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Note from the Editors: Following the Calculus in Upper Secondary and Beginning 
University Mathematics Conference (Kristiansand, August 6–9, 2019), the Editors 
received a proposal for a Special Issue on the theme of “The Teaching and Learning 
of Definite Integrals”. The Editors were delighted to accept this proposal. IJRUME 
co-editor in chief Elena Nardi, also co-chair of the conference with Tommy Dreyfus 
and John Monaghan, acted as handling editor of the Special Issue. In what follows, 
Guest Editors Rob Ely and Steven R. Jones introduce its theme and contents.

Introduction to Definite Integrals and to this Special Issue

The definite integral1 is a central topic in undergraduate mathematics education, as 
it ranges from introductory calculus through upper-division university mathematics 
coursework. It is also a crucial concept in science, engineering, economics, and other 
disciplines, as it is used to model, compute, and define many quantities and sys-
tems in those fields. Consequently, we posit that reasoning with definite integrals is 
a key skill for students to develop in the undergraduate mathematics curriculum. We 
note that, with the widespread use of computers in the 21st century, techniques for 
evaluating integrals are diminishing in importance for the general calculus student 

1  Integrals come in many varieties, including integrals with fixed-finite bounds, 
∫ b

a
f (x) dx , integrals 

with variable bounds, 
∫ x

a
f (t) dt , integrals with infinite bounds, 

∫ ∞
a

f (x) dx , and integrals with no 
bounds, 

∫
f (x) dx . This special issue on “definite integrals” focuses on those with fixed bounds or 

variable bounds: 
∫ b

a
f (x) dx  and 

∫ x

a
f (t) dt .
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population. Rather, the ability to interpret integrals in context and to model quantita-
tive structures using them remains crucially important for students to develop when 
learning calculus. In light of this, calculus education has seen an increased focus on 
research about learning, understanding, and reasoning with definite integrals. This 
special issue marks, to our knowledge, the first instance that research about the teach-
ing and learning of definite integrals has been aggregated into one collection. This 
special issue also provides a rounded set of perspectives across current definite inte-
gral research, from snapshots of student understanding following instruction (Konto-
rovich, this issue; Nilsen & Knutsen, this issue), to a progression of student learning 
(Stevens & Jones, this issue), to important ways of reasoning with integrals (Jones & 
Ely, this issue; Oehrtman & Simmons, this issue), and to the application of integrals 
to science contexts (Bajracharya et al., this issue; Dray & Manogue, this issue).

The idea for this special issue emerged from the Calculus in upper secondary and 
beginning university mathematics conference held in August 2019 in Kristiansand, 
Norway. In conversations at this conference, it became clear that valuable research 
was being conducted by a variety of scholars about the teaching and learning of 
definite integrals, but that these studies were dispersed in various journals and books 
and were often disconnected from each other. One purpose of this special issue is to 
bring current research studies into direct conversation with each other. The variety of 
articles contained in it helps accomplish this goal. This special issue also includes a 
review of this growing body of research (Jones & Ely, this issue), to help organize, 
synthesize, and chart out some of the landscape in this field. We hope that this special 
issue will become a resource for calculus educators and researchers to refer to and to 
build on, ultimately benefitting the millions of students each year who take calculus 
courses worldwide.

How these Special Issue Papers Fit into the Broader Literature

While we might speak of “the definite integral” as a singular concept, it has many 
possible meanings and interpretations (Greefrath et al., 2021; Hall, 2010; Jones, 
2013, 2020; Sealey, 2006). One central theme of recent research, and one that is 
echoed in this special issue, is the role of quantitative reasoning in student thinking 
about definite integrals. The abilities to recognize relevant quantities that vary in a 
context, and to assign quantitative meaning to the pieces of integral notation that 
measure those quantities, have been found to be important for supporting students’ 
usage of integration in context (Chhetri & Oehrtman, 2015; Ely, 2017; González-
Martín, 2021; Hu & Rebello, 2013b; Jones, 2015a; Nguyen & Rebello, 2011; Sealey, 
2014; Simmons & Oehrtman, 2017). Yet, this kind of quantitative reasoning is unfor-
tunately less common among calculus students (Bressoud, 2009; Jones, 2015b). For 
instance, a variety of studies in the U.S. have found that students typically leave cal-
culus courses able to interpret definite integral notation 

∫ b

a
f (x) dx  only as a request 

to find an anti-derivative for f(x) and evaluate it at b and a, or as a reference to the 
geometric area contained in a fixed shape bounded by a curve, but rarely as a sum of 
some kind (Bezuidenhout & Olivier, 2000; Christensen & Thompson, 2010; Grund-
meier et al., 2006; Jones, 2015b; Jones et al., 2017; Marrongelle, 2001; Thompson & 
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Silverman, 2008). These “antiderivative” and “area” interpretations of integrals may 
be less productive in applying integrals to contextualized problems or quantitative 
situations (Hu & Rebello, 2013b; Jones, 2015a; Nguyen & Rebello, 2011; Pina & 
Loverude, 2019; Simmons et al., 2022). Recent years have marked several efforts to 
develop strong quantitative meanings that can support students’ modeling with defi-
nite integrals (Ely, 2017, 2020; Samuels, 2022; Sealey & Engelke, 2012; Thompson 
& Ashbrook, 2019; Thompson et al., 2013; Von Korff & Rebello, 2012).

In this special issue’s first article, Jones and Ely discern two main paradigms in the 
literature for these quantitatively grounded efforts: adding up pieces and accumula-
tion from rate. The literature review portion of their paper organizes the literature 
around these two approaches and specifies each approach’s meanings, formaliza-
tions, foci, and types of reasoning. The theoretical analysis portion of their paper 
extrapolates from the literature review to compare and contrast what modeling with 
definite integrals might look like within each paradigm.

Building in this area, the paper by Oehrtman and Simmons provides a detailed 
example that falls within the adding up pieces paradigm. The authors study a set of 
productive quantitative meanings students draw upon when modeling with integrals. 
Through a series of teaching experiments and interviews, they identify a sequence of 
emergent quantitative models students used: basic models, local models, and global 
models. Informed by these, Oehrtman and Simmons idealize a productive model for 
reasoning with definite integrals they call Quantitatively-Based Summation (QBS). 
This includes the specific conceptions that comprise this productive reasoning as well 
as the processes found to be important for developing these conceptions.

What might it mean to learn integrals in this way? Along with Oehrtman and 
Simmons’s paper, two other papers in this special issue examine this question. In 
one paper, Stevens and Jones describe a progression of students’ learning based on 
context and quantitative reasoning to develop such meanings of the definite integral. 
Their study examines learners across an entire teaching unit based on adding up 
pieces that proceeds from the first introductory lesson up through an understanding of 
integral functions in preparation for the Fundamental Theorem of Calculus2 (FTC). 
In another paper, Dray and Manogue extend the topic of learning integrals into a dis-
cussion of how one might develop an understanding of line integrals that are found 
within multivariable calculus. Through an examination of textbooks and research 
literature, they provide a theoretical discussion on possible lower and upper anchors 
for learning line integrals, and describe a hypothetical learning trajectory3. Their dis-
cussion adds an important perspective by discussing line integrals in connection to 
both mathematics and physics.

There is a strong theme within the existing literature on using differential- and 
infinitesimal-based understandings and reasonings in connection with definite inte-
grals (Amos & Heckler, 2015; Chhetri & Oehrtman, 2015; Ely, 2020; Hu & Rebello, 

2  The two parts of the Fundamental Theorem of Calculus are often given as: (1) If f (x)  is continuous on 
[a,b] and F (x) =

∫ x

a
f (t) dt , then F ′ (x) = f (x) on (a,b); and (2) If f (x)  is continuous on [a,b] 

and F (x)  is any antiderivative of f (x) , then 
∫ b

a
f (x) dx = F (b) − F (a).

3  In brief, a hypothetical learning trajectory consists of (1) the goals for student learning, (2) the activi-
ties used to promote learning toward the goals, and (3) a hypothesis about how students’ learning would 
progress toward the goal (see Simon, 1995).
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2013a; Schermerhorn & Thompson, 2019; Simmons et al., 2022; Thompson & Ash-
brook, 2019; Von Korff & Rebello, 2014). That is, differentials and infinitesimals 
may better support thinking of quantities and their relationships and may prevent the 
problematic “collapse” metaphor, in which students believe the quantity represented 
in the differential to have disappeared entirely (Ely, 2012; Oehrtman, 2009). In this 
vein, Nilsen and Knusten’s paper in this issue examines understandings of students 
who had experienced a strongly limit-based calculus curriculum. The authors report 
that, despite the curriculum, much of the students’ conceptual interpretations of inte-
grals and the FTC were more closely associated with differentials and infinitesimals, 
in a way compatible with meanings used by Leibniz and his contemporaries (Katz, 
2009).

Given the existing literature on definite integrals, perhaps a more fundamental 
question arises: Is a definite integral an “area under a curve”? Calculus students com-
monly enough develop such a view of an integral as a unitary area of a Cartesian 
shape, an understanding that might lead to accurate or inaccurate generalizations 
alike about properties of definite integrals (Czarnocha et al., 2001; González-Martín, 
2005; Jones, 2020; Jones & Dorko, 2015; Kouropatov & Dreyfus, 2013; Rasslan & 
Tall, 2002; Sealey, 2006, 2014). Students who hold such a view frequently conclude 
that “the integral is an area, and area is always positive” (Kouropatov & Dreyfus, 
2013, p. 643), and that the integral only consistently makes sense when functions are 
non-negative (Bezuidenhout & Olivier, 2000). Students can also interpret the integral 
as a total area or an amount rather than net change in an area or amount, in situations 
where the function is not always positive. Kontorovich’s paper in this issue looks at 
this phenomenon by analyzing a large data set of examination papers and video clips 
from undergraduate students. About 30% of the students’ exams papers employed 
reasoning consistent with the view that a definite integral measures a total area, not 
a “net area.” The video clips reveal how this type of reasoning can operate in the 
interplay between a student’s model of figures (areas), regions, integral notation, and 
evaluated integrals (algebraic and numeric).

The paper by Bajracharya, Sealey, and Thompson discerns further difficulties 
with the common area interpretation of integral, by studying “backward” integrals in 
which the upper bound is less than the lower bound. The reversal of sign entailed in 
these integrals made little sense to many students who interpreted the definite integral 
solely as a monolithic area under a curve. On the other hand, the authors report that 
students who conceptualized ∆x or dx as a difference or change were able to treat it 
as a signed quantity and could make more sense of a negative “backward” integral. 
Furthermore, within physical contexts, these students were able to leverage this idea 
to provide meaning to the sign of the entire definite integral.

The articles in this special issue provide a springboard for further research. In 
particular, they suggest ways to explore how students work with integrals in higher-
level mathematics courses and other STEM domains. The constructs and findings 
offer directions for studying and supporting student reasoning with the FTC. The 
articles provide empirically testable guidance for improving curriculum and teaching 
with definite integrals. Brought together in this special issue, we hope that (unlike a 
definite integral) the reader will find this collection of papers to be even more than 
the sum of its parts.
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