mathematics education research often builds on conceptualiza-
tions of proof in mathematics (e.g., Davis, 1986; De Villiers, 1990; Rav, 1999) and 
investigates how individual mathematicians engage with proof (e.g., Inglis et  al., 
2013; Lew & Mejía-Ramos, 2020; Weber et al., 2022). Less attention is paid to the 
social mechanisms through which proof functions in the mathematics community 
and how mathematicians interact with proof and with each other within broader 
communal activities (e.g., Andersen, 2020; Andersen et al., 2021). In this paper, we 
elaborated on De Millo et al.’s (1993) view on proofs as successive social processes 
and argued that these processes unfold in  situations that are socially organized, 
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proof-transformative, and sequential. Then, we proposed that mathematicians par-
ticipate in such proof-centered processes not only to contribute to the discipline 
but also for self-learning purposes. We believe that further conceptualization and 
study of disciplinary mechanisms of this sort is paramount to understanding proof 
as a collective endeavor of the mathematics community. From the social perspective, 
this understanding is essential to designing learning environments where students 
engage with proof as mathematicians do.

In regards to (3), this paper stems from a larger developmental project that 
is centered around proof progressions – an organizational frame that is consist-
ent with De Millo et al.’s view on proofs. The key idea underpinning this frame 
is that a proof progresses through a sequence of task situations where students 
engage with it in different ways and capacities. By taking part in each progression 
phase, the students agree to play according to the rules of the “game of proving”, 
rules that appear similar but not identical in each phase. From some theoretical 
perspectives, the progression may appear as revolving around “the same” proof, 
or at least “the same key ideas” (cf. Raman, 2003). However, on a discursive 
level, our findings show that the progression requires students to generate differ-
ent proving narratives, when sanctioning each as a “proof” needs to be negotiated 
each time with a relevant classroom sub-community.

In our project, students’ proofs progress from collaborative construction in small 
groups, through a whole-class presentation at the classroom board by one of the 
constructors, to a posteriori reflection. In the illustrated case, the progression from 
the first to the second phase resulted in restructuring of the proof to one more for-
mal, elaborate, and involved the growth of previously non-articulated elements. 
These aspects are similar to Zazkis et al.’s (2016) findings in real analysis. In that 
study, individual students translated graphical arguments to written proofs, when 
this process entailed elaborating, that is, adding more details and spelling out war-
rants that were implicit; and syntactifying, that is, converting a graphical argument 
into a verbal-symbolic one. Developments of this sort are common to many pro-
gressions in our data corpus, and we believe that they are inextricable from the 
proofs’ shift from an oral to a written communication medium. Indeed, academic 
mathematical texts are renowned for being dense with terminology and symbols, 
modest in their use of “grammatical words”, having impersonal and authoritative 
formulations, et cetera (e.g., Morgan,  1998). Then, it is somewhat expected that 
such experienced students as our participants would write in this way in the pres-
ence of a mathematically mature audience. Overall, the presented case illustrates 
how the focal organizational frame afforded students to engage in task situations 
with different requirements for proof generation and communication.

Regarding (2), let us start with the teacher-mathematician’s angle. In the last 
progression phase, we showed that Prof B sanctioned Jonah’s proof promptly and 
shifted the discussion to two metarules. She mentioned one of them briefly, while 
the other was endorsed and yielded another proof transformation. These moves are 
similar to the previous findings on teacher-mathematicians leveraging classroom 
proofs to model certain practices for their students (e.g., Fukawa-Connelly,  2012; 
Viirman, 2021; Weber, 2004). Yet, there is a noteworthy difference: Prof B re-acted 
to a student’s proof that deviated from metarules that she perceived as conventional. 
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Havighurst (1952) popularized the notion of teachable moments, which refer to a 
special timing that affords learning and instruction. In this case, the metarules were 
highly relevant to the proof, and they appeared easy for Prof B to generate. This ease 
cannot be taken for granted: for experienced participants of a mathematical discourse, 
its metarules often become the “second skin” to the extent that they are invisible. 
Furthermore, note that both metarules pertained neither to Hausdorff spaces (the key 
mathematical object in the proof) nor to routines of proof-generation per se. In this 
way, the presented case provides evidence that students’ public proving can occasion 
teachable moments with a broad scope of applicability. To put this finding in terms 
of Stylianides et al. (2017), a student’s proof served as a trigger for the teacher-math-
ematician to generate and communicate relevant mathematical knowledge that the 
class could miss otherwise.

We considered “what proving is for students” in terms of the tasks that they self-
imposed in the proof progression. In the proof construction phase, we saw Grace 
and Jonah referring to a wordless diagram as “basically it” and “kind of it”. The stu-
dents knew that in their course and beyond, a request for proof is tantamount to the 
generation of a written narrative. We argued that the generation of such a narrative 
was not part of the students’ task in the first progression phase. Later, the students 
gradually introduced narrative layers to uncover blind spots in their proposed proof 
(this can be seen as knowledge generation through the proving activity, point (3)). 
Similarly, in  the second phase, we offered numerous insights in regard to the task 
that Jonah pursued with his proving at the board.

Let us generalize the previous paragraph with a nod to Stylianides et al.’s (2017) 
remark, on research within the social perspective currently lacking “common, widely 
used [theoretical] constructs” (p. 248). The nuances presented in  this  progression 
emerged from the analysis of the tasks that Grace, Jonah, and Prof B pursued in proof-
requiring task situations. Our attention to students’ self-imposed tasks was informed 
by commognitive research showing time and again that newcomers to a mathemati-
cal discourse often do not share tasks with its oldtimers (e.g., Sfard, 2008). Drawing 
on research with smaller children and school mathematics, Lavie et al. (2019) explain 
this phenomenon by “a person’s interpretation of a given task situation” (p. 161). 
The presented case elaborates that a task one pursues can be a matter of a deliber-
ate choice. Indeed, Jonah’s work at the board shows that his initial satisfaction with a 
diagram cannot be explained as an idiosyncratic interpretation nor an incapability to 
write down a formal proof. In a similar fashion, Raman (2003) offers the construct of 
private and public aspects of a proof, and Lew and Mejía-Ramos’s (2020) consider the 
contextuality of mathematicians’ expectations from proofs. Accordingly, we specify 
Stylianides et al.’s call for the use of theoretical context-sensitive constructs that afford 
identifying what proving is for provers without making a priori assumptions.

Now we arrive to point (4): did the opportunities provided by the proof progres-
sion result in Grace and Jonah learning? The presented analysis captures short-term 
developments in the students’ participation in mathematical discourse, rather than 
longitudinal changes as per the commognitive definition (Sfard, 2008). In the case 
of Jonah, these developments concern his limited contribution to the generation of 
a proving narrative in the first phase compared to a fully-fledged proof he created in 
the second phase. Some may challenge us on this point, noting that Jonah was the 
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one to generate the original diagram and declare “that’s basically it”. He delivered 
on this declaration at the board, something that may be explained by him “holding 
the proof in his mind” all along. We remind the sceptics that commognition operates 
with communication that rests in publicly accessible spaces and it recognizes the 
effort that is often needed to switch from inner dialogue with oneself (i.e., think-
ing) to conversing with others (e.g., recall how Jonah “stumbled” at the board). By 
volunteering to mathematize publicly, Jonah realized an opportunity to change his 
command of an academic topological discourse. He missed this opportunity when 
collaborating with Grace, who did the “heavy lifting” of growing proof narrative. 
Indeed, in the second progression phase, Jonah not only proved through using con-
ventional keywords, symbols, narratives, and routines, but he did so at the board, 
which is characteristic to research mathematics (e.g., Kontorovich et al., 2022). A 
somewhat similar argument can be made regarding Grace’s discursive develop-
ment. She led the proof growth throughout the interaction to broaden proof compo-
nents and expand it to new elements. Specifically, Grace’s discourse was enriched 
by a narrative about the role of the function’s injectivity, a condition that initially 
appeared redundant. In this way, we argue that the presented case illustrates how stu-
dents can actualize learning opportunities to change their mathematical discourses 
that the proof progression affords.

Overall, the proof transformations and discursive developments that we wit-
nessed throughout our project appear sufficiently promising for us to pursue study-
ing proof progressions in additional courses and student cohorts. We notice that 
this organizational frame is student-centered to a significant extent, and it is con-
sistent with the goals of many teacher-mathematicians in proof-based courses (cf. 
Melhuish et al., 2022). Its design is flexible enough to pursue a range of didacti-
cal goals and it can be embedded in a classroom without necessarily revising the 
structure of the whole course. Accordingly, we invite mathematics educators and 
teacher-mathematics to join us in further explorations of how students’ proofs can 
progress in university classrooms.

Acknowledgements  We are grateful to Elena Nardi, the handling editor for our paper, and anonymous 
reviewers for supportive and constructive feedback. We wish to thank the participant students for letting 
us into their mathematical worlds.

Funding  Open Access funding enabled and organized by CAUL and its Member Institutions.

Declarations 

Conflict of Interest  On behalf of all authors, the corresponding author states that there is no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

http://creativecommons.org/licenses/by/4.0/


	 International Journal of Research in Undergraduate Mathematics Education

1 3

References

Alcock, L. (2010). Mathematicians’ perspectives on the teaching and learning of proof. In F. Hitt, D. 
Holton, & P. Thompson (Eds.), Research in Collegiate Mathematics Education VII (pp. 63–92). 
American Mathematical Society.

Andersen, L. E. (2020). Acceptable gaps in mathematical proofs. Synthese, 197, 233–247. https://​doi.​org/​
10.​1007/​s11229-​018-​1778-8

Andersen, L. E., Johansen, M. W., & Sørensen, H. K. (2021). Mathematicians writing for mathemati-
cians. Synthese, 198(26), 6233–6250. https://​doi.​org/​10.​1007/​s11229-​019-​02145-5

Artemeva, N., & Fox, J. (2011). The writing’s on the board: The global and the local in teaching under-
graduate mathematics through chalk talk. Written Communication, 28(4), 345–379. https://​doi.​org/​
10.​1177/​07410​88311​419630

Artigue, M. (2021). Mathematics education research at university level: Achievements and challenges. 
In V. Durand-Guerrier, R. Hochmuth, E. Nardi, & C. Winsløw (Eds.), Research and development in 
University Mathematics Education (pp. 3–21). Routledge.

Artigue, M., & Blomhøj, M. (2013). Conceptualizing inquiry-based education in mathematics. ZDM 
Mathematics Education, 45, 797–810. https://​doi.​org/​10.​1007/​s11858-​013-​0506-6

Brousseau, G. (1997). Theory of didactical situations in mathematics. Kluwer Academic Publishers.
Brown, S. (2018). Difficult dialogs about generative cases: A proof script study. Journal of Mathematical 

Behavior, 52, 61–76. https://​doi.​org/​10.​1016/j.​jmathb.​2018.​02.​002
Chan, M. C. E., & Sfard, A. (2020). On learning that could have happened: The same tale in two cities. 

The Journal of Mathematical Behavior, 60, 100815. https://​doi.​org/​10.​1016/j.​jmathb.​2020.​100815
Cilli-Turner, E. (2017). Impacts of inquiry pedagogy on undergraduate students conceptions of the func-

tion of proof. The Journal of Mathematical Behavior, 48, 14–21. https://​doi.​org/​10.​1016/j.​jmathb.​
2017.​07.​001

Coppin, C. A., Mahavier, W. T., May, E. L., & Parker, E. (2009). The Moore method: A pathway to 
learner-centered instruction. MAA.

Davis, P. J. (1986). The nature of proof. In M. Carss (Ed.), Proceedings of the 5th International Congress 
on Mathematical Education (pp. 352–358). Springer Science + Business Media, LLC.

Dawkins, P. C. (2012). Metaphor as a possible pathway to more formal understanding of the definition of 
sequence convergence. The Journal of Mathematical Behavior, 31(3), 331–343. https://​doi.​org/​10.​
1016/j.​jmathb.​2012.​02.​002

De Millo, R. A., Lipton, R. J., & Perlis, A. J. (1993). Social processes and proofs of theorems and pro-
grams. In T. R. Colburn, J. H. Fetzer, & T. L. Rankin (Eds.), Program verification (pp. 297–319). 
Kluwer Academic Publishers.

De Villiers, M. (1990). The role and function of proof in mathematics. Pythagoras, 24, 17–24.
Dorier, J. L., & Maaß, K. (2020). Inquiry-based mathematics education. Encyclopedia of mathematics 

education, 384–388. https://​doi.​org/​10.​1007/​978-3-​030-​15789-0
Dreyfus, T., & Eisenberg, T. (1986). On the aesthetics of mathematical thought. For the Learning of 

Mathematics, 6(1), 1–10.
Ernst, D. C., Hodge, A., & Yoshinobu, S. (2017). What is inquiry-based learning? Notices of the Ameri-

can Mathematical Society, 64(6), 570–574. https://​doi.​org/​10.​1090/​noti1​536
Fukawa-Connelly, T. (2012). A case study of one instructor’s lecture-based teaching of proof in abstract 

algebra: Making sense of her pedagogical moves. Educational Studies in Mathematics, 81, 325–
345. https://​doi.​org/​10.​1007/​s10649-​012-​9407-9

Fukawa-Connelly, T., Weber, K., & Mejía-Ramos, J. P. (2017). Informal content and student note-taking 
in advanced mathematics classes. Journal for Research in Mathematics Education, 48(5), 567–579. 
https://​doi.​org/​10.​5951/​jrese​mathe​duc.​48.5.​0567

Gallagher, K., & Engelke Infante, N. (2021). A case study of undergraduates’ proving behaviors and 
uses of visual representations in identification of key ideas in topology. International Journal of 
Research in Undergraduate Mathematics Education. https://​doi.​org/​10.​1007/​s40753-​021-​00149-6

Grundmeier, T. A., Retsek, D., Berg, A., Mann, S., & Prieto, H. (2022). Assumptions and definition 
use in an inquiry-based introduction to proof course. Primus, 32(1), 1–13. https://​doi.​org/​10.​1080/​
10511​970.​2020.​18273​21

Hanna, G. (1990). Some pedagogical aspects of proof. Interchange, 21(1), 6–13.
Havighurst, R. J. (1952). Human development and education. Longmans, Green.

https://doi.org/10.1007/s11229-018-1778-8
https://doi.org/10.1007/s11229-018-1778-8
https://doi.org/10.1007/s11229-019-02145-5
https://doi.org/10.1177/0741088311419630
https://doi.org/10.1177/0741088311419630
https://doi.org/10.1007/s11858-013-0506-6
https://doi.org/10.1016/j.jmathb.2018.02.002
https://doi.org/10.1016/j.jmathb.2020.100815
https://doi.org/10.1016/j.jmathb.2017.07.001
https://doi.org/10.1016/j.jmathb.2017.07.001
https://doi.org/10.1016/j.jmathb.2012.02.002
https://doi.org/10.1016/j.jmathb.2012.02.002
https://doi.org/10.1007/978-3-030-15789-0
https://doi.org/10.1090/noti1536
https://doi.org/10.1007/s10649-012-9407-9
https://doi.org/10.5951/jresematheduc.48.5.0567
https://doi.org/10.1007/s40753-021-00149-6
https://doi.org/10.1080/10511970.2020.1827321
https://doi.org/10.1080/10511970.2020.1827321


1 3

International Journal of Research in Undergraduate Mathematics Education

Hemmi, K. (2006). Approaching proof in a community of mathematical practice (Doctoral dissertation). 
Stockholm University.

Herbst, P., & Chazan, D. (2011). Research on practical rationality: Studying the justification of actions in 
mathematics teaching. The Mathematics Enthusiast, 8(3), 405–462. https://​doi.​org/​10.​54870/​1551-​
3440.​1225

Herbst, P., Nachlieli, T., & Chazan, D. (2011). Studying the practical rationality of mathematics teach-
ing: What goes into "installing" a theorem in geometry. Cognition and Instruction, 29(2), 218–255. 
https://​doi.​org/​10.​1080/​07370​008.​2011.​556833

Inglis, M., Mejia-Ramos, J. P., Weber, K., & Alcock, L. (2013). On mathematicians’ different standards 
when evaluating elementary proofs. Topics in Cognitive Science, 5(2), 270–282. https://​doi.​org/​10.​
1111/​tops.​12019

Jaworski, B. (2004). Grappling with complexity: Co-learning in inquiry communities in mathematics 
teaching development. In Proceedings of the 28th Conference of the International Group for the 
Psychology of Mathematics Education (Vol. 1, pp. 17–36). PME.

Johnson, E., Keller, R., & Fukawa-Connelly, T. (2018). Results from a survey of abstract algebra 
instructors across the United States: Understanding the choice to (not) lecture. International Jour-
nal of Research in Undergraduate Mathematics Education, 4, 254–285. https://​doi.​org/​10.​1007/​
s40753-​017-​0058-1

Jones, F. B. (1977). The Moore method. The American Mathematical Monthly, 84(4), 273–278.
Karavi, T., Mali, A., & Avraamidou, L. (2022). Commognition as an approach to studying proof teaching 

in university mathematics lectures. EURASIA Journal of Mathematics Science and Technology Edu-
cation, 18(7), 1–10. https://​doi.​org/​10.​29333/​ejmste/​12173

Kilpatrick, J. (1985). A retrospective account of the past 25 years of research on teaching mathematical 
problem solving. In E. A. Silver (Ed.), Teaching and learning mathematical problem solving: Multi-
ple research perspectives (pp. 1–15). Lawrence Erlbaum.

Kleiner, I. (1991). Rigor and proof in mathematics: A historical perspective. Mathematics Magazine, 
64(5), 291–314.

Kontorovich, I. (2018). Unacceptable discrepancy: The case of the root concept. For the Learning of 
Mathematics, 38(1), 17–19.

Kontorovich, I. (2021). Minding mathematicians’ discourses in investigations of their feedback on stu-
dents’ proofs: A case study. Educational Studies in Mathematics, 107(2), 213–234. https://​doi.​org/​
10.​1007/​s10649-​021-​10035-2

Kontorovich, I. (2023). When learning stumbles upon identity and affect: A loaded collaboration in Lin-
ear Algebra. International Journal of Mathematics Education in Science and Technology. https://​
doi.​org/​10.​1080/​00207​39X.​2023.​21731​02

Kontorovich, I., & Greenwood, S. (2022). Mathematics learning through a progressive transformation 
of a proof: A case from a topology classroom. In J. Hodgen, E. Geraniou, G. Bolondi, & F. Ferretti 
(Eds.), Proceedings of the Twelfth Congress of the European Society for Research in Mathematics 
Education (CERME12) (pp. 2437–2445). ERME/Free University of Bozen-Bolzano.

Kontorovich, I., & Liu, N. (2023). Students leverage their struggles with proof to script fictional dia-
logues about the rules of proving. In Proceedings of the 25th Annual Conference on Research in 
Undergraduate Mathematics Education. RUME.

Kontorovich, I., Koichu, B., Leikin, R., & Berman, A. (2012). An exploratory framework for handling the 
complexity of mathematical problem posing in small groups. The Journal of Mathematical Behav-
ior, 31(1), 149–161. https://​doi.​org/​10.​1016/j.​jmathb.​2011.​11.​002

Kontorovich, I., L’Italien-Bruneau, R., & Greenwood, S. (2022). From “presenting inquiry results” to 
“mathematizing at the board as part of inquiry”: A commognitive look at the familiar practice. In 
R. Biehler, G. Gueudet, M. Liebendörfer, C. Rasmussen, & C. Winsløw (Eds.), Practice-oriented 
research in tertiary mathematics education: New directions (pp. 491–512). Springer.

Krantz, S. (2015). How to teach mathematics (3rd ed.). American Mathematical Society.
Laursen, S. L., & Rasmussen, C. (2019). I on the prize: Inquiry approaches in undergraduate mathemat-

ics. International Journal of Research in Undergraduate Mathematics Education, 5(1), 129–146. 
https://​doi.​org/​10.​1007/​s40753-​019-​00085-6

Laursen, S. L., Hassi, M. L., Kogan, M., & Weston, T. J. (2014). Benefits for women and men of inquiry- 
based learning in college mathematics: A multi-institution study. Journal for Research in Math-
ematics Education, 45(4), 406–418. https://​doi.​org/​10.​5951/​jrese​mathe​duc.​45.4.​0406

Lavie, I., Steiner, A., & Sfard, A. (2019). Routines we live by: From ritual to exploration. Educational 
Studies in Mathematics, 101, 153–176. https://​doi.​org/​10.​1007/​s10649-​018-​9817-4

https://doi.org/10.54870/1551-3440.1225
https://doi.org/10.54870/1551-3440.1225
https://doi.org/10.1080/07370008.2011.556833
https://doi.org/10.1111/tops.12019
https://doi.org/10.1111/tops.12019
https://doi.org/10.1007/s40753-017-0058-1
https://doi.org/10.1007/s40753-017-0058-1
https://doi.org/10.29333/ejmste/12173
https://doi.org/10.1007/s10649-021-10035-2
https://doi.org/10.1007/s10649-021-10035-2
https://doi.org/10.1080/0020739X.2023.2173102
https://doi.org/10.1080/0020739X.2023.2173102
https://doi.org/10.1016/j.jmathb.2011.11.002
https://doi.org/10.1007/s40753-019-00085-6
https://doi.org/10.5951/jresematheduc.45.4.0406
https://doi.org/10.1007/s10649-018-9817-4


	 International Journal of Research in Undergraduate Mathematics Education

1 3

Legrand, M. (2001). Scientific debate in mathematics courses. In D. Holton (Ed.), The teaching and 
learning of mathematics at university level: An ICMI study (pp. 127–135). Kluwer Academic 
Publishers.

Lew, K., & Mejía-Ramos, J. P. (2020). Linguistic conventions of mathematical proof writing across 
pedagogical contexts. Educational Studies in Mathematics, 103, 43–62. https://​doi.​org/​10.​1007/​
s10649-​019-​09915-5

Manin, Y. I. (1977). A course in mathematical logic. Sage.
Melhuish, K., Fukawa-Connelly, T., Dawkins, P. C., Woods, C., & Weber, K. (2022). Collegiate math-

ematics teaching in proof-based courses: What we know now and what we have yet to learn. Journal 
of Mathematical Behavior, 67, 100986. https://​doi.​org/​10.​1016/j.​jmathb.​2022.​100986

Morgan, C. (1998). Writing mathematically: The discourse of ‘investigation’. Routledge.
Nardi, E., Ryve, A., Stadler, E., & Viirman, O. (2014). Commognitive analyses of the learning and 

teaching of mathematics at university level: The case of discursive shifts in the study of Calcu-
lus. Research in Mathematics Education, 16(2), 182–198. https://​doi.​org/​10.​1080/​14794​802.​2014.​
918338

Nisbett, R. E., & Wilson, T. D. (1977). Telling more than we can know: Verbal reports on mental processes. 
Psychological Review, 84(3), 231–259. https://​doi.​org/​10.​1037/​0033-​295X.​84.3.​231

Paoletti, T., Krupnik, V., Papadopoulos, D., Olsen, J., Fukawa-Connelly, T., & Weber, K. (2018). Teacher 
questioning and invitations to participate in advanced mathematics lectures. Educational Studies in 
Mathematics, 98, 1–17. https://​doi.​org/​10.​1007/​s10649-​018-​9807-6

Pinto, A. (2019). Variability in the formal and informal content instructors convey in lectures. The Jour-
nal of Mathematical Behavior, 54, 100680. https://​doi.​org/​10.​1016/j.​jmathb.​2018.​11.​001

Pritchard, D. (2010). Where learning starts? A framework for thinking about lectures in university math-
ematics. International Journal of Mathematical Education in Science and Technology, 41(5), 609–
623. https://​doi.​org/​10.​1080/​00207​39100​36052​54

Raman, M. (2003). Key ideas: What are they and how can they help us understand how people view proof? 
Educational Studies in Mathematics, 52(3), 319–325. https://​doi.​org/​10.​1023/A:​10243​60204​239

Rav, Y. (1999). Why do we prove theorems? Philosophia Mathematica, 3(7), 5–41. https://​doi.​org/​10.​
1093/​philm​at/7.​1.5

Ross, P. (2007). R. L. Moore: Mathematician & teacher. The Mathematical Intelligencer, 29, 75–79. 
https://​doi.​org/​10.​1007/​BF029​86178

Selden, J., & Selden, A. (1995). Unpacking the logic of mathematical statements. Educational Studies in 
Mathematics, 29(2), 123–151. https://​doi.​org/​10.​1007/​BF012​74210

Sfard, A. (1998). On two metaphors for learning and the dangers of choosing just one. Educational 
Researcher, 27(2), 4–13. https://​doi.​org/​10.​2307/​11761​93

Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses, and math-
ematizing. Cambridge University Press. https://​doi.​org/​10.​1017/​CBO97​80511​499944

Stewart, S., Thompson, C., & Brady, N. (2017). Navigating through the mathematical world: uncover-
ing a geometer’s thought processes through his handouts and teaching journals. In T. Dooley & G. 
Gueudet (Eds.), Proceedings of the 10th Congress of the European Society for Research in Math-
ematics Education (pp. 2258–2265). DCU Institute of Education and ERME.

Stylianides, G. J., Stylianides, A. J., & Weber, K. (2017). Research on the teaching and learning of proof: 
Taking stock and moving forward. In J. Cai (Ed.), Compendium for Research in Mathematics Edu-
cation (pp. 237–266). National Council of Teachers of Mathematics.

Thurston, W. P. (1994). On proof and progress in mathematics. Bulletin of the American Mathematical 
Society, 30(2), 161–177. https://​doi.​org/​10.​1007/0-​387-​29831-2_3

Viirman, O. (2021). University mathematics lecturing as modelling mathematical discourse. Interna-
tional Journal of Research in Undergraduate Mathematics Education, 7, 466–489. https://​doi.​org/​
10.​1007/​s40753-​021-​00137-w

Wagner, J. (1997). The unavoidable intervention of education research: A framework for reconsidering 
researcher-practitioner cooperation. Educational Researcher, 26(7), 13–22. https://​doi.​org/​10.​3102/​
00131​89X02​60070​13

Weber, K. (2004). Traditional instruction in advanced mathematics courses: A case study of one pro-
fessor’s lectures and proofs in an introductory real analysis course. The Journal of Mathematical 
Behavior, 23, 115–133. https://​doi.​org/​10.​1016/j.​jmathb.​2004.​03.​001

Weber, K. (2012). Mathematicians’ perspectives on their pedagogical practice with respect to proof. 
International Journal of Mathematics Education in Science and Technology, 43, 463–482. https://​
doi.​org/​10.​1080/​00207​39X.​2011.​622803

https://doi.org/10.1007/s10649-019-09915-5
https://doi.org/10.1007/s10649-019-09915-5
https://doi.org/10.1016/j.jmathb.2022.100986
https://doi.org/10.1080/14794802.2014.918338
https://doi.org/10.1080/14794802.2014.918338
https://doi.org/10.1037/0033-295X.84.3.231
https://doi.org/10.1007/s10649-018-9807-6
https://doi.org/10.1016/j.jmathb.2018.11.001
https://doi.org/10.1080/00207391003605254
https://doi.org/10.1023/A:1024360204239
https://doi.org/10.1093/philmat/7.1.5
https://doi.org/10.1093/philmat/7.1.5
https://doi.org/10.1007/BF02986178
https://doi.org/10.1007/BF01274210
https://doi.org/10.2307/1176193
https://doi.org/10.1017/CBO9780511499944
https://doi.org/10.1007/0-387-29831-2_3
https://doi.org/10.1007/s40753-021-00137-w
https://doi.org/10.1007/s40753-021-00137-w
https://doi.org/10.3102/0013189X026007013
https://doi.org/10.3102/0013189X026007013
https://doi.org/10.1016/j.jmathb.2004.03.001
https://doi.org/10.1080/0020739X.2011.622803
https://doi.org/10.1080/0020739X.2011.622803


1 3

International Journal of Research in Undergraduate Mathematics Education

Weber, K., Mejía-Ramos, J. P., & Volpe, T. (2022). The relationship between proof and certainty in math-
ematical practice. Journal for Research in Mathematics Education, 53(1), 65–84. https://​doi.​org/​10.​
5951/​jrese​mathe​duc-​2020-​0034

Wetherll, M., & Potter, J. (1988). Discourse analysis and the identification of interpretative repertoires. In 
C. Antaki (Ed.), Analysing everyday explanation: A casebook of methods. Sage Publications.

Wood, C., & Weber, K. (2020). The relationship between mathematicians’ pedagogical goals, orienta-
tions, and common teaching practices in advanced mathematics. The Journal of Mathematical 
Behavior, 59, 100792. https://​doi.​org/​10.​1016/j.​jmathb.​2020.​100792

Yoo, S., & Smith, C. (2007). J. Differences between mathematics majors’ view of mathematical proof 
after lecture-based and problem-based instruction. In T. Lamberg and L. R. Wiest (Eds.), Proceed-
ings of the 29th Annual Meeting of the North American Chapter of the International Group for the 
Psychology of Mathematics Education (p. 84–86). University of Nevada.

Zazkis, D., Weber, K., & Mejía-Ramos, J. P. (2016). Bridging the gap between graphical arguments and 
verbal-symbolic proofs in a real analysis context. Educational Studies in Mathematics, 93,155–173. 
https://​doi.​org/​10.​1007/​s10649-​016-​9698-3

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

https://doi.org/10.5951/jresematheduc-2020-0034
https://doi.org/10.5951/jresematheduc-2020-0034
https://doi.org/10.1016/j.jmathb.2020.100792
https://doi.org/10.1007/s10649-016-9698-3

	From Collaborative Construction, Through Whole-Class Presentation, to a Posteriori Reflection: Proof Progression in a Topology Classroom
	Abstract
	Introduction
	Background
	Lecturing and Inquiry in Proof-Based Courses
	Proofs as Successive Social Processes in the Mathematics Community

	Proof Progressions
	Theoretical Framework
	Mathematical Discourses
	Learning
	Proof and Proving

	Context and Methodological Underpinnings
	One Proof Progression
	Collaborative Proof Construction6
	Proposed Proof
	Proving Process

	Proving at the Board8
	Proposed Proof
	Proving Process

	A Posteriori Discussion

	Discussion
	Acknowledgements 
	References


