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Abstract
In the transition from secondary to tertiary mathematics, students try to participate
in tertiary mathematics by replicating familiar school mathematical discourses.
The objective of this case study is to investigate the conditions and affordances
under which students proceed from familiar school mathematical discourses to
new, tertiary discourses with a specific perspective on learning processes. The
study was located in an upper secondary transition course in a teaching unit on
elementary number theory in which highly proficient students in their penultimate
year of schooling participated. The main finding is that there was not a linear
progression towards the intended tertiary mathematical discourse of modular
multiplication but a coexistence of two discourses developing in parallel: the
intended tertiary discourse and a continuation of school mathematical discourses.
Students see these two discourses as the same, connected by the same perceived
aim of searching for patterns. Further hindering discursive development are
utterances, in which elements of the intended tertiary discourse (words and
representations) are used superfluously, so that elementary/secondary utterances
appear to be tertiary. These findings illustrate the need to explicate and address
metanarratives. Metanarratives can connect two discourses developing in parallel
in ways that, in this case, hinder discursive development towards the intended
tertiary discourse.
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Introduction

The transition from secondary to university mathematics is difficult for many students
(De Guzmán et al. 1998; Thomas et al. 2015). There are many reasons for these
difficulties: One of the most relevant is the changing nature of mathematical practices
and discourses (e.g., defining and proving, see Selden 2012; Zandieh and Rasmussen
2010; de Guzmán et al. 1998; Gueudet 2008; Alcock and Simpson 2002; Tall 1991).
When engaging in new tertiary discourses, students need to revisit or even relearn their
school mathematical knowledge (Sfard 2014). During this revisiting of familiar sec-
ondary mathematical objects in an unfamiliar tertiary context, students often fall back to
their secondary notions of these objects (Nardi et al. 2014; Praslon 1999).

The problem of students falling back to secondary mathematical notions in transition
raises the issue of how to design transition courses to revisit school knowledge in order
to foster students’ knowledge of it in new, tertiary ways. There has been little research
on the learning processes involved in relearning school knowledge as tertiary knowl-
edge (Schüler-Meyer 2018). Hence, the objective of this study is to investigate the
conditions and affordances under which students come to know their previous school
knowledge in new, tertiary ways, with a specific perspective on learning processes. To
accomplish this, this study employs a commognitive framework (Sfard 2008) to show
that an elementary/secondary discourse and an intended tertiary discourse can develop
in parallel in a classroom, leading to latent conflicts in the students’ communications,
for example, in regard to the use of representations.

This study investigates a transition-course classroom where students revisit their
knowledge of multiplication and division with remainders in an elementary number
theoretical discourse on modular multiplication with module 10 (multiplication table
given in Fig. 1; Leuders 2016). The second and third sections outline the theoretical
foundation for this study. The fourth section presents the methodology and the

Fig. 1 Ludwig’s multiplication table for multiplication modulo 10
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teaching-learning intervention on elementary number theory being investigated.
The fifth section illustrates the main results of this paper, namely, the
commognitive conflict of the eventually-to-be-shared-discourse and its causes,
in three episodes.

Problems in Transitioning from Secondary to Tertiary Mathematics

Students’ difficulties in learning processes in transition can be conceptualized as the
students’ attempts to communicate in secondary discourses while being engaged in
tertiary discourses. Nardi et al. (2014) investigated a case where a lecturer simulta-
neously evoked an algebraic and geometric notion of the derivative in order to decide
on a course of action, while students wanted to calculate the derivative (see also Stadler
2011). Thoma and Nardi (2017) illustrate how unresolved commognitive conflicts
result in errors as the students communicate in secondary discourses and, because of
this, do not specify the nature of variables. Taking a synthesizing perspective, Sfard
(2014) argues that the Bnew [tertiary] discourse is incommensurable with the former
[secondary] one, and this means that whatever the student knew before must now
become known in a different way^ (p. 201). In summary, in transition, conflicts in the
communication between discursants occur because the teacher’s tertiary discourse and
the students’ secondary discourses are incommensurable, that is, incompatible in the
use of keywords or representations or in their patterned activities (Sfard 2008).

Transitions in Elementary Number Theory

Elementary number theory as a tertiary subject is accessible to transition students
because objects such as multiples and divisibility are familiar to students from elemen-
tary mathematics, and representations can give insights into its complex problems
(Morselli 2006; Zazkis 2007; de Oliveira 2015; Toh et al. 2014; Zazkis and
Gadowsky 2001). Because of its accessibility, elementary number theory allows for
three different avenues towards tertiary mathematics. First, students can be engaged in
tertiary mathematical practices such as formulating hypotheses, testing conjectures,
investigating patterns and understanding proofs (Zazkis and Campbell 2006). Second,
students can engage in objectified discourses by progressing from a procedural under-
standing of divisibility (the action of division) to an object notion (an entity with certain
properties and relations) by investigating number examples (Zazkis and Campbell
1996). Third, students can appreciate more formal representations by using word
variables for geometrical patterns (Papadopoulos and Iatridou 2010; Iatridou and
Papadopoulos 2010). Such formal representations are Bnatural and relatively benign^
because of their closeness to integer arithmetic (Zazkis and Campbell 2006, p. 2).

While elementary number theory is accessible, there are also obstacles that may
emerge when students’ transition to it. When revisiting elementary processes/objects,
they can become Brudimentary and fragile,^ meaning that students fall back on
operations and see few relations to other processes/objects. This can be plausibly
explained by unresolved problems of understanding in the early years of schooling
(Campbell 2002). For example, students perceive evenness as being related to the last
digit of a number, and do not relate it to prime factorization of numbers (Zazkis 1998),
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or they associate divisibility with carrying out a division (Zazkis 2011) and grasp it with
linguistic metaphors such as Bfitting in^ (Zazkis 2002, also Smith 2006). A more
elaborate understanding of divisibility as an object requires students to see divisibility
as a relation between numbers connected to multiplicative structures (Zazkis and
Campbell 1996). Overcoming these obstacles requires a goal-oriented and careful work
with number examples (ibid.), the use of representations that highlight relevant features
(Zazkis and Gadowsky 2001), and fostering a conceptual understanding of the revisited
processes/objects from the early school years (Zazkis 2011).

Transition as Development of Discourses

The transition to tertiary mathematics is here conceptualized with the theory of
Commognition (Sfard 2008) where Blearning mathematics. .. is initiation into a dis-
course. ..^ (Nardi et al. 2014, p. 184). A discourse is a

special type of communication made distinct by its repertoire of admissible actions
and the way these actions are paired with re-actions; every discourse defines its own
community of discourse; discourses in language are distinguishable by their vocab-
ularies, visual mediators, routines, and endorsed narratives. (Sfard 2008, p. 297)

A discursive perspective on learning in transition is powerful in highlighting
commognitive conflicts stemming from the discursants’ engagement in different dis-
courses. A commognitive conflict occurs when discursants try to communicate across
incommensurable discourses (Sfard 2008), which leads to dysfunctional communica-
tions and prevents learning. In transition, these incommensurable discourses could be
an elementary and a tertiary discourse, where students might engage in elementary
discourses of multiplication while the teacher and tasks communicate in a tertiary
discourse of elementary number theory. Hence, conditions and affordances of discur-
sive development will manifest in commognitive conflicts.

In transition courses, commognitive conflicts will unfold in learning processes over
the course of the development of a discourse from elementary/secondary school
discourses towards the intended tertiary discourses. The development of discourses
can occur at the object level and at the meta-level:

& At the object level, development is the growth of the discourse in regard to the
Bnumber and complexity^ of endorsed narratives and routines, where narratives
Bdescribe objects and processes as well as relationships among those^ (Sfard 2008,
p. 300). Object-level development is about exploring Bregularities in the behavior of
objects^ (Sfard 2008, p. 300), which leads to new and more complex narratives
about these objects. For example, the discourse about multiplication modulo 10 can
be grown by also exploring the multiplication modulo 8 or by combining it with the
addition modulo 8 to arrive at more complex operations (see Sfard 2008).

& At the meta-level, development occurs by a Bchange in the meta-rules of the
discourse^ (Sfard 2008, p. 300). Meta-rules Bspeak about the actions of the
[participants in the discourse], not about the behavior of mathematical objects^
(Sfard 2008, p. 201). Meta-level development establishes a meta-level on the
object-level discourse, in this case about modular multiplication, by defining
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patterns in the activity of the discursants (Sfard 2008). For example, narratives that
establish commutativity would be regarded as a meta-level development, because
commutativity establishes a patterned way of the activity of multiplying. It would
also be regarded a meta-level development when students change the meta-rule
‘one can make inferences about divisibility by dividing’ towards the meta-rule ‘one
can make inferences about divisibility with the prime factorization’ (see Transitions
in Elementary Number Theory Section), as both rules are about patterns in the
activity of modular multiplication. As a result of meta-level developments, words
can be used in new ways that are incommensurable with the previous discourse.

The transition towards the tertiary discourse of elementary number theory requires
meta-level developments, as the patterns in the activities of elementary multiplication
are not compatible to the new patterns of modular multiplication.

Research Questions

Within commognition, conditions and affordances of coming to know previous school
knowledge in new, tertiary ways are manifest in commognitive conflicts in the devel-
opment of the classroom discourse, on both the object level and the meta-level.
Accordingly, this study investigates the following research questions in the context of
a transition course on elementary number theory:

RQ1: What commognitive conflicts occur in such a developmental perspective?
RQ2: How do these come into existence when students revisit familiar elementary/

secondary objects and come to know them in new, tertiary ways?

Further Theoretical Foundations for the Developmental Perspective

From the students’ perspectives, the nature of the intended tertiary discourse is yet
unfolding, and mathematics is known by way of secondary discourses. The intended
tertiary discourse is accessible through mathematical tasks and the expert teacher (Sfard
2014), but also through an unwritten learning-teaching agreement, which gives direction
to the classroom communicational activities. This agreement is continually updated to
reflect the current shared knowledge about whose discourse is eventually to be shared:

All the participants of the learning-teaching process need to be of one mind with
regard to (a) whose discourse is to be eventually shared, (b) who needs to act as
the teacher and who as a learner, and (c) what is the expected form, mechanism
and pace of the learning process. (Sfard 2015, p. 136)

In transition, this agreement is especially under scrutiny, because students engage, by the
very nature of a transition course, in a discourse that develops in unfamiliar ways.
Accordingly, the development to a tertiary discourse is here not only investigated in terms
of discursive object level and meta-level developments (Transition as Development of
Discourses Section), but also from the perspective of how an Beventually-to-be-shared
discourse^ emerges out of the individual communicative actions of the discursants. In this
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way, discursive development can be grasped as a dynamic process influenced by both the
students’ perceptions of the intended discourse and the actual Bdevelopmental status^ of
the classroom discourse. To conceptualize discursive development from this perspective,
new constructs are introduced to the theory of commognition.

The first construct is discursive variation. Discursive variation accounts for the phe-
nomenon that a discourse’s object rules and meta-rules are reiterated and might not change
much over time. In other words, it might be that discursants develop variations of narratives
and routines that have been established previously. From the students’ perspectives, these
could seem to be developments of the discourse. This can result in commognitive conflicts
of variation, where the students’ reiteration of elementary or secondary object rules and
meta-rules prevents the alignment of the intended tertiary discourse and the students’
discourse. For example, in the exploration of the multiplication table (Fig. 1), the students
utter variations of elementary narratives of odd and even numbers.

The second construct is themetanarrative. A metanarrative is a narrative that defines
patterns in the discursants’ activities of producing narratives (Lyotard 1984; compare
also with definition of the metadiscursive rule; Sfard 2008). In other words,
metanarratives are the themes behind the individual students’ narratives. A
metanarrative’s function is to assemble single narratives into a coherent whole for the
individual student. As such, metanarratives can be informed by past experiences of
producing narratives, especially those where narratives should align with institutions or
cultural norms. For example, a metanarrative such as Bin the end, the teacher will give
the correct answer^ will establish that students produce narratives that aim at the
teacher’s approval. Thus, a metanarrative guides a student’s communicative actions
towards the individually perceived eventually-to-be-shared discourse.

In a transition course where students from different classrooms come together in a
new learning group, different discourses will compete and interact with each other, for
example, discourses of different classrooms, discourses of different groups during
group work, and the discourse of the teacher who comes from a university mathemat-
ical background. Following Bakhtin (1981), this is theorized as heteroglossia, the
principle that at any given moment different discourses interact and influence a
classroom discourse’s development. Hence, there is a play of individual discursive
actions, each proposing a different narrative, and in this play, these narratives compete
to be endorsed by the others, so that they become part of the discourse that is to be
shared eventually. In other words, narratives can exert centripetal and centrifugal forces
in relation to the intended discourse (Bakhtin 1981).

& Communicative actions exert a centrifugal force towards continuing secondary
discourses as the eventually-to-be-shared discourse when they use elements of the
intended tertiary discourse (such as keywords and visual mediators) in a supple-
mentary way and express secondary, everyday, or non-viable narratives. A supple-
mentary use of keywords means that the narrative would still be endorsable to the
others without these keywords or that the keyword is used as a label to signify that
something should be recognized as belonging to the intended discourse. Narratives
are regarded as secondary or everyday when they are endorsable in such discourses;
they are non-viable if they are not endorsable by experts. For example, the utterance
BIf one takes two times modulo 5, one has modulo 10^ (Task 2, classroom
discussion, Edith, T75–80) is secondary, because it could be endorsed in an
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elementary discourse if the keyword Bmodulo^ is omitted. Hence, it exerts a centrif-
ugal force. Centrifugal forces appear to other discursants as being part of the intended
discourse by using some of its elements, but their narratives are variations of already
endorsed secondary narratives or are even non-viable. Hence, in terms of the learning-
teaching agreement, they stabilize and perpetuate familiar (secondary) discourses as
eventually-to-be-shared discourses, this way hindering discursive development.

& Communicative actions exert a centripetal force towards establishing the intended
tertiary discourse when they use keywords in previously accepted ways and express
narratives with new and viable object- and meta-discursive rules. A previously
accepted use means that keywords are used viably and their use has been
established over the course of the session. Narratives contain new object rules or
meta-rules when these rules have not been previously established. For example, the
utterance B[the multiplication table will repeat itself like that] because 1 modulo 10
is the same as 11 modulo 10, and so on^ (Task 2, classroom discussion, Karl,
T110–119) expresses a new object rule, namely that numbers can be in the same
residue class. At the same time, the keyword Bmodulo^ is used in a previously
established way. Centripetal forces have the potential to shift the discourse towards
the intended discourse as the eventually-to-be-shared discourse because their meta-
rules and object rules contribute to establishing a tertiary discourse while being
accessible to the other students: They are endorsable because they express these
rules in line with what has already been established.

Not all utterances exert centripetal or centrifugal forces. Conventional or everyday
narratives without a supplementary use of intended keywords or visual mediators are
regarded as Bneutral,^ as they do not develop the discourse towards the intended
discourse and, without a supplementary use of discursive elements, also do not look
as if they were part of the intended discourse.

Methodological Background

In this study, the third session of a five-session teaching intervention on number theory
was investigated. The teaching intervention was located at the very beginning of a one-
year extracurricular transition course taught by the author in 11th grade (90 min per
week on Fridays), which is the penultimate school year of upper secondary education in
Germany. The penultimate school year is the only option for school-based transition
courses, as the last year of upper secondary education is dedicated to the final
examination. Still, this course falls within the time frame that Gueudet (2008) defines
as transition. The course was implemented and designed by the author, in collaboration
at various points with master’s students.

Data Collection

The teaching intervention was taught by the author and videotaped with group-work
cameras and a whole-classroom camera. In this section, data from the two group
cameras and the whole-classroom discussions will be analyzed. Within the group-
work activities, students explored the patterns in the multiplication table and
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hypothesized about why they occur (Tasks 1 and 2). Here, the students’ individualized
discourses come to the fore. In the classroom discussions, the students presented their
solutions and discussed their viability, so that it became visible how secondary and
tertiary utterances are picked up and built upon by other students and the teacher.

Participants

Fifteen students, aged 15–17, participated voluntarily in the transition course. They
came from different mathematics classrooms in the same school. All of the students
considered studying STEM subjects at university. The transition course was commu-
nicated to them as a chance to engage with university mathematics. Hence, the students
were highly motivated and proficient.

Teaching Intervention

The teaching intervention on elementary number theory was the students’ first contact
with elementary number theory and with a Bdifferent kind^ of mathematics, as it
represented the first five sessions of the transition course. Because of this, the aims
of this intervention on elementary number theory were threefold: First, students were
introduced to new practices of hypothesizing and explaining, but not yet to more
tertiary practices of defining or proving. Second, the students were introduced to new
algebraic structures as a means to build a bridge between familiar elementary/secondary
discourses and tertiary discourses. This prepares the students for the subsequent
teaching intervention on group theory. Third, the students should be motivated and
experience the relevance of the mathematics.

This study was situated in a research program of design research. This research
program aims at developing local instruction theories with iterative design experiments
that aim at refining hypothetical learning trajectories (Prediger et al. 2015). The present
study is a first iteration. Previous research suggests the following cornerstones for a
hypothetical learning trajectory in elementary number theory (see Transitions in
Elementary Number Theory Section): First, disseminating the differences between
modular and elementary notions of numbers in order to avoid mixing up different
interpretations (Task 1 of determining patterns in the multiplication table; see below);
second, connecting linear congruencies to linear equations in algebra to counteract
procedural notions (Task 2 below; see Smith 2006); and third, investigating patterns by
means of transparent representations and number examples and going beyond empirical
investigations of these patterns with generic examples and algebraizations (all tasks).

The hypothetical learning trajectory addresses transition with a realistic mathe-
matics education (RME) approach. RME posits that context problems are a starting
point for students to reinvent mathematics in order to solve the dilemma between
informal and formal mathematics (Gravemeijer and Doorman 1999; Gravemeijer
1999). With RME, students can be introduced to tertiary mathematical objects and
practices in a meaningful, student-centered way (algebraic groups: Larsen 2013;
convergence: Dawkins 2012; practice of proving: Larsen and Zandieh 2008). In this
intervention, the intention was for the students to reinvent the discursive objects
prime factorization, residue class, and modular addition/multiplication, the latter as
reifications of the associated processes (see Sfard 1991; see Table 1). In addition,
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the learning trajectory was modelled along the object- and meta-level development
of discourses, as will be outlined in the next section.

Tasks and Intended Steps in the Learning Trajectory in Session 3

In the third session of the intervention on elementary number theory investigated in this
study, object rules and meta-rules of the discourse initially have a secondary nature, as
the students use familiar secondary discourses for working on the tasks. The intent was
for the students to develop object rules through reifying processes in modular arithmetic.

& Task 1: The students were asked to fill out the multiplication table modulo 10 (Fig.
1) to uncover patterns and to explain these patterns. The patterns in the multiplica-
tion table are connected to the module. To explain these patterns, the students
needed to uncover the relations between the composition of the module and the
factors of a multiplication (Leuders 2016), that is, formulate object rules of modular
multiplication. It was expected, however, that the students would begin by formu-
lating elementary meta-rules of how to do a modular multiplication based on
elementary knowledge about multiplication and division with a remainder (see
Transitions in Elementary Number Theory Section).

& Task 2: To link linear congruencies to linear equations, Task 2 (Fig. 2) introduced a
generic example in which a fictional student Ole tries to justify that the pattern in
the second row of the multiplication table is repetitive. The generic example
encourages students to look for structures, which is intended to foster the reification

Table 1 Content and aims of the five-session course on modular arithmetic

Session Contents Aims Intended discursive objects
(Focus of the session in bold)

1 Investigating real-life
problems (calendar dates
and clock times)

Developing a first
understanding of
modular arithmetic

Residue class;
modular addition/ subtraction

(as processes)

2 Exploring patterns in
modular addition

Exploring differences and
commonalities between
elementary arithmetic and
modular arithmetic

Residue class;
modular addition/ subtraction

(as objects)

3 Exploring patterns in
modular multiplication,
here, modulo 10

Exploring differences and
commonalities between
elementary arithmetic and
modular arithmetic

Residue class;
modular multiplication

(as object);
prime factorization

4 Real-life problem: Which
kinds of errors are not
detected by check digits?

Application of
modular arithmetic

Residue class;
modular multiplication; modular

addition (as objects and
processes), linear congruencies

5 Real-life problem: how to
construct a check digit
that always indicates
transposed digits

Application of
modular arithmetic

Residue class;
modular multiplication; modular

addition (as objects and
processes); linear congruencies
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of modular multiplication into an object by transforming the meta-rules of how to
do a modular multiplication into an object.

& Task 3: The students are asked to justify the repetitiveness of the pattern in the third
row. Here, students were intended to look beyond the given multiplication table. It
was intended that the students would produce a generic example similar to the one
in Task 2, while some students might also progress towards an algebraic justifica-
tion by relating module and factors with prime factorizations. Here, again, meta-
rules of doing a modular multiplication, rooted in elementary discourses, were
intended to be transformed into object rules of modular multiplication by looking
into the algebraic structures of the multiplication table.

The students worked on Tasks 1 and 2 first in small groups (2–4 students). After
that, the solutions to these tasks were presented in the classroom and their viability was
discussed. The students then worked on Task 3 in small groups for some minutes (not
reported here), which again was followed by a classroom discussion. Next, the small-
group work in Tasks 1 and 2 and the classroom discussions for Tasks 2 and 3 will be
reported (accounts for 85 min of the 90-min session).

Analysis of Data

In a first step of the analysis, all transcripts were segmented along the individual
production of narratives. A segment started with a student taking/getting a turn and
continued until the student had produced his or her narrative or until another student took

2 Explana�on of a pa�ern I

Ole conjectures that the numbers in the second row will always repeat. He 
wonders how to show this. He comes up with the following approach: 

What do you think about this approach? Why does it help to explain the 
pa�ern in a general way?

3 Explana�on of a pa�ern II

Explain that the number pa�ern in the third row also repeats. 

Fig. 2 Tasks 2 and 3 in Session 3 of the teaching intervention on number theory
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over. It was possible that two or more students co-constructed a narrative in one segment
and that the teacher was involved in this construction, so that one segment can be assigned
to multiple students. For each student, his or her segments were documented in chrono-
logical order for each task. Each segment was analyzed in regard to the keywords and the
visual mediators and their respective usages and in regard to the produced narratives.
Furthermore, each narrative was interpreted in regard to its underlying meta-rules and
object rules and whether they were elementary/secondary or tertiary in nature. For each
classroom activity—as reported in Tasks and Intended Steps in the Learning Trajectory in
Session 3 section—and for each student these rules were synthesized into a metanarrative
that gives coherence to this student’s production of narratives by identifying the underly-
ing theme. These analytical steps provide insights, via the identified metanarratives, into
how individual students proceeded to tertiary discourses and the individual students’
perspectives on the eventually-to-be-shared discourse.

In a second step, each segment was analyzed in terms of whether it exerted a centripetal
or centrifugal force, in line with the operationalization in the third section. This results in a
tabular overview, along the lines of object- and meta-discursive developments (see
Appendix), which illustrates the dynamic of how students revisit familiar elementary/
secondary objects in non-viable ways (centrifugal) and how students come to know
previous school knowledge in new, tertiary ways (centripetal), which addresses RQ2.

A continuation of centrifugal forces with similar narratives over the 90 min of the
session indicates the existence of a secondary discourse. The continued exertion of
centripetal forces together with tertiary object rules and meta-rules and a shared
metanarrative indicate a transition towards a unitary tertiary discourse. The comparison
of metanarratives gives insight as to whether and to what degree discursants’ narratives
are related or not. The resulting situational constellations show commognitive conflicts
in terms of incompatible developments (RQ1).

Analyses of Learning Processes in Transition

Appendix Table 3 gives an example that illustrates centripetal and centrifugal forces in
the final classroom discussion. Along the horizontal axis, elementary/secondary and
tertiary discursive rules are documented, which students enforce in their production of
narratives. Along the vertical axis, centrifugal and centripetal forces are documented.
The constellations illustrate how the students in the final classroom discussion of the
session move towards tertiary object-based narratives (centripetal). At the same time,
some students continue to propose variations of elementary/secondary narratives (cen-
trifugal). The comparison of centrifugal and centripetal forces over the course of the
investigated teaching session shows that in this final discussion, far less centrifugal
force was exerted than before. Additionally, compared with the previous conversations,
the students here engaged in conversations about multiples, leading to a substantial
number of tertiary narratives exerting centripetal forces. Looking at this table alone, it
might seem that Edith was a student who produced both secondary and tertiary
narratives, while the other students either produced one or the other. However, these
are only tendencies, as the table does not give a full account of all endorsed narratives.

The following three episodes give a fine-grained insight into the dynamics of
centrifugal and centripetal forces. These episodes were chosen based on the tabular
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compilation of centripetal and centrifugal forces because they prototypically show how
centripetal and centrifugal forces (Appendix Table 3) as well as underlying
metanarratives influence each other during discursive developments (Table 2).

Episode 1: Teacher-Guided Classroom Conversation after Working in Groups
on Task 2 (Begins with Turn 0, Ends with Turn 122)

The following episode is located in the classroom conversation about the second task.
In this episode, Liam suggests that a repeating pattern can be established in the
multiplication table if the number five is systematically subtracted from the numbers
in the second half of a non-repeating row.

31 Liam There it is: From 5 onward it simply is with modulo 10 the remainder 0.
32 Teacher Mhm [approving]
33 Liam And in the third, there it is then simply like that there is modulo 5; if one

subtracts 5 in this row, then the result is modulo 0, the same as
previously in these rows. Then it repeats.

In T31, Liam repeats an established description of the pattern in the second row. In
T33, he refers to the same position in the multiplication table as in T31, but in the third
row with factor 3 instead of factor 2 in the second row. Liam’s narrative is endorsable
without the keyword Bmodulo^ in the form Bthat there is 5^ and Bthere results the

Table 2 Endorsed metanarratives over the course of the analyzed intervention session

Activity Endorsed metanarratives
(Bwe^ indicates that it is endorsed by at least two students)

Group work on Task 1 Group Edith and John:
We search for geometric and numeric properties

in the multiplication table.

Group Carl, Lawrence, and Ludwig:
We search for number patterns (and sometimes geometric patterns) in the

multiplication table.

Group work on Task 2 Group Edith and John:
We search for rules to describe repeating patterns

with the distributive law.

Group Carl, Lawrence, and Ludwig:
We try to describe the emergence of patterns

in the multiplication table.

Classroom conversation on Task 2 Metanarrative 1 (shared by Edith, Lawrence, Ludwig, and Karl):
We search for underlying structures to explain the repeating

patterns, with a focus on both the distributive law
and the multiplication table.

Metanarrative 2 (Shared by Petra and Liam):
We search for further patterns in the multiplication table.

Classroom conversation on Task 3 Metanarrative 1 (shared by Edith, Lawrence, and Ludwig):
We explain the patterns in the multiplication table.

Metanarrative 2 (shared by Petra, Norwig, and Max):
We search and try to establish new repeating patterns,

while allowing the module to change.

174 International Journal of Research in Undergraduate Mathematics Education (2019) 5:163–182



same,^ which means that this keyword is used supplementary. Furthermore, the way
Liam uses Bmodulo^ indicates that modulo is an operator.

The narrative Liam produces is elementary, as it is about the elementary operation of
subtracting 5 from numbers in the multiplication table. Liam’s narratives enforce two
non-viable rules. First, he puts forward the object rule that modulo is an operator.
Second, he introduces—for the first time in this third intervention session—the meta-
rule that the multiplication table is a carrier of numbers on which one can operate in
order to establish new patterns. While this may be a variation of elementary rules of
operating on elementary numbers, it changes how the visual mediator multiplication
table is used in the classroom discourse, because previously its numbers were correctly
treated as not changeable. Nevertheless, the metanarrative behind Liam’s production of
narratives is the search for patterns in the multiplication table, which is in this form
endorsed by the other discursants.

Taken together, the secondary, non-viable narrative and the supplementary use of
modulo exert a centrifugal force. The supplementary use of modulo signalizes to the
other discursants that Liam’s narrative is endorsable, as it appears to fit the intended
discourse. Additionally, as his narrative is close to familiar discourses—changing the
multiplication table with elementary operations may be plausible to the other
discursants—it might also be relatively easy to endorse. As Liam is exploring new
ways of using the multiplication table, his utterance exerts a centrifugal force, because
his proposed new way of using the multiplication table appears to the other discursants
as belonging to the eventually-to-be-shared discourse, as it follows a metanarrative in
line with the shared meta-rule of searching for patterns in the multiplication table.

Episode 2: Task 3, Teacher-Guided Classroom Conversation after Working in Groups
on Task 3 (Begins with Turn 0, Ends with Turn 108)

In the classroom discussion about the third task, centrifugal forces push the discourse
towards changing the module of modular multiplication. The following conversation
(edited for brevity and clarity) is about whether a modular multiplication modulo 15
would have similar patterns as the one modulo 10, but in rows with uneven factors
instead of even factors.

30 Petra . . . If one would calculate with modulo 15, if that would exchange places
with the even ones? I mean with the uneven ones simply from 5 on the rows
would repeat, because with the even numbers [it would repeat] from 10?

31 Teacher Interesting question.. .. But I believe if we get behind this [points at
the multiplication table on the projector] we will have an answer to
your question.

32 Edith Can I say something to that?
33 Teacher Yes, if it contributes to this [points at multiplication table]. Yes.
34 Edith Yes, so I would say that that is not correct, because the repetition would

not change. It only changes like how one goes. It is a different approach,
but the repetition of the numbers would not change. That means, only
because you are in a different modulo it can’t be that the multiplication of
the same numbers changes.. . .

40 Norwig Ok, [I want to add] to that as well.
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41 Teacher Mhm. Yes, okay.
42 Norwig So, one sees that with 1, 3, 5, 7, 9 there is always a 5 [teacher approves].

That’s why it would work as well. It is logical, because we already said
that if you subtract 5 from 6, 7, 8, 9, and 10, 1 would be in the same row.
This is logical.

Both Petra’s (T30) and Edith’s (T34) utterances exert a centrifugal force in the
classroom conversation. The use of Bmodulo^ as a label suggests to the other
discursants that the utterances are in line with the intended discourse. At the same
time, the narratives are secondary in nature: They are a variation of the discourse on
patterns of natural numbers and on even and odd numbers. This makes them endorsable
by the others. Hence, these utterances push the conversation towards a non-intended
secondary discourse while looking like it is in line with the intended tertiary discourse.
And indeed, Norwig endorses Petra’s and Edith’s narratives (T42). He suggests that the
patterns in the multiplication table would change with a changing module. Notably,
with his utterance, Norwig seems to also endorse the centrifugal narrative from Liam in
Episode 1, where the object rule that the entries in the multiplication table can be
changed was put forward. This illustrates how Norwig, under the centrifugal forces
from both Episodes 1 and 2 may have been pushed towards non-viable narratives
which seem to be variations of narratives from elementary/secondary discourses on
elementary subtraction and elementary patterns of the order of natural numbers.

The individual metanarratives in this episode suggest an underlying commognitive
conflict (see overview of metanarratives in Table 2). Petra’s and Norwig’s narratives share
the meta-rule that the module can be changed in order to uncover new patterns. Beyond
that, Norwig seems to take up Liam’s extendedmetanarrative fromEpisode 1 and suggests
that the entries in the multiplication table can be operated upon. Edith, on the other hand,
shares the metanarrative of finding new patterns, but does not endorse the change of the
module. Instead, she seems to relate the multiplication table to the number line. Hence, in
this episode, the three students all produce narratives about the same issue, and seemingly
are communicating with each other, but the discourses they pursue share similar yet
different metanarratives that set Liam’s and Petra’s discourses in conflict with Edith’s.

Episode 3: Task 3, Teacher-Guided Classroom Conversation after Working in Groups
on Task 3 (Begins with Turn 0, Ends with Turn 108)

In the following episode from the final classroom conversation, centripetal forces push the
classroom discourse towards the intended tertiary discourse. Ludwig tries to explain why
the second row of the multiplication table with factor 2 is repeating, while the third is not.

6 Ludwig I wrote it down like this [partly reads from his worksheet]: If the
remainder of a number x is 0, I mean if at a number x the remainder is 0
[teacher approves, T8], so now at the 1 it would be at 0, with 2 it would
be at 5, with 3 it would again be 10 [teacher approves, T10], then a
repeating pattern would occur, because with the help of the distributive
law the number x, or a multiple of the number x, no, no, the number y
[teacher approves, T12] because the number y or a multiple of the
number y can be separated [from it].
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In his explanation, Ludwig uses the keywords Bremainder^ and Bmultiple^ in viable
ways, and these keywords have a relevant role, as his utterance would not be viable without
them. Furthermore, Ludwig’s explanation is a narrative with new object rules and meta-
rules. In this case, Ludwig establishes the object rule Ba repeating pattern occurs, if at a factor
y the remainder is 0, and hence, with the distributive law the multiplication can be split.^
This object rule implicitly assumes a prime factorization: It is tertiary. Thus, this explanation
has the potential to pull the conversation towards the intended tertiary discourse.

Ludwig’s narrative is the most elaborate one in this session. The underlying
metanarrative is Bexplaining the patterns^ but elaborated with the object rule that Bthe
result modulo 0 can be traced back to common factors of the product and the module.^
This metanarrative is in line with the prime factorization of numbers, and, hence, with
the intended tertiary discourse. As a result, Ludwig’s utterance exerts a centripetal force
towards the intended discourse in this conversation because of its use of keywords and
the novel tertiary object rule about common factors.

Centripetal and Centrifugal Forces in the Development of the Classroom Discourse

The centrifugal forces, here illustrated in Episodes 1 and 2, indicate not a discursive
development, but an extension of secondary discourses with variations of long-
endorsed elementary narratives about the processes of multiplication, division, and
the objects of even and odd numbers. These narratives culminate in the idea of
changing the multiplication table (Liam, T30, Phase 3) or the module to establish
new patterns (Petra, T30, Phase 4). They show that there is a secondary discourse in
this classroom that remains within established secondary object rules and meta-rules.
The continued activation of centrifugal forces over the whole session suggests that this
discourse lasts the whole third session of the intervention (see Appendix Table 3).

The centripetal forces indicate a discursive development in a parallel discourse. This
becomes evident in the final classroom conversation, here illustrated by Episode 3 and
Appendix Table 3, where some students explore new object rules that are based on the
idea of multiples. The idea of multiples originates in the group work in Task 2 (Karl,
T26, Phase 2)—relatively early in Session 3—but is only now endorsed. These
narratives can be regarded as a first step into tertiary object rules of elementary number
theory. They require the reorganization of secondary/elementary narratives, especially
the reorganization of the object rules of elementary operations.

Central Contributions and Discussion

This study investigates the conditions and affordances under which students come to
know their previous school knowledge in new, tertiary ways in an upper-secondary
transition course. It contributes to the examination of the problem of students’ continu-
ing secondary discourses in tertiary mathematics (Thoma and Nardi 2017; Nardi et al.
2014; Stadler 2011). By adding the constructs of metanarrative (Lyotard 1984) and
heteroglossia (see Bakhtin 1981) to Sfard’s (2008) discursive perspective, this study was
able to investigate the secondary-tertiary tradition from a learning processes perspective,
with a focus on students’ perspectives and students’ ways of constructing narratives
between familiar elementary/secondary discourses and the intended tertiary discourse.
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With respect to RQ1, this study finds a commognitive conflict of the eventually-to-
be-shared discourse. This commognitive conflict describes conflicts in communication
that result from two discourses developing in parallel in the classroom: the intended
tertiary discourse and a variation of elementary and/or secondary discourses. On the
one hand, the students are not Bof one mind with regard to whose discourse is to be
eventually shared^ (Sfard 2015, p. 136), because two discourses with different devel-
opmental trajectories coexist in the classroom. On the other hand, these two discourses
are still linked with a common metanarrative, as shown above in Episodes 1–3. Hence,
in the commognitive conflict of the eventually-to-be-shared discourses, the students try
to communicate over two discourses, which are perceived as the same by them. For the
students, this might seem feasible because of a shared metanarrative. However, as the
meta-rules and object rules of the two discourses differ, the discursants’ attempts at
communicating across the discourses lead to conflicts. One example is the two ways
students use the multiplication table (Fig. 1) in these two discourses, either as a
changeable object in the secondary discourse or as an algebraic structure in the
discourse of modular multiplication (see Episode 2). Another example is Ludwig’s
contribution in Episode 3. Ludwig’s utterance is located in the evolving tertiary
discourse. The teacher’s invitation for new explanations based on Ludwig’s contribu-
tion, however, again leads into the other elementary/secondary discourse, perhaps
because this discourse is more accessible, as it builds on familiar elementary discursive
rules. As a result, Ludwig’s contribution is not picked up by others.

With respect to RQ2, two main drivers for this commognitive conflict have been
identified. The first driver is a metanarrative (Lyotard 1984) of Bwe search for and
explain patterns,^ which is shared but individually elaborated by both the proponents of
tertiary discourses and of secondary discourses. Metanarratives are narratives that
define patterns in the students’ activities of producing narratives. The shared
metanarrative allows for the production of a wide range of narratives, which can lead
both to the intended discourse as a centripetal force (e.g., Bmultiples of 2 as a factor are
a prerequisite for patterns^) and to non-viable narratives as a centrifugal force (e.g.,
Bsubtracting 5 from a number of entries in the multiplication table to generate new
patterns^). For the proponents of the different narratives and, ultimately, of the two
different discourses, this metanarrative seems to act as a fallback narrative that is used
to make one’s narratives understandable to the others. This explains why the students
can still communicate with each other in the final classroom discussion: Edith is even
able to contribute to the two discourses, despite them being incommensurable. The
second driver is centrifugal forces. Student utterances can exert a centrifugal force
towards continuing secondary discourses when they use elements of the intended
tertiary discourse (such as keywords and visual mediators) in a supplementary way to
express elementary/secondary, everyday, or non-viable narratives. For example, stu-
dents use the word modulo in narratives about elementary multiplication superfluously;
that is, the narrative is an endorsable elementary narrative without the word modulo.
Thus, the keyword modulo, albeit tertiary, does not add to the discourse’s development
to a tertiary discourse. Instead, it perpetuates already accepted school mathematical
discourses and even adds non-viable narratives to it.

The results of this study suggest that changing or addressing metanarratives is
relevant in transition. In the context of argumentation, it has been argued that a Bshared
basis of agreement^ regulates the flow of a proof, i.e., the steps in a proving process, so
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that students need an awareness of it (Gabel and Dreyfus 2016). Here, metanarratives
are an enabling factor of the parallel development of tertiary and secondary discourse in
that they allow for patterned activities that can be either elementary/secondary or
tertiary in nature. It might be that rituals—teacher-modelled or -guided patterned
communicative activities—can give students a clearer picture of intended
metanarratives (Lavie et al. 2018). However, ritual teaching might not be compatible
with the guided reinvention approach employed here, which gives students more
agency. Alternatively, materializing tertiary utterances such as Ludwig’s in Episode 3
can foster rituals of Bobserving^ and Bimitating^ the intended tertiary discourse (Sfard
2014) and its metanarratives. Similarly, expert narratives such as a textbook mathe-
matical definition embody tertiary narratives and rules (see Zandieh and Rasmussen
2010), so that exposing students to these might provide students with insights into
tertiary metanarratives. Students might benefit from such a regulated alienation after
they have explored a given problem with their elementary and secondary mathematical
knowledge. Finally, engaging students in inquiry-based learning might challenge their
metanarratives. In inquiry-based learning, students participate in communicative ac-
tions of posing questions, conjecturing, hypothesizing, and justifying or refuting
hypotheses (Artigue and Blomhøj 2013). Treating students’ narratives as conjectures
and hypotheses could foster exploratory talk and possibly an awareness of the insuf-
ficiency of elementary/secondary narratives.

Future studies of learning processes in transition should investigate how the
commognitive conflict of the eventually-to-be-shared discourse affects student
learning over a longer period of time. For example, is the parallel development
of elementary/secondary and tertiary discourses found here an indicator of an
incremental and evolutionary discursive development where a long adherence to
school discourses is needed to build foundations for creating new tertiary narra-
tives, which then follow incrementally? Or is discursive development instead
revolutionary, driven by students who act as Bagents of change^ (see
Hershkowitz et al. 2014) who start to engage in conversations with tertiary objects
by leaving behind previous secondary narratives, as Ludwig in this study? How
then do students become agents of change? Furthermore, this study does not
directly account for the teacher’s influence on discursive development. Within
the students’ guided reinvention of objects of elementary number theory, the
teacher’s intended role was to be a moderator. The students were intended to
engage in exploratory talk, that is, to make proposals and critically build on each
other’s ideas (Mercer 1996). However, as Episode 2 illustrates, in the end of the
teaching session, the students engaged in cumulative talk, where ideas were
repeated, elaborated, and confirmed. This might be a result of the shared
metanarrative of finding patterns in the multiplication table, which could have
made the students uncritical of each other’s ideas because they might have
believed they were of one mind about the eventually-to-be-shared discourse.
Hence, studies are needed which investigate the role of the teacher in scaffolding
discursive developments in transition.
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