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Abstract
In mathematics education, the research on proof by contradiction (PBC) often claims
that this activity is more difficult for students than direct proof, or simply difficult
in general. Many hypotheses have been offered to support or explain this belief, yet
they span a disorientingly wide swath of journal articles, conference papers, disser-
tations, book chapters, etc. In addition, few attempts have been made to organize
these hypotheses or carefully test them. In this paper, we conduct a thorough lit-
erature review on PBC, organize existing hypotheses about challenges with PBC
into a Hypothesis Framework for (Students’ Difficulty with) Proof By Contradiction
(HFPBC), discuss the state of research related to each hypothesis, and offer thoughts
on the future study of these hypotheses.

Keywords Proof by contradiction · Hypothesis · Framework · Indirect proof ·
Literature review

Introduction

The practice of mathematical proof is arguably the defining characteristic of mathe-
matics as a discipline, playing a role similar to that of experimentation in the sciences.
Proof provides the epistemological basis of confidence in mathematical knowledge
as well as the functions of explanation, systematization, discovery, and communica-
tion of that knowledge (de Villiers 1990). Understanding and constructing proofs are
important prerequisites for students’ full participation in the field and a key element
of their enculturation into it, and many universities have instituted “Introduction to
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Proof” courses to facilitate this. The teaching and learning of proof have accord-
ingly been of central interest to researchers in mathematics education for many years
(Hanna & de Villiers 2012).

Proof by contradiction (PBC) is an essential form of indirect proof (IP) across
all mathematical content areas. Students routinely use this approach to prove the
nonexistence of objects in geometry, the infinitude of primes in number theory, and
the irrationality of

√
2 in analysis. Indirect argumentation is also common in everyday

life. People often frame their reasoning indirectly: “If A were true, then how do you
explain B?” and “If suspect A were the murderer, then we would know B and C. But
...”. Despite the presence of indirect thinking in both everyday and academic settings,
some mathematics educators and researchers have noted that students face difficulty
when using such arguments. As such, a literature base was born to study the use of
indirect reasoning, such as PBC, in mathematics.

Two main themes arise as one begins reading the research on PBC. The first is
how new this body of research is. Speaking to its infancy as a field, Baccaglini-Frank
et al. (2013) wrote that “although much research has been conducted on the themes
of proof and argumentation in mathematics education, rarely do the studies focus on
particular proof structures, such as proof by contradiction” (p. 63). Bedros (2003)
shared this sentiment ten years earlier:

Only a few comprehensive studies or systematic accounts in the mathematics
education literature deal solely and deeply with undergraduate students’ dif-
ficulties in understanding the indirect aspects of proving. Thus, very little is
known about students’ perceptions and understandings of indirect processes.
(p. 25)

The second theme centers on the contrast between PBC (or IP more generally,
for some authors) and direct proof (DP). For example, Antonini and Mariotti (2008)
wrote that “at any school level, students’ difficulties with indirect proof seem to be
greater than those related to direct proof” (p. 401). These authors earlier noted that
the “current literature agrees on the fact that students show much more difficulties
with indirect than direct proofs” (Antonini & Mariotti 2006, p. 65) and referenced
the “unanimously recognized difficulties with indirect proofs” (Antonini & Mariotti
2008, p. 403). Similarly, Jourdan and Yevdokimov (2016) stated that “there is a con-
sensus that learners do find indirect types of proof quite difficult and do struggle with
the conceptual and technical aspects of indirect proofs” (p. 63). They go on to cite
Epp (1998) who wrote that “students find proof by contradiction considerably harder
to master than direct proof” (p. 711). Writing even earlier, Robert and Schwarzen-
berger (1991) spoke of “proofs by contradiction presenting particular difficulties”
(p. 130), and even further back, Lazar (1947) inclusively wrote that “philosophers,
logicians, mathematicians, commentators, textbook writers, teachers, and, of course,
pupils, have expressed dissatisfaction with this method of proof [IP]” (p. 225).

It is interesting to note that these two themes are somewhat at odds: It is difficult
to clearly establish the relative challenge/dissatisfaction offered by PBC/IP and DP
in a literature base that is in its infancy. Indeed, many of the above quotes comparing
IP and DP were made without citational support, so the strength of these claims
is not immediately clear. To add to the muddiness of the PBC landscape, thinkers
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have offered a vast array of reasons why PBC may be more difficult than DP. As
an example, Pasztor and Alacaci (2005) noted that “Our study focuses on students’
error patterns when negating quantified sentences [emphasis added], which are the
single most important cause for their difficulties with indirect proofs and proofs by
contradiction” (p. 1714). This reason is but one of 16 separate reasons (see Fig. 1)
given by authors for the supposed disparity between students’ fluency with DP and
PBC (or for challenges with PBC alone). Also at issue is precisely what is more
difficult when comparing these types of proof. This “what” might refer to knowing
when to use PBC, how to produce proofs with PBC, or even the conviction behind
and comprehension of PBCs.

To make matters more complicated, when researchers actually do empirical stud-
ies comparing DP and IP, or exploring the “difficulties” of IP, the results can be
contradictory. For example, Brown (2018) found that when given two proofs of the
same theorem (one a DP, one an IP), students preferred a direct approach for some
theorems and an indirect approach for other theorems. In summarizing her findings,
Brown wrote: “it seems that length, complexity, and familiarity are criteria students
bring to bear on proofs before considerations of proof type when selecting the most
convincing proof” (p. 17). As another example, when exploring preservice mathemat-
ics teachers’ fluency with PBC, a study on teachers in Ankara, Turkey suggested that
they generally were quite strong with the topic (Demiray & Bostan 2017), while a
study of American teachers found they “had a superficial understanding of the ‘proof
by contradiction’ mode of argumentation” (Bleiler et al. 2014, p. 105).

Finally, the literature on IP/PBC has not been as careful as possible in distinguish-
ing theories based on anecdotal evidence from those that have been carefully explored
through qualitative and quantitative research. As an example, in an important paper
by Uri Leron (1985), the author advanced what we call the “Constructive/Destructive
Hypothesis” and “False World Hypotheses” (see below). The author was quite
forthright about the nature of his theory, writing “I begin with observation, continue
with generalization and end with speculation”(p. 321), later noting that “I cannot
claim any factual basis for it” (p. 324) where “it” is the false world metaphor he cre-
ated as part of the article. While Leron’s speculation was based on anecdotal teaching
experience and a single class of student teachers around a single theorem (the PBC
of the infinitude of primes), this paper is cited over 90 times (according to Google
Scholar) in the last 30 years, with varying degrees of faithfulness to the speculative
nature of the original work.

Given the nascent and confusing research on PBC, we thought it would be produc-
tive to organize those ideas that have been clearly or repeatedly advanced by scholars
into a Hypothesis Framework for (Students’ Difficulties with) PBC (HFPBC, see
Fig. 1). In addition to giving new researchers a sense of the state/structure of the field,
we hope that the HFPBC and its careful description will inform current researchers
as to what is known regarding each hypothesis. Also, this framework can help schol-
ars move beyond poorly-specified claims (e.g., saying IP/PBC is more “difficult”
than DP) and overly-simplified claims (e.g., citing a particular hypothesis in the
framework as the main cause of student confusion). Furthermore, we believe this
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framework will be useful to educators as they explore the potential sources of trouble
students might face when engaging with PBC. Indeed, one goal of our organiza-
tional efforts is to facilitate the call-to-arms of Hanna and de Villiers (2012) who,
when looking at works from their volume, pleaded “for additional empirical research,
longitudinal studies, and investigations on the long-term effects of the different
approaches to proof” (p. 6).

Literature Review

In order to gain a complete picture of the existing work on PBC, we conducted a sys-
tematic review of the field. In the initial identification stage, we searched for works
primarily focused on PBC or IP. In particular, we followed this plan:

– Databases (subcollections) to search: ERIC, EBSCO (Education Source,
Academic Search Complete, MathSciNet, and OpenDissertations collections),
ProQuest (Dissertations & Theses, PsycARTICLES, PsycINFO collections),
Google Scholar

– Allowable dates: Any time up to and including October 2019

– Language of search: English

– Articles to search from: Those with electronic access in the above repositories
(or where electronic access could be found more globally on the internet)

– Search terms: “proof by contradiction” or “indirect proof” in the title or abstract
(when available); the bodies of texts were not included because initial searches
included too many false positives

– Inclusion criteria: Work focuses primarily on the act of PBC (either from a
historical, empirical, philosophical, or pedagogical perspective within mathe-
matics) and discusses understanding of PBC; work may be from any type of
source (refereed journals, published/unpublished dissertations, books, etc.) and
focus on any constituency (teachers, students of any level, etc.), or center on
theory development/epistemology

– Exclusion criteria: Work is solely a collection of activities or resources for
teachers related to PBC; work presents a mathematical proof that happens to
use PBC; work is not centrally focused on PBC/IP in general; work does not
discuss/explore understanding of PBC/IP; work is duplicated in another search;
electronic access is not possible; work references a poster presentation; work is
exclusively related to mathematical logic

While it was possible to search for both “proof by contradiction” and “indirect
proof” using a single search string, we chose to conduct separate searches in the event
this extra granularity might benefit other researchers in the future. Table 1 presents a
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list of the numbers of works returned from each search (“Raw Number of Articles”),
how many of these met the inclusion criteria and did not appear in an earlier search
(“Number New Included”), and how many were seen previously or met the exclusion
criteria (“Number Excluded”).

In addition to searching large databases, we also searched the websites of promi-
nent journals in mathematics education using the above guidelines. This step was
important because databases often maintain only a subset of available content from a
given journal (e.g. years 1980-2015). To select these journals, we referred to Williams
and Leatham (2017), which explored journal quality in mathematics education using
a variety of metrics. The searched journals included Educational Studies in Mathe-
matics (ESM), Journal for Research in Mathematics Education (JRME), Journal of
Mathematical Behavior (JMB), Journal of Mathematics Teacher Education (JMTE),
International Journal on Mathematics Education (ZDM), Mathematical Teaching &

Table 1 Results of database searches; the 35 included articles are listed in Table 2 (Appendix); 25
additional articles identified via bibliographic iteration are in Table 3 (Appendix)

Order of Database - Search Raw Number of Number New Number

Search Term Articles Included Excluded

1 ERIC - PBC 24 12 12

2 ERIC - IP 16 2 14

3 EBSCO - PBC 116 4 112

4 EBSCO - IP 171 4 167

5 ProQuest - PBC 18 1 17

6 ProQuest - IP 37 0 37

7 Google Scholar - PBC 38 3 35

8 Google Scholar - IP 95 6 89

9 ESM - PBC 20 1 19

10 ESM - IP 14 0 14

11 JRME - PBC (via JSTOR) 8 0 8

12 JRME - IP (via JSTOR) 7 0 7

13 JMB - PBC 2 0 2

14 JMB - IP 2 0 2

15 JMTE - PBC 4 0 4

16 JMTE - IP 2 0 2

17 ZDM - PBC 16 1 15

18 ZDM - IP 3 0 3

19 MTL - PBC 7 0 7

20 MTL - IP 1 0 1

21 FLM - PBC (via JSTOR) 9 1 8

22 FLM - IP (via JSTOR) 5 0 5

Totals: 615 35 580
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Learning (MTL), and For the Learning of Mathematics (FLM). While these jour-
nals were well-represented in the database searches, three additional articles were
identified for inclusion (see Table 1).

As an initial sense of the infancy of the field, one sees that of the 615 works
meeting search terms (this total includes duplicates), only 35 works in these
databases/journals met the inclusion criteria for our review. Furthermore, this total
includes works from a vast array of sources: research journals, conferences, disserta-
tions, book chapters, etc. Table 2 (see Appendix) lists these articles and the particular
search that led to their inclusion. This lack of research focused primarily on PBC is
not unexpected. When Brown (2012) looked through the 94 papers presented at the
ICMI Study 19 Conference (focused on “Proof and Proving in School Mathematics”),
she found that “only 9 mention indirect proofs and only 1 of those 9 explicitly inves-
tigated indirect proofs” (p. 8). Thus, among works specifically related to proof, only
a fraction mention IP, and a fraction of that fraction focus on IP. In a similar explo-
ration of the 2008 through 2010 conference proceedings from SIGMAA on RUME
(Special Interest Group of the Mathematical Association of America on Research
in Undergraduate Mathematics Education), 0 of the 241 papers focused on student
understanding of IP/PBC (Brown 2012).

Given the lack of papers focused on IP/PBC, we expanded our search to look for
other important works that contained significant mention of IP/PBC (and, to catch
those works focused on IP/PBC that fell through the cracks). By reading the 35 initial
articles and checking their bibliographies, we identified additional important arti-
cles to include. By looking through the bibliographies of those new articles (and so
on, i.e., an iterative bibliographic exploration), we ultimately identified 25 additional
articles that had important sections, results, or were from fields outside of mathemat-
ics but still relevant. These articles are listed in Table 3 (see Appendix). We hope this
list of 60 total articles (Tables 2 and 3) will be useful to those interested in studying
PBC or IP.

The Hypothesis Framework for (Students’ Difficulties with) Proof By
Contradiction (HFPBC)

With our literature base set, we turned to the second task of this paper. Our goal was
to identify and structure the existing theories for why students might struggle when
engaged with PBC. Interestingly, while the inclusion/exclusion criteria of the review
did not demand a focus on students’ understanding of PBC (just understanding of
PBC), virtually all the works did focus on students, including those papers with a
strong historical or theoretical bent. In Fig. 1, we propose a framework that orga-
nizes the current major hypotheses surrounding students’ difficulties with PBC. At a
high level, the hypotheses fall into one of three categories: “Operational Hypotheses”
(those centered on the act of producing a PBC), “Affective Hypotheses” (the emo-
tional and attitudinal views held by students and communities related to PBC), and
“Foundational Hypotheses” (the theoretical and logical issues that underpin PBC).
The framework was constructed by carefully reviewing the above articles and not-
ing every hypothesis offered by scholars (whether original or citing the work of
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Fig. 1 The Hypothesis Framework for (students’ difficulties with) proof by contradiction (HFPBC)

others). This initial pass produced an extensive list that was then refined by collaps-
ing hypotheses mentioned repeatedly, removing hypotheses that were infrequently
discussed or developed, and uniting micro-hypotheses into larger categories with suf-
ficient substance. Thus, the 16 leaf nodes of the HFPBC are the hypotheses in the
literature that had sufficient development, substance, mention, empirical evidence,
and/or promise to be included. The internal nodes of the HFPBC represent our efforts
to organize these into a coherent structure.

In the end, the structuring and naming that appear in Fig. 1 are the product of
an extensive series of drafts born from a grounded approach to theory development
(Corbin & Strauss, 1990), (Strauss & Corbin, 1994). Furthermore, this macro-
structuring of hypotheses should not be seen as mutually exclusive: leaf nodes in the
framework could easily be placed in different positions of the hierarchy; we have sim-
ply placed them where we think they have the most natural fit. As an example, when
constructing a PBC, students must work toward a contradiction, but it is not clear
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in advance what this contradiction will be (e.g., steps that result in a statement like
0 = 1, or perhaps a contradiction to a well-known theorem). We call this the “Lack
of Target Hypothesis” and place it under the “Contradiction Hypotheses” label, but
we suspect this unease regarding the proof’s destination will also engender an emo-
tional response worthy of mention somewhere under the “Affective Hypotheses” root
node.

In the sections that follow, we dive into each of the internal and leaf nodes of
the HFPBC. After doing so, we offer a discussion around the value this organiza-
tional structure could bring to the field. Before moving forward, we want to clarify
our use of the word “hypothesis”. In this paper, we use this term to mean a narra-
tive advanced by the PBC literature that aims to explain phenomena related to PBC.
While this term comes with different definitions and expectations in various domains,
we sought a single label to refer to each of the components of Fig. 1 but faced the
challenge of referencing settings with widely disparate degrees of empirical and the-
oretical backing. In the end, we chose a conservative term that would remind readers
of the developing nature of these ideas. Indeed, we believe that even those hypotheses
with the most development are still developmental; the studies that underpin them are
often restricted to certain people (e.g., university students) or certain types of PBC
problems (e.g., showing the irrationality of a given number), and hence, the general-
izability of their findings remains an open question. To help the reader get a sense for
the development of each hypothesis, we have chosen to label the leaf-nodes (i.e., the
non-organizational hypotheses) with one of four terms: Unstudied (hypotheses with
no known empirical work on students), Emerging (hypotheses for which we know of
1 or 2 empirical studies about students’ difficulties which agree), Supported (3+ con-
vergent empirical studies), and Inconsistent (2+ divergent studies). We use the term
“Supported” rather than “Proven” or “Verified” because future studies could conflict
with existing work, and the possible causes of student difficulty with PBC may shift
over time. We begin and end the discussion of each non-organizational hypothesis
(see headers and concluding sentences) with the label to orient the reader.

Finally, it is important to note that the HFPBC was born from a perspective focused
on inclusivity. As mentioned above, one goal was not to include only those hypothe-
ses that had become butterflies, but rather, to add some caterpillars to the framework
with the hope that future researchers would take up the mantle of development.
Indeed, any hypothesis that was clearly stated, mentioned by multiple authors, or
for which theoretical/empirical work had been done was ultimately included in the
framework in some way. This spirit of inclusion also extended to the perspectives
of the authors we examined. Readers familiar with the PBC literature will recognize
that the papers in our review take different views on what PBC is and what type of
student activity to focus on (e.g., producing PBC proofs, analyzing others’ proofs,
identifying proof types, etc.). We have chosen not to limit our discussion to a partic-
ular PBC definition or type of student activity because we believe that the HFPBC is
strengthened (as an organizing force for the field) when it works to be as inclusive as
possible. As such, individual researchers may wish to consider only those hypotheses
with a certain level of empirical support, those that make sense within their personal
definitions of PBC, or those that can be operationalized based on the targeted student
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activity. In total, we feel the HFPBC is coherent (in general) based on its encyclo-
pedic foundation, and coherent to particular users after subsetting based on personal
lenses.

Operational Hypotheses

Hypotheses under this label focus primarily on the act of constructing a PBC, from
the initial steps of deciding PBC is appropriate, to forming the negation of the con-
clusion, to working toward the contradiction, and finally, to recognizing and asserting
that a contradiction has been reached.

Training Hypotheses

This collection of hypotheses centers on the idea that the educational system fails
to give students the support and opportunities they need to meet with success when
doing PBC. Antonini and Mariotti (2007) described the state of affairs bluntly: “Indi-
rect proofs do not find an adequate attention in school practice, at any school level”
(p. 541). Thompson (1996) added: “Given the minor emphasis on this proof tech-
nique in the secondary curriculum, it is no wonder that students find the technique
difficult to understand and use” (p. 474). This lack of emphasis might be surprising
to some given PBC’s early development [dating to (at least) 375 B.C. by Eudoxus]
and prevalance in the work of famous mathematicians − for example, 16 of 31 proofs
in Euclid’s Elements, Book III were indirect (Lazar 1947).

Historically, it appears some difficulty around operationalizing IP stemmed from
poor instructional materials and pedagogy. Lazar (1947) noted three trends: “very
few books take the trouble to give a definition of the crucial terms ‘direct proof’ and
‘indirect proof”’ (p. 226), “until the early years of this century very few geometry
books took the trouble to give the logical basis underlying the method of indirect
proof” (p. 236) and that “of late, the tendency has arisen to use the indirect proof
only in cases where direct proof is impossible or very difficult” (p. 233). If textbooks
fail to articulate an idea and teachers use it only as a last resort, it is no wonder stu-
dents might struggle to operationalize it. Leadbeater (1937) shared these sentiments
even earlier: “To what then are we to attribute the disrepute into which the indirect
method has fallen? In the writer’s opinion it is due solely to bewildering and illogical
presentations often given by writers of textbooks” (p. 25). Byham (1969), a student
of Lazar, carefully catalogued these “bewildering and illogical presentations” in his
dissertation, perhaps the most thorough review of the development of IP in geometry
texts. By analyzing 37 different books, he found authors used seven different names
for indirect proof, which were often poorly presented and inconsistent across books.

In addition to the issue of textbook training, one must consider the training of PBC
that happens in classrooms. Some researchers have begun to explore different peda-
gogical approaches to PBC. For example, Amit and Portnov-Neeman (2017) studied
students’ performance on PBC when trained using the “explicit teaching approach”
(experimental group, EG) as compared to standard methods (control group, CG).
Over a six month training cycle, they found that talented sixth graders improved their
PBC performance using either approach, but that gains in the EG far outpaced those
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in the CG. To date, few studies have explored how different approaches to training
PBC affect student understanding and success.

Deployment Hypothesis [Emerging]

The Deployment Hypothesis suggests that students struggle to recognize the signs
that PBC could be a helpful technique for proving a proposition (in general, and for
a specific problem). In order to better understand these tip-offs in general, Lin et
al. (2003) analyzed interviews with six mathematicians and found two deployment-
related themes: 1) PBC is helpful when the given statement is awkward to build from
(e.g., “Prove there are no integers that . . .”), and 2) PBC is useful when the negation
has a nice representation (e.g., assuming

√
2 is rational). They note that these themes

may not be clear to students. Barnard and Tall (1997) raised another issue related to
deployment: to deploy a technique requires that one know of its existence in advance
or to be able to create it for the first time. In a group of students (aged 15 to first-year-
college) who had not seen the standard PBC of the irrationality of

√
2, they found that

none was able to spontaneously use this line of reasoning, noting that the students
“are unfamiliar with the possibility of proving something true by initially supposing
it to be false – a conflict likely to provoke cognitive tension and insecurity”(p. 43).
This hypothesis is labeled Emerging because we know students struggle to deploy
PBC before its formal introduction and that mathematicians have some criteria for
deploying PBC, but we don’t yet understand the growth between these extremes.

Template Hypothesis

Both DP and IP feature patterns of argumentation that arise frequently. For example,
when students first learn to prove the existence of limits from the epsilon-delta defi-
nition, they are trained to consider an arbitrary positive epsilon, and then use this (in
conjunction with algebra related to the function) to define a delta that will cause the
remainder of the definition to hold. Similarly, in set theory, students know they can
show the equality of two sets by showing that each is a subset of the other. The Tem-
plate Hypothesis suggests that these common ways of reasoning in PBC are either
less numerous, less accessible to students, or less trained by teachers than those seen
in DP. While various authors (Antonini & Mariotti 2008; Brown 2018; Hanna &
de Villiers 2012; Tall 1979; Thompson 1996) have mentioned this idea, it does not
appear that any scholars have empirically explored it (Unstudied).

Resource Hypothesis

When students engage in the act of proving, they bring resources (previous knowl-
edge, intuition, examples, etc.) to bear on the challenges they face. The Resource
Hypothesis explores whether the way these resources (both productive and non-
productive) are used is altered when engaging with PBC. Brown (2018) articulated
the core of this hypothesis when writing:
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What is at issue is not one’s knowledge sources but rather the activities
required. In other words, it may be that IPs demand particular activities, that is,
ways of reasoning with one’s knowledge sources, and that students experience
difficulties meeting these demands. (p. 3)

While socio-cultural and situated views of cognition argue from a high level that
one’s setting definitely matters (Brown, Collins, & Duguid 1989; Forman 2003;
Vygotsky 1987), mathematics education researchers who study proof, in particu-
lar, have explored this idea in less detail. Dawkins and Karunakaran (2016) stressed
this point for the setting of content area (analysis vs. algebra vs. number theory
etc.) writing: “We are concerned that framing mathematical proving as a single,
content-general practice may inappropriately downplay the role particular mathemat-
ics content plays therein” (p. 65). In relation to IP, the authors write: “we observe
students who on one task treat contrapositive statements as equivalent while in others
fail to see the equivalence and show no conscious knowledge of the general logical
relationship” (p. 72). Other authors have also highlighted the critical role particular
content knowledge plays in the creation and understanding of proof for undergraduate
math majors and preservice mathematics teachers (Bleiler et al. 2014; Ko & Knuth
2013). While this hypothesis has promise given the central role of resources in learn-
ing, proving, and IP mentioned above, their influence in PBC specifically remains
Unstudied.

Negation Hypotheses

This macro-category focuses on issues related to formulating ¬q (not q) when using
PBC on a conditional of the form p =⇒ q. These hypotheses appear to be the
most developed and researched in the field, in part because fields outside of math-
ematics use negation as well (e.g., computer science and philosophy) and because
negation is a smaller, self-contained, procedural, and easily-observable part of PBC.
Indeed, Inglis and Simpson (2008) wrote that “it is of course well known that students
have difficulty negating complex quantified statements in mathematical contexts (e.g.
Barnard, 1995; Dubinsky et al., 1988)” (p. 199).

Quantifier Hypothesis [Supported]

To negate a quantified statement (e.g., a statement involving a “for all” or “there
exists”), students must first understand what quantifiers are present. If statements
are written in informal ways, the transition to a logic-based equivalent can be dif-
ficult (Selden & Selden 1995). Even after arriving at a formal logical statement,
students struggle to understand the importance of order and scope when multiple
quantifiers are present (Dubinsky & Yiparaki 2000). To add to these issues, Ship-
man (2016) noted that quantifiers can be hidden by our pedagogical approaches
and ways of writing statements. For example, educators often use truth tables to
show that the negation of P =⇒ Q is P ∧ ¬Q (here, ∧ means “and”). However,
mathematical statements often take the form P(x) =⇒ Q(x), or more carefully:
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∀x ∈ S, P (x) =⇒ Q(x), with the negation: ∃x ∈ S, P (x) ∧ ¬Q(x). These sub-
tleties are often overlooked when beginning a PBC. For example, a student might
begin a proof of “If q ∈ Q ∧ r ∈ Q, then q + r ∈ Q” by simply writing: “Sup-
pose not. Let q + r be rational.” (Q is the irrational numbers). This step ignores the
hidden “for all” quantifiers on q and r , and hence, their conversion to “there exists”
quantifiers in the negation (Shipman 2016). Lin et al. (2003) explored students’ abil-
ities to negate statements like “all people are my friends” and “no angle of triangle
ABC is acute”, and found that overall, negation of statements without any (hidden)
quantifiers was easiest for students, followed by “some” statements (harder), “all”
statements (harder), and “only one” statements (hardest).

In one of the earlier studies of negations and quantifiers, Barnard (1995) gave
78 first year undergraduates and 78 second/third year undergraduates a collection of
seven statements to negate. These ranged from easy (“x satisfies P , for all x in X) to
hard (“Given x in X, there exists y in Y such that S(x, z) is true for all z in Z”) (p.
3). These statements were each presented in three contexts: everyday with answers
chosen via multiple choice (All people living in Cheltenham watch ‘Neighbours’),
mathematical with answers chosen via multiple choice (For all integers a, a2 ≥ 0),
and everyday with students providing negations (All people living in Neasden have
black hair) (prompts from pp. 5-7). In general, the performance was better when
comparing older students to younger students, easier prompts to harder prompts, and
multiple choice answers to student-generated answers. In general, student success
rates were low, roughly between 30% and 70% on most problems. This hypothesis is
Supported by the research.

Language Filtration Hypothesis

While mathematicians may negate statements in formal logical settings, students
often face statements presented in real-world contexts that use spoken and written
language to set up problems. This hypothesis suggests that students might struggle
with negation, and hence PBC, because of the movement between natural language
and mathematics, the way thinking filters through/is influenced by language, and by
the idiosyncrasies common in language. As an example, Lin et al. (2003) noted in
an exploration of Chinese students’ negations that subtle word ordering and seman-
tic issues can influence how students negate statements. In Mandarin, the statement
“I have only one brother” is actually ordered “only-have-one”. Many students negate
this as “not-only-have-one” which converts to “more than one” in Mandarin (rather
than the correct negation of “0 or more than 1”).

English has its share of issues as well: speakers are often not clear whether they
mean an exact amount or an inequality: “Yeah, I’ve got a brother!” (1 or at least 1?) or
“What is the probability of drawing 2 green balls?” (exactly 2 or more than 1?). This
makes negation difficult when problems rely on textual prompts, rather than purely
mathematical prompts. As Shipman (2016) noted: “Students may be working with
colloquial meanings of English or may be learning English as a foreign language”
(p. 48). Pasztor and Alacaci (2005) extended these ideas by citing the literature on
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polarization, divisive politics, and either-or thinking. They offer simple examples like
“Some horses are slow” (negated as “Some horses are not slow” or “Some horses are
fast”) to show how negation in everyday language might differ from that in mathe-
matics. Similar themes have also been explored by Barnard (1995), Antonini (2001),
and Epp (2003). This hypothesis is Supported by a variety of researchers across many
settings.

Cognitive Demand Hypothesis [Unstudied]

The Cognitive Demand Hypothesis is derived from research on cognitive load theory
(CLT) from information processing (Centre for Education Statistics and Evaluation
2017; Sweller 1988, 1994). The idea behind this hypothesis is that PBC places large
mental demands on students and that this can overwhelm the cognitive bandwidth
students have available for thinking. At a basic level, PBC demands more information
be considered than DP: Rafetseder, Schwitalla, and Perner (2013) wrote that “people
keep two models (“p and q” as well as “not p and not q”) in mind to understand
counterfactual statements, whereas they keep only one model (“p and q”) in mind
to understand indicative statements” (p. 399). Antonini and Mariotti (2008) noted
that additional psychological forces may be at play when doing PBC: “It may be too
demanding to assume that what is to be proved is false, and it is extremely hard for
one’s mind to follow the deductive steps when false hypotheses and contradictions
are involved” (p. 402). This theme appears to have been first articulated in Leron’s
(1985) important paper (see also the “False World Hypotheses”):

The moment the negative assumption is declared, along with the intention of
falsifying it by means of a future contradiction, a cognitive strain is set up in the
mind of the learner, perhaps because of the difficulty of living in a false world,
still operating as if it were real. This cognitive strain grows (linearly?) with
the time spent living in this world, i.e. with the distance between the negative
assumption and the terminal contradiction. Perhaps the feeling of frustration
and incomprehensibility is proportional to the length of the ‘negative stretch’
of the proof. (p. 324)

Although much work has been done in building a general theory of cognitive
load (e.g., the different types of load, gathering evidence for CLT, how to adapt
teaching based on CLT), it appears that almost no empirical work has gone into
measuring/studying the relationship between PBC and CLT, hence the Unstudied
label.

Contradiction Hypotheses

These hypotheses center on a unique feature of a PBC: the contradiction itself. Given
that it is not present in other types of proof, one might suspect that the act of seek-
ing out and identifying the presence of a contradiction could provide additional
challenges for students.
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Recognition Hypothesis [Unstudied]

The Recognition Hypothesis suggests that students may struggle to identify that a
contradiction has been reached when in fact it has, or they may believe a contra-
diction has been reached when it has not. One reason for the former issue is that a
mathematical statement may contradict a wide variety of things: itself, a common
fact the student does not know/has forgotten, a statement from elsewhere in the proof,
the supposition of the problem, an axiom, etc. This recognition failure might lead to
backtracking or not finishing the proof, or the student might continue on to reach a
later contradiction, resulting in a less efficient argument. Chamberlain (2017) wrote
that “students have even more diffculty identifying a contradiction when it does not
directly relate to the primary statement they are trying to prove” (p. 32). In contrast,
a student might believe a contradiction has been reached when it has not because
mathematical expressions can be subtler than they appear. For example, if a student
arrives at “(

√
3 + √

6)2 + (
√

2 − √
9)2 is rational”, they might (falsely) claim a con-

tradiction based on the appearance of the mathematical expression (which reduces to
20). We can find no empirical work exploring this Unstudied hypothesis.

Lack of Target Hypothesis [Unstudied]

With DP, the proposition provides two important guideposts in the proving process.
If we must show p =⇒ q, then we can begin at p with the clear objective of q,
or start at q workng backwards toward p. With IP, students must explore the dark
abyss of mathematics until a contradiction is uncovered, having neither a clear goal
to head toward nor a landing spot from which to work backward. In this sense, no
destination, or target, is evident, and the range of possibilities for the contradiction is
immense. Antonini (2010) gave a sense of the landscape: “Sometimes, R [the contra-
diction] could stand for a figure with strange lines or angles that bad (sic) represents a
geometrical concept (as it happens in proof by contradiction), an uncommon proposi-
tion, a situation not expected because of the didactical contract, etc.” (p. 155). Indeed,
Jourdan and Yevdokimov (2016) provided simple examples revealing that a contra-
diction may arise to a given, an internal result to the proof, or to an external result (see
examples 2-6, pp. 60-63). Chamberlain (2017) noted how some problems have many
natural targets. In proving ab = 0 =⇒ a = 0 or b = 0, a student using PBC might
end at a = 0 and a 	= 0, b = 0 and b 	= 0, or 1 = 0 and 1 	= 0. While some authors
have discussed the variety of possible targets and hinted at the difficulty a lack of
target may create, there appears to be no research for this Unstudied hypothesis.

Affective Hypotheses

The Affective Hypotheses focus on issues related to the emotional and social space
in which mathematics is done. Some issues are related to the psychology of students,
while others are shaped by teachers, communities of practice, and historical trends.
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Socio-Mathematical Hypotheses

Various authors have argued that mathematics, like many disciplines, cannot be
understood apart from the social milieu in which it is developed and enacted. While
the image of a student sitting alone at home writing a PBC may suggest an act with no
social connections, Vygotsky (1987) would disagree: “Writing is also speech without
an interlocutor, addressed to an absent or imaginary person or to no one in particular
. . . it is a conversation with a blank sheet of paper” (p. 181). In this sense, writ-
ing (or proving) is communication with an imagined audience (and a real audience
during grading or publishing), and as such, comes imbued with the expectations of
classrooms and societies.

Acceptability Hypothesis [Unstudied]

The Acceptability Hypothesis summarizes the idea that PBC is less accepted or less
palatable than other forms of proof (usually, DP). Historical trends are believed to
be one force behind this hypothesis. Antonini (2019) noted “in many cases through-
out history some mathematicians have discussed its [PBC] acceptability and have
proposed to exclude proof by contradiction from proving methods” (p. 794). Gasser
(1992) outlined some of these historical moments dating back to at least 1662, many
of which argued that while PBC might show that something is true, PBC often falls
short of explaining why that thing is true. Furthermore, Gasser explained, from a log-
ical perspective, why people may have felt this way. Compared to an IP, a DP creates
a series of true statements, like lights on a strand:

The reasoner who knows that the premises are true will know not only that the
conclusion is too, but also that each consequence in the series is also true. Each
proposition of the chain of reasoning that goes from the premises to the conclu-
sion constitutes an intermediate conclusion known to be true by the reasoner;
each proposition represents new knowledge. Each is a ground for recognizing
the truth of further consequences. (p. 44)

Mancosu (1991) catalogued additional historical examples noting the “lower epis-
temological status” (p. 26) of IP and the failure to engender the feeling of causality
that DP often does. More recently, Brown (2017) cited modern resistance to indi-
rect methods, including opposition to Hilbert’s non-constructive proof of the Hilbert
Basis Theorem and a recent critique of Cantor’s non-constructive proof establishing
the existence of transcendental numbers. As one might expect, these historical themes
gained traction in pedagogical spaces (see comments under “Training Hypotheses”).
In a 1932 defense of PBC, Seidlin (1932) collected 80 examples (printing only 10)
of anti-PBC rhetoric found in DP teaching materials of high school teachers. These
included “It [PBC] is the laughing stock of students” and “... it doesn’t really prove”
(p. 5). Seidlin concluded his article by writing: “Shall we condemn a method because
it has been needlessly disfigured by textbook writers!” (p. 17).

This derision might seem antiquated to current scholars. As Gasser (1992) wrote:
“It is also noteworthy that nowadays no one but the intuitionnists [sic] reject indirect
proof and even they do not reject it entirely” (p. 45). This turnaround is due, in part,
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to the 1957 publication of Polya’s “How to Solve It”, wherein the author “claimed
that using indirect proof is the height of intellectual achievement, and that it promotes
students’ thinking to higher levels” (Hine 2019, p. 29). To date, the influence of these
philosophical, historical, and pedagogical trends on students’ understanding of PBC
appears largely Unstudied.

Constructive/Destructive Hypothesis

This hypothesis appears to have its origins in Leron’s (1985) paper outlining anecdo-
tal evidence from his own teaching. In brief, his idea is that in mathematics, students
prefer to operate in a way that constructs knowledge, always moving from a universe
of known results to a larger universe. When writing a PBC, he noted that:

We are about to enter a false, impossible world, and all our subsequent efforts
are directed towards ‘destroying’ this world, proving it is indeed false and
impossible. We are thus involved in an act of mathematical destruction, not
construction. (p. 323)

In essence, he argued that humans would much prefer to erect buildings, rather
than show certain designs are not possible by attempting to construct them, all the
while waiting for collapse. Antonini and Mariotti (2008) furthered this idea, writing
that “students can feel confused and dissatisfied because of the unexpected destruc-
tion of the mathematical objects on which the proof was based” (p. 402). Brown
(2018) folded these ideas into her “constructive hypothesis” (the source of our name)
and notes that this preference for constructive approaches might lessen conviction and
understanding in students when working via PBC. Specifically, PBC steers “learn-
ers to reason against, rather than with, that which they perceive to be ‘real’” (Brown
2018, p. 4). Other papers have briefly touched on this idea, noting the tension that
can arise for students when no mathematical object is constructed by the proof’s end
(Bedros 2003, Brown 2013, Harel and Sowder 1998). While this idea is over 30 years
old, it appears little empirical work has been done to explore the prevalence and
importance of this Unstudied hypothesis.

Conviction Hypothesis

Conviction refers to the degree of certainty a reader has regarding the truth of a math-
ematical argument or statement. While conviction can be derived from the deductive
logic present in proof, students and mathematicians also derive conviction from
other sources, including empirical evidence, worked examples, authority, etc. (Weber,
Inglis, & Mejia-Ramos 2014). The Conviction Hypothesis suggests that students have
greater difficulty deriving conviction from PBCs than via other types of proof.

For some readers, the Conviction Hypothesis may feel like a consequence of stu-
dents’ difficulties with PBC, rather than a cause. Indeed, when students struggle
with an idea, they have trouble deriving conviction from it. We include the Convic-
tion Hypothesis because, while the above logic is certainly in play, so too is the fact
that lower conviction can erode the use of an idea (just as distrust in an institution
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is both the cause and effect of that institution’s decline). Thus, we see PBC and the
conviction derived from its use as components in a cyclic system.

Many researchers have explored this issue, offering anecdotal, philosophical, and
empirical evidence. Bedros (2003) summarized the early work on conviction:

Past research (Lewis, 1986; Goetting, 1995; Saeed, 1996) that has dealt with
students’ preferences and understanding of proofs in general, has indicated that
most students find indirect arguments non-convincing. Also, if given the choice,
they prefer DPs to indirect ones even when the IPs presented to them are easier
to construct and understand. (p. 5)

Despite this statement, the situation is more complex. Brown (2018) noted that for
IP “there is a scarcity of empirical evidence to support current claims regarding stu-
dents’ lacking a sense of conviction” (p. 2). Indeed, evidence to the contrary exists.
Tall (1979) gave first-year university students the standard PBC of the irrationality
of

√
2 and a more direct argument that focused on prime factorization. He found no

statistically significant difference in the proportions that chose each when students
selected based on which proof was more understandable/less confusing. In a second
study with a less familiar prompt (

√
5/8), he found students did prefer a more direct

approach when asked to choose based on degree of understanding/confusion. Brown
(2018) explored conviction via a series of comparative tasks and ultimately con-
cluded “rather than demonstrating links between students’ sense of conviction and the
directness of a proof, what is shown is that familiarity influenced students’ sense of
conviction” (p. 12). Furthermore, by analyzing student feedback, Brown was able to
show that additional elements are responsible for instilling conviction, like simplic-
ity, conciseness, and the degree to which an argument aligns with a student’s thinking
patterns. Thus, we have Inconsistent findings for this hypothesis: While some authors
have seen evidence that PBC fails to instill conviction (Bedros 2003; Harel & Sow-
der 1998; Leron 1985), others have found evidence explicitly contradicting this and
pointing to the influence of confounding variables (Brown 2011, 2012, 2018; Tall
1979).

False World Hypotheses

If a statement of the form p =⇒ q is actually true, then a proof by contradiction,
which begins with the assumption of p ∧ ¬q, will force the student to inhabit a
logical world that, in fact, cannot exist. The hypotheses that fall under this label
center around the issues that come with this territory.

Impossible Objects Hypothesis [Supported]

Often, the assumption of p ∧ ¬q in a PBC leads to the postulation of a mathematical
object which cannot exist or cannot be drawn. In some cases, this impossibility can
be hidden behind notation (e.g., a number which must be both even and odd can
be written simply as n). In other cases, the PBC places assumptions on a geometric
object which preclude drawing it (e.g., a planar triangle with angle sum more than 180
degrees, lines that must be parallel and intersect, etc.). As such, there was historical
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pushback on IP as a general method: “Some of the arguments given against usual
indirect proof are that it often leads to a distorted and inexact figure ... and that it
[IP] requires that [the figure] to be constructed which is actually impossible” (Lazar
1947, p. 234). Documented concerns about impossible figures go back even further:
Leadbeater (1937) recounted a paper from about 1907 that objected to PBC because
“it required that to be constructed which was experimentally impossible” (p. 28). The
Impossible Objects Hypothesis states that the impossible objects sometimes created
when using a PBC act as an affective (and operational) hurdle to students.

The evidence for this hypothesis mostly comes in the form of observing how
students behave when faced with impossible objects. In some settings, students
skirt the affective hurdle by falling back on the imprecise nature of hand-sketching
(Baccaglini-Frank et al. 2013; Mariotti and Antonini 2009). This might occur if a “tri-
angle” in a PBC is supposed to have two right angles and the student draws a figure
with two nearly right angles. In other research, students will seek out new objects
to bridge the impossible and possible worlds. In some cases, this is done through a
process known as “abduction” (Antonini 2019; Antonini and Mariotti 2009; Mariotti
and Antonini 2009), and in other cases, through a “pseudo-object” (Baccaglini-Frank
et al. 2013, 2018; Leung and Lopez-Real (2002). Finally, Koichu (2012) found that
“definitions and axioms of geometry can be intellectually necessitated for students
by means of the exploration of impossible objects” (p. 2). By using the Penrose tribar
and an impossible plane in a tetrahedon (optical illusions that can be drawn but not
created), Koichu leveraged the affective discomfort of impossible objects to motivate
the selection of particular axioms in Euclidean geometry.

Beyond the representational difficulties inherent to and affordances of impossible
objects, students must also have the courage to work with these objects and expect
that known theorems may be applied to them (Antonini & Mariotti 2006, 2008).
Overall, the Impossible Objects Hypothesis appears Supported, although most of the
papers mentioned above are case studies involving small sample sizes.

False Premise Hypothesis [Supported]

This hypothesis suggests that people have difficulty using a statement they suspect is
false (p ∧ ¬q) as the starting point for a series of logical implications. Hine (2019)
summarized this idea nicely: “reasoning based on false assumptions induces cogni-
tive strain, because the student does not know what is or what is not true” (p. 31).
Researchers have explored this hypothesis for at least the last fifty years. For exam-
ple, Thompson (1996) cited a 1979 dissertation by Edgar Williams who found that
60% of his sample of Albertan high school students would not make deductions from
false hypotheses. Bedros (2003) cited dissertations from the 1980s and 1990s with
similar findings in calculus and number theory. Durand-Guerrier (2003) asked stu-
dents which integers between 1 and 20 would make this implication true: “If n is
even, then n + 1 is prime”. She found that students, using the logic of everyday life,
first reduced their thinking to those numbers that make the antecedent true (evens),
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and then checked if they made the consequent true, missing the fact that odd num-
bers create a false antecedent, and hence, a true conditional. The aversion of working
from a false premise has also been observed outside of mathematical settings (Luria
1976; Norenzayan, Choi, & Peng 2007).

Within the mathematical space, Brown (2018) offered a possible explanation for
this trepidation. She noted that most students are raised with a standard Euclidean
view of logic (axioms are truth, logic creates more truth), while PBC forces a
“hypothetico-deductive” view of logic (axioms may or may not be true, logic creates
new statements which are valid deductions even if their premises are false). Given
this contrast, each act of PBC is then a revolt against the tradition laid down in high
school mathematics. While other authors in mathematics education have explored
these ideas for students new to PBC (Antonini & Mariotti 2006, 2008; Durand-
Guerrier, Boero, Douek, Epp, & Tanguay 2012; Harel & Sowder 1998; Jourdan &
Yevdokimov 2016), Davis (2009) explored the hypothesis in experienced mathemati-
cians/scientists. For this group, reasoning from falseness appeared to be a natural act,
and Davis catalogued examples of this behavior. These included the advancement
of the topology of manifolds, the use of Newtonian physics in classical continuum
mechanics, the process of finding roots by substituting best guesses, and even simple
situations where one might check for the equality of 8

11 and 5
7 by setting them equal

and cross-multiplying. In all these cases, the thinker knows they are likely arguing
from falseness, and yet progress can be made by reasoning this way. Taken together,
existing research suggests the hypothesis is Supported for students newer to PBC,
and that the hypothesis holds less influece for experts.

Foundational Hypotheses

Foundational Hypotheses are related to the logical bedrock on which PBC is built.
While “Operational Hypotheses” and “Affective Hypotheses” center on the act of
doing PBC and the concomitant emotions at play, Foundational Hypotheses deal with
higher-level questions like: Why is PBC valid, what are its logical foundations, and
how does it relate to other indirect forms of argumentation? Gasser (1992) pointed
out some of the issues at play:

Principles of logic such as those of excluded middle and noncontradiction are
also at work [in PBC], but as Aristotle pointed out, these almost always remain
unsaid in the course of a proof... It would seem that such principles of logic are
(or – what is just as important – are perceived as being) more present in indirect
proof than in other sorts of reasoning. For in indirect proof these principles
are present not vaguely and abstractly, as being ‘at the basis of all deductive
activity’, but they play an active argumentative role in the deduction that is
being carried out. (p. 48)

In essence, the hypotheses that follow are based on a simple notion: the logic of
how PBC works is simply more complex, more foregrounded, and less normative
than that of DP.
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Metatheoretical Hypothesis

We take the name “metatheoretical hypothesis” from Brown (2018) whose descrip-
tion and development are based on the work of several other scholars (primarily,
Antonini & Mariotti 2008). The idea here is that every statement to prove is actually
part of a triplet (S, P, T ) consisting of a statement, proof, and theory (e.g., Euclidean
axiomatics) in which the proof derives the statement. A PBC is special in that the
student does not directly prove S (say, p =⇒ q) via P , but instead, demonstrates a
secondary statement, S∗ (say, p∧¬q =⇒ r ∧¬r) via a direct proof P ∗ and the same
theory T . In addition, the student needs a way (i.e., the logical argument behind why
PBC works) of showing that the triplet (S∗, P ∗, T ) can give rise to (S, P, T ), which
Antonini and Mariotti (2008) called the “meta-theorem” (MS, MP, MT ). With this
nomenclature, the Metatheoretical Hypothesis is the claim that students struggle to
know the triplet (MS, MP, MT ), or fail to see that the triplet (S, P, T ) is proved via
an alternate triplet (S∗, P ∗, T ) and a metatheory that relates the two triplets. Brown
(2018) summarized her hypothesis by writing that “students’ difficulties gaining con-
viction from and reasoning with IPs are tied to students’ difficulties reasoning with
or accepting the metatheorems required” (p. 5). Epp (2009) spoke to this complexity
as well noting that “Even rather simple proofs and disproofs are built atop a normally
unexpressed substructure of great logical and linguistic complexity” (p. 313). Note
that this hypothesis is not suggesting DP is devoid of a meta-theory (indeed, students
of logic will be familiar with terms like “modus ponens”). Rather, the hypothe-
sis suggests that the meta-theory in PBC is more problematic, possibly because the
meta-theory of DP is so standard/taken-for-granted that students may forget it is even
there.

To date, some research has explored this hypothesis to varying degrees of speci-
ficity. For example, when Thompson (1992) asked students to explain how IP
functions, almost two-thirds of participants received poor scores when students’
rationales were holistically scored. Bleiler et al. (2014) found similar issues with
teachers, noting that they were “focusing on (local) specifics of an argument but
overlooking the (global) logical structure of an argument” (p. 107). In an impor-
tant conference paper, Brown (2016) showed that metatheoretical issues change over
time. Students were given two statements: “For all positive integers n, if n mod 3 ≡ 2
then n is not a perfect square” (Theorem 5 in the paper; S in the above notation)
and “There exists no positive integer n such that n mod 3 ≡ 2 and n is a per-
fect square” (Statement A in the paper; S∗, essentially). Students were then asked
if one could prove Theorem 5 by proving Statement A. Among 35 undergraduates
who had taken Introduction to Proof, Real Analysis, and Abstract Algebra classes,
83% correctly answered yes, suggesting knowledge that S∗ =⇒ S. Among a group
of 21 novice provers, 42.8% answered incorrectly and 23.8% showed hesitancy by
answering “Yes-no-yes”. In the same study, 100% of 6 mathematicians answered cor-
rectly. Finally, when asked which statement they would pursue first when attempting
to prove Theorem 5, novices preferred Theorem 5 (76.2% Theorem 5, 9.5% State-
ment A, 14.3% No Response), while this preference dissolved among experienced
proof writers (57.1% Theorem 5, 42.9% Statement A) and mathematicians (33.3%
Theorem 5, 33.3% Statement A, 33.3% Either).
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In the related setting of proof by contraposition (here S∗ is ¬q =⇒ ¬p), Antonini
and Mariotti (2008) described a college student Fabio who was confident in the proof
that n odd =⇒ n2 odd [(S∗, P ∗, T )], but was unsure if this result proved the orig-
inal claim that n2 even =⇒ n even [(S, P, T )], perhaps due to weaknesses in the
metatheory that connected the two triplets. Similarly, Stylianides et al. (2004) found
specific examples of students who believed in the veracity of the secondary state-
ment, S∗ (¬q =⇒ ¬p), but who failed to see how this could be related to the primary
statement, S (p =⇒ q). Inglis and Simpson (2008) looked more generally at the con-
nections students held among the four statements p =⇒ q, ¬p =⇒ ¬q, q =⇒ p,
and ¬q =⇒ ¬p. In this more general setting, the authors found that students strug-
gle with questions related to conditionals, suggesting weaknesses in basic logic, and
hence, suggesting that advanced logic (such as appears in PBC) might suffer. Overall,
this hypothesis is Supported by research from many authors.

Argumentation Rift Hypothesis [Supported]

Some scholars find the logical challenges asserted by the “Metatheoretical Hypo
thesis” somewhat counterintuitive. As Reid and Dobbin (1998) wrote: “Formal
proofs by contradiction are difficult for many students, however, the ease with which
quite young students use contradiction in arguments suggests that it is not the rea-
soning itself which causes the problem” (p. 46). Indeed, research has shown that
children naturally engage in counterfactual/indirect reasoning in everyday life and
unprompted mathematical settings (Antonini 2003; Freudenthal 1973; Maher et al.
2007; Rafetseder et al. 2013; Reid and Dobbin 1998). The Argumentation Rift
Hypothesis claims that some divide exists between the indirect thinking people do in
everyday life and more formal PBC settings, and as such, skills in the former do not
immediately carry over to the latter.

Some work has been done to understand and verify the existence of this divide.
For example, Reid and Dobbin (1998) conjectured that it is due, in part, to an absence
of “emotioning” in formal mathematical PBC settings compared to its presence in
everyday argumentation. As an example, Reid and Dobbin found that children play-
ing the game Set needed to be sure they had found the complete solution (emotioning
present). In some mathematical settings that use PBC, it is possible that this drive is
not present. For example, the authors point to the proof that

√
2 is irrational, noting

that the statement is already part of most students’ concept images by the time they
encounter the formal proof (see also Lin et al. 2003; Tall 1979). To increase emotion-
ing, thereby facilitating the work of PBC, Hadas et al. (2000) argued for the use of
dynamic geometry systems, while Harel and Sowder (1998) stressed the importance
of authentic inquiry.

Another possible cause for the rift is the differing logic present in PBC and every-
day settings (Lazar 1947; Lin et al. 2003). Brown (2016) noted: “There is a profusion
of research from cognitive psychology demonstrating that humans’ ways of reason-
ing do not fully align with the forms of reasoning used in standard logic” (p. 581). As
a simple example of these differences, Stylianides et al. (2004) offered students the
prompts: “If a car doesn’t have fuel, it will not move” and “The car has fuel”. They
then asked about the conclusion “The car will definitely move”. Several students
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argued correctly (the car may not move), not by thinking about logical statements,
but based on personal experiences with driving (e.g., the engine might be broken).
The authors wrote that “adult reasoners’ application of knowledge about judgments
of necessity is affected by personal knowledge or beliefs about the argument content”
(p. 155).

An additional reason for the rift between indirect argumentation and proof is that
argumentation often takes place in the verbal, not symbolic, context. Stylianides et
al. (2004) studied the importance of the reasoning domain when exploring logical
ability. They found that education majors were able to reason about contraposition
far more effectively in verbal domains (67% correct) compared to symbolic domains
(20%, n = 70). Some will find this result unsurprising, for even within the quantita-
tive space, not all forms of indirect reasoning are logically equivalent. For example,
Otani (2019) used Toulmin’s (2005) argumentation model to contrast PBC with null
hypothesis significance testing (NHST). By comparing the data, warrant, backing,
qualifier, rebuttal, and claim in each setting, the author highlighted key differences
between the two forms of argument. For example, when arriving at a contradiction
(data) in a PBC, classical logic (backing) guarantees (qualifier) that p =⇒ q (claim).
In NHST, finding a p-value < α based on observations (data) allows one to tenta-
tively (qualifier) reject H0 (claim) based on probability theory (backing). While both
techniques have an indirect flavor, PBC advances with logical certainty, while NHST
advances with probabilistic hopefulness. Otani offered a caution within the quantita-
tive space that likely applies as one thinks more generally about the argumentation
rift: “Many students tend to fall into the illusion that the analogical approach with
mathematical proof by contradiction is applicable to hypothesis testing in spite of
the fact that the analogy does not actually work” (p. 2). Overall, this hypothesis is
Supported in the literature.

Conflation Hypothesis [Supported]

The Conflation Hypothesis states that people experience difficulty with PBC because
it shares structural and logical elements with other forms of IP (e.g., proof by contra-
position, proof by counterexample). Specifically, some PBCs argue from p ∧ ¬q to
¬p, hence arriving at the contradiction p∧¬p. If the assumption of p is not actually
used to derive ¬p, these arguments can be presented more simply as ¬q =⇒ ¬p,
a proof by contraposition. Given that many students learn these techniques within a
short span (say, in an Introduction to Proof course), it is understandable why they
might intertwine in students’ minds. To date, some work has been done on this
topic, often in the form of research asking participants to identify the type of proof
being used in some prompt. For example, Bleiler et al. (2014) found that teachers
had trouble articulating differences between proof by contraposition and PBC when
offering feedback to students, but not when differentiating these settings for them-
selves. In a different study of eight prospective primary school mathematics teachers,
five misidentified a PBC as a proof by contraposition (Doruk and Kaplan 2018). In
a larger study of 172 preservice teachers (Doruk 2019), only 36% could correctly
identify a PBC as such, while 37% incorrectly chose proof by contraposition as
the proof type. Confusion was present even among those who answered correctly,
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for in interviews, subjects tended to focus on superficial features, such as particular
phrases (“whether or not”, “the contrary”), when identifying proof types, rather than
deep logical structures. The tendency to confuse PBC and contraposition has also
been seen in students (Goetting 1995; Stylianides et al. 2004). To add to the confu-
sion, Thompson (1996) found evidence of students interchanging PBC and proof by
counterexample. Given the above work on both teachers and students, the Conflation
Hypothesis is Supported.

Discussion and Future Directions

In the previous two sections, we discussed our systematic review of the research on
PBC and then leveraged this literature base to build the HFPBC. In this section, we
offer some high-level thoughts for the field moving forward.

First, while organizational tools like Fig. 1 can be helpful in structuring knowl-
edge and orienting researchers, they also can mislead people. For example, while the
leaf nodes are printed using the same size and darkness of font, this does not imply
they are equally developed or impactful for students. We hope our labelling system
(Unstudied, Emerging, Inconsistent, and Supported) will remind the field of the lay
of the land. In addition, the physical space between these hypotheses does not imply
they are independent. To the contrary, we believe they have strong interaction effects.
For example, Brown (2016) noted that students’ difficulties with understanding how
PBC works (“Foundational Hypotheses”) were partly the result of textbooks not ade-
quately training students on formal logic (“Training Hypotheses”). Antonini (2019)
argued that “even if a person formally knows that a statement has been proved, this
knowledge is not always associated with the feeling that the statement is necessarily
true” (p. 794). That is, logical clarity (“Foundational Hypotheses”) is not a suffi-
cient condition for instilling conviction (“Conviction Hypothesis”). Together, these
authors trace a path from training through logic to conviction, each layer influencing
its successor.

Figure 1 also hides the important influence of context. That is, there is not sim-
ply one version of the HFPBC, but rather many, depending on the who, what, when,
where, why, and how that a particular researcher is studying. The critical role of con-
text was seen in many of the above hypotheses. For example, Stylianides et al. (2004)
found differences between education majors and mathematics majors when explor-
ing proof by contraposition. Certain groups, like mathematicians and Olympiad-level
problem solvers have shown great skill in using PBC (Tall et al. 2012). Said simply:
what holds for one population (the “who”) may not hold for another. Furthermore,
the “Language Filtration Hypothesis” showed that the “where” matters: Mandarin
and English structure everyday language differently, presenting unique challenges
for negation. Similarly, studies on preservice teachers in Turkey (Demiray & Bostan
2017) and the United States (Bleiler et al. 2014) revealed differences in their under-
standing of PBC. The importance of “when” was seen in Brown (2016) which
revealed differences in views related to PBC among novice, mature, and expert proof
writers. Amit and Portnov-Neeman (2017) showed that the “how” of PBC matters:
students trained in PBC using one approach performed differently than students
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trained using a second approach. This study underscored the fact that PBC cannot
be viewed as pedagogically agnostic. To speak about the challenges posed by PBC,
one must necessarily consider how it was taught, to whom, at what stage of maturity,
where in the world, and with what goals.

Looking to the future, we would like to again caution researchers about using
language that suggests that DP is easier, more preferred, more convincing, or more
anything than IP (or PBC, specifically). While the focus of our review was on iden-
tifying possible difficulties surrounding PBC, the explicit comparison of DP and IP
was a much-discussed theme in (and natural subset of) the reviewed papers. Surpris-
ingly, we found little empirical evidence supporting any such claims, despite a long
list of anecdotal, historical, and philosophical reasons why they might be the case. In
addition, we feel these claims ignore the nuances that underpin a real conversation
comparing the two proof types (e.g., for whom? in what settings? at what experience
levels? on what particular problems? with what training?). Some of the best work
comparing DP and IP comes from Brown (2011, 2018), who found that comparisons
across proof types are muddied by a multitude of confounding variables includ-
ing proof simplicity, conciseness, familiarity, and alignment with students’ existing
thinking.

One option moving forward is to stop the binary focus on DP versus IP and to
simply explore the challenges present within PBC. The tripartite structure of Fig. 1
suggests that the situation is incredibly complex, and the research literature backs
this up. Antonini (2019) provided an important example of this using the case of
Fabio, a senior undergraduate (and probably the most-cited student in the entire PBC
literature). Despite understanding the structure of PBC (“Foundational Hypotheses”)
and producing PBCs (“Operational Hypotheses”), he appeared to have strong affec-
tive reservations with the technique, noting “the absurdity is ... at least embarrassing.
You reach a contradiction ... so what? You haven’t proved anything! ... [Y]ou haven’t
shown it to me” (p. 797). This vignette suggests that even when behavior and logic
are in place, affect may be out of step. As such, attending to only certain hypotheses
or sub-trees of the HFPBC may leave researchers with an incomplete view of PBC in
a given population.

Finally, researchers will need to reconcile the HFPBC with their own views
on PBC. Because Fig. 1 was created from a position of inclusivity, some of the
hypotheses may be incompatible with certain theoretical viewpoints or methodolog-
ical approaches to studying PBC. Indeed, we saw a huge range of approaches to
the latter: high-level statistics for performance on a single (or many) PBC prob-
lems, surveys asking students to identify which proof type is used in a given proof,
side-by-side comparisons of DP and PBC, clinical interviews related to PBC, natural-
istic mathematical settings with and without technology in which students use PBC,
non-mathematical settings that use indirect argumentation, teaching experiments,
and historical/textbook analyses. As an example of the above-mentioned reconcil-
iation, readers might explore our companion paper (Rabin and Quarfoot, in press)
which focused on PBC problems within an “Introduction to Proof” course. We found
the most success by looking at a small subset of the hypotheses using an approach
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combining students’ homework solutions, exam solutions, and interviews. Students’
written work was useful for thinking about “Operational Hypotheses”, while inter-
views gave the chance to explore all three sub-trees of Fig. 1. Whatever methodology
researchers choose, they should take care to ensure their tools can actually help study
the hypotheses they are interested in developing.

Ultimately, it is the job of researchers within a given field to bring organization
to their growing universe. We believe our literature review and its distillation into
the HFPBC are an important step forward for those interested in PBC, and proof
more generally. Indeed, we sense that the research on direct proof might also benefit
from such an effort. Furthermore, we hope this paper can act as a PBC field-wide
reset, inspiring researchers to revisit supposed truths (e.g., comparing DP to IP, citing
specific hypotheses as paramount, etc.) and offering new directions for additional
work.

Appendix: Literature Review Articles

Table 2 35 articles identified by the initial search of databases and prominent journals (search order)

Search Quick citation Title

ERIC - PBC Antonini (2019) Intuitive acceptance of proof by contradiction

ERIC - PBC Demiray and Boston (2017) Pre-service middle school mathematics teachers’
evaluations of discussions: The case of proof by
contradiction

ERIC - PBC Doruk (2019) Preservice mathematics teachers’ determination skills
of the proof techniques: The case of integers

ERIC - PBC Jourdan and Yevdokimov
(2016)

On the analysis of indirect proofs: Contradiction and
contraposition

ERIC - PBC Hine (2019) Proof by contradiction: Teaching and learning consid-
erations in the secondary mathematics classroom

ERIC - PBC Shipman (2016) Subtleties of hidden quantifiers in implication

ERIC - PBC Baccaglini-Frank, Antonini,
Leung, and Mariotti (2013)

Reasoning by contradiction in dynamic geometry

ERIC - PBC Bleiler, Thompson, and
Krajčevski (2014)

Providing written feedback on students’ mathemati-
cal arguments: Proof validations of prospective sec-
ondary mathematics teachers

ERIC - PBC Antonini (2003) Non-examples and proof by contradiction

ERIC - PBC Leung and Lopez-Real (2002) Theorem justification and acquisition in dynamic
geometry: A case of proof by contradiction

ERIC - PBC Antonini and Mariotti (2006) Reasoning in an absurd world: Difficulties with proof
by contradiction

ERIC - PBC Lin, Lee, and Wu Yu (2003) Students’ understanding of proof by contradiction

ERIC - IP Brown (2017) Who’s there? A study of students’ reasoning about a
proof of existence

ERIC - IP Thompson (1996) Learning and teaching indirect proof
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Table 2 (continued)

Search Quick citation Title

EBSCO - PBC Chamberlain (2017) Investigating the development of proof comprehen-
sion: The case of proof by contradiction

EBSCO - PBC Maher, Mueller, and
Weber (2007)

Tracing middle school students’ construction of argu-
ments

EBSCO - PBC Epp (1998) A unified framework for proof and disproof

EBSCO - PBC Davis (2009) The role of the untrue in mathematics

EBSCO - IP Brown (2018) Are indirect proofs less convincing? A study of stu-
dents’ comparative assessments

EBSCO - IP Antonini and Mariotti (2008) Indirect proof: What is specific to this way of prov-
ing?

EBSCO - IP Seidlin (1932) In defense of the “indirect” proof

EBSCO - IP Mancosu (1991) On the status of proofs by contradiction in the seven-
teenth century

ProQuest - PBC Bedros (2003) An exploratory study of undergraduate students’ per-
ceptions and understandings of indirect proofs

GS - PBC Reid and Dobbin (1998) Why is proof by contradiction difficult?

GS - PBC Antonini and Mariotti (2009) Abduction and the explanation of anomalies: The
case of proof by contradiction

GS - PBC Baccaglini-Frank,
Antonini, Leung, and
Mariotti (2018)

From pseudo-objects in dynamic explorations to
proof by contradiction

GS - IP Antonini and Mariotti (2007) Indirect proof: An interpreting model

GS - IP Gasser (1992) Argumentative aspects of indirect proof

GS - IP Brown (2013) Partial unpacking and indirect proofs: A study of stu-
dents’ productive use of the symbolic proof scheme

GS - IP Leadbeater (1937) Indirect proof in geometry. A defence

GS - IP Lazar (1947) The logic of the indirect proof in geometry: Analysis,
criticism and recommendations

GS - IP Byham (1969) Indirect proof in geometry from Euclid to the present

ESM - PBC Leron (1985) A direct approach to indirect proofs

ZDM - PBC Hanna and de Villiers (2012) Proof and proving in mathematics education: The
19th ICMI study

FTL - PBC Koichu (2012) Enhancing an intellectual need for defining and prov-
ing: A case of impossible objects
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Table 3 25 additional articles identified via bibliographic iteration (alphabetical order)

Quick citation Title

Amit and Portnov-Neeman (2017) Explicit teaching of strategies – The case of proof by contra-
diction

Antonini (2001) Negation in mathematics: Obstacles emerging from an
exploratory study

Antonini (2010) A model to analyse argumentations supporting impossibilities
in mathematics

Barnard (1995) The impact of meaning on students’ ability to negate state-
ments

Barnard and Tall (1997) Cognitive units, connections and mathematical proof

Brown (2011) An investigation of students’ proof preferences: The case of
indirect proofs

Brown (2012) Making jumps: An exploration of students’ difficulties inter-
preting indirect proofs

Brown (2016) When nothing leads to everything: Novices and experts work-
ing at the level of a logical theory

Dawkins and Karunakaran (2016) Why research on proof-oriented mathematical behavior should
attend to the role of particular mathematical content

Doruk and Kaplan (2018) Prospective mathematics teachers’ strategies for evaluating the
accuracy of proofs in the field of analysis

Dubinsky and Yiparaki (2000) On student understanding of AE and EA quantification

Durand-Guerrier (2003) Which notion of implication is the right one? From logical
considerations to a didactic perspective

Epp (2003) The role of logic in teaching proof

Epp (2009) The use of logic in teaching proof

Goetting (1995) The college student’s understanding of mathematical proof

Hadas, Hershkowitz, and
Schwarz (2000)

The role of contradiction and uncertainty in promoting the
need to prove in dynamic geometry environments

Harel and Sowder (1998) Students’ proof schemes: Results from exploratory studies

Inglis and Simpson (2008) Conditional inference and advanced mathematical study

Mariotti and Antonini (2009) Breakdown and reconstruction of figural concepts in proofs by
contradiction in geometry

Otani (2019) Comparing structures of statistical hypothesis testing with
proof by contradiction: In terms of argument

Pasztor and Alacaci (2005) On people’s incorrect either-or patterns in negating quantified
statements: A study

Rafetseder, Schwitalla,
and Perner (2013)

Counterfactual reasoning: From childhood to adulthood

Robert and Schwarzenberger (1991) Research in teaching and learning mathematics at an advanced
level

Stylianides, Stylianides,
and Philippou (2004)

Undergraduate students’ understanding of the contraposition
equivalence rule in symbolic and verbal contexts

Tall (1979) Cognitive aspects of proof, with special reference to the
irrationality of

√
2
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