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Abstract
We present here the lessons learned by iteratively designing a tutorial for first-year 
university students using computer programming to work with mathematical mod-
els. Alternating between design and implementation, we used video-taped task inter-
views and classroom observations to ensure that the design promoted student under-
standing. The final version of the tutorial we present here has students make their 
own logarithm function from scratch, using Taylor polynomials. To ensure that the 
resulting function is accurate and reasonably fast, the students had to understand 
and apply concepts both from computing and from mathematics. We identify three 
categories of such concepts and identify three design features that students attended 
to when demonstrating such understanding. Additionally, we describe four impor-
tant take-aways from a teaching design point of view that resulted from this iterative 
design process.

Keywords  Backward design · Computing · Mathematics · Taylor polynomials · 
Understanding

The intersection of computing and mathematics is a pillar of modern science, 
but there is relatively little research on integrating these two domains in teaching 
situations. In particular, it is rare that researchers identify and formulate teaching 
design principles for this purpose, and research should therefore support designing 
for understanding in mathematical–computational settings (Lockwood & Mørken, 
2021). An interesting parallel is the intersection between mathematics and physics, 
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where researchers have identified student difficulties and connected these to design 
principles that address them (see Caballero et al., 2013). The concept of Taylor pol-
ynomials exemplified there is also central to this article.

Our aim with this article is to showcase the design and implementation of a 
tutorial that integrates computing with mathematics to strengthen students’ under-
standing of important concepts in both domains. In presenting this tutorial, we will 
articulate important lessons we learned for instructional design. In particular, we 
will demonstrate that re-creating how the computer performs familiar tasks (such as 
calculating logarithms) can provide rich opportunities for students to make use of 
mathematics and computing knowledge in an integrated way, as exemplified by one 
of the key tasks of this tutorial: applying logarithm rules to the representation of real 
numbers in the computer’s memory.

For most students, asking an electronic device for the logarithm of a number can 
be characterised as a black-box operation, a term we have borrowed from computer 
science education (du Bolay et  al., 1981): the number is returned as if by magic, 
with no reference to the means or processes underlying its calculation, nor any 
measures of its accuracy. While students depend on the correctness of these calcula-
tions, there is often little understanding involved beyond figuring out which buttons 
to press (Gravemeijer et al., 2017; Watters & Watters, 2006).

In our tutorial, we offered our students an opportunity to do the authentic work of 
programming their own logarithmic function using Python and, at the same time, to 
learn more about the usefulness of Taylor expansions. Doing so offered students an 
opportunity to reason about the mechanisms and processes behind the calculation of 
a logarithm, thus deepening their understanding of an important idea at the intersec-
tion of mathematics and computing — namely, how real numbers are represented 
and approximated in a computer.

Our work thus builds upon a rich history of existing literature that has explored 
teaching and learning at the intersection of mathematics and computing, including 
examining ways in which the computer and programming may reflexively support 
students’ mathematical thinking and learning (e.g. Benton et al., 2017, 2018; DeJar-
nette, 2019; Hoyles & Noss, 2015; Feurzeig & Papert, 2011; Papert, 1980/1993; 
Sinclair & Patterson, 2018). The results of these works are accounts of students’ and 
mathematicians’ experiences with mathematical computing, accounts of computa-
tional thinking in mathematics, and the development of learning environments and 
tasks. We particularly aim to extend previous work that has examined computing in 
university mathematics settings (e.g. Buteau et  al., 2020; Buteau & Muller, 2017; 
Cetin & Dubinksy, 2017; Lockwood & De Chenne, 2020, 2021).

Lockwood and Mørken (2021) call for more studies on computing in mathemat-
ics education at this post-secondary level, particularly seeking additional examples 
of this integration in new contexts, domains, and topics. Our study answers this call 
by presenting a case of undergraduate students in Norway, using Python to reason 
about topics that include logarithms, Taylor expansions, and representing numbers 
in the computer.

This tutorial approach for addressing topics that students find difficult in an exist-
ing course is similar to that of Ambrose (2004) in introductory physics. The idea is 
not that students should be left to learn on their own without instruction, but rather 

214 Digital Experiences in Mathematics Education (2022) 8:213–255



1 3

that the tutorial guides their inquiry, provides feedback, and raises important ques-
tions, which they may then discuss with instructors and fellow students. Thus, we 
aim to avoid common pitfalls of minimal instruction, such as cognitive load, the 
worked-example effect, and not providing students with process worksheets to 
organise their work (Kirschner et al., 2006).

We based our tutorials on the framework of Wiggins and McTighe (2005), which 
is a three-stage process of backwards design: first, one attains clarity of the learning 
goals and defines the understanding that students should come to. Second, one deter-
mines what would be acceptable evidence for this understanding having taken place, 
and designs assessments to uncover that evidence. Finally, one designs the learning 
activities by which the students will be able to uncover the desired understandings.

We elaborate our research questions after defining some key terms and con-
structs in the following section. After this, we describe our methodology, after 
which the next five sections alternate between detailing the three stages of 
design and chronologically presenting our results from two testing (implemen-
tation) phases. Finally, we discuss our results and implications for teaching 
and future research.

Relevant Literature and Theoretical Framework

In this section, we first review the Understanding by Design (UbD) framework that 
we used in more detail, and then elaborate on what black-box thinking means in 
this context. Finally, we present a literature review of how computing has been inte-
grated into mathematics education and situate our work in the literature before pre-
senting our research questions.

Understanding by Design

In the Understanding by Design framework (Wiggins & McTighe, 2005), an under-
standing is defined as a specific and useful generalisation that points to transferable 
big ideas. Such understanding requires uncovering, making understood concepts 
as a result of inquiry and argument, as opposed to mere drill. We follow Lobato 
(2012) in defining the concept of transfer to mean any generalisation students make, 
without focusing on normative correctness. Wiggins and McTighe (2005) echo this 
sentiment in their discussion of assessment validity: “we typically pay too much 
attention to correctness [in our assessments], and too little attention to the degree of 
understanding” (p. 183; italics in original). In other words, we often mistake poor 
performance with poor understanding. Understanding differs from knowledge, but 
is also connected to it: “An understanding is a mental construct, an abstraction made 
by the human mind to make sense of many distinct pieces of knowledge” (Wiggins 
& McTighe, 2005, p. 37). In other words, pieces of knowledge are the dots that are 
connected by the act of sense-making to form an understanding.

According to Wiggins and McTighe, there are six kinds of understanding: being 
able (a) to explain general ideas, (b) to interpret specific instances of such ideas, (c) 
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to apply the ideas and knowing when and how to use them, (d) to gain distance to 
the subject matter and see it from different perspectives, (e) to have empathy with 
ideas that seem odd or foreign at first glance, and (f) to have self-knowledge so as to 
know what one knows, what one does not know and how one’s learning is progress-
ing (for more details, see pp. 82–104).

In the first phase of backwards design, where learning goals are in focus, it is 
important to prioritise. From least to most important, the curriculum is divided into 
knowledge that (a) is worth being familiar with, (b) is important to know and do, 
and (c) consists of the big ideas and enduring understandings that everything else 
hinges on (p. 71). For the latter, especially, a set of essential questions may be a 
useful tool for the teaching designer. These are not answerable in finality with a 
brief sentence, but are meant to have students ponder them and, in so doing, uncover 
desirable understandings. In short, an understanding makes use of facts, but is not 
a simple fact itself.

The second design phase focuses on evidence for understanding and assess-
ment, and here, it is crucial to distinguish internalised flexible ideas from borrowed 
expert opinions that students have memorised as facts to be delivered on cue. This 
may sound like understanding, but students will often fail to recognise that these 
ideas are relevant in novel situations or fail to adapt the ideas when the situation 
requires it (see pp. 46–50). To make this distinction necessarily involves supple-
menting the traditional quiz or test with academic prompts and performance tasks. 
Academic prompts, of which our tutorials are examples, pose questions or problems 
that require critical thinking, explanations, and defence of the answer and methods. 
Performance tasks, on the other hand, ask students to do authentic work that yield 
tangible products and performances, and give students opportunities to personalise 
the task.

Following Wiggins and McTighe, for us to claim that the students understand, 
they need to provide reasons and support for their choices, in line with the six facets 
of understanding. It is important that the students’ answers are not dependent on 
blatant cues. In our study, therefore, we have used the framework to label an event 
as “understanding” when students explain, interpret, apply, or demonstrate perspec-
tive without regurgitating statements from the tutorial or the interviewer. On some 
occasions, vague hints were necessary, but when the students interpreted those hints 
correctly, explained why the information was relevant, or applied the hint in a con-
structive way, it still gets classified as understanding in these terms.

Finally, the third phase of backwards design places the focus on learning activi-
ties, of which direct instruction (teaching) is but one example. The optimal designs 
provide students with engaging and effective tasks. An engaging task is recognised 
as meaningful and intellectually compelling by the learners and presents them with 
a mystery or challenge with which they can go hands-on. Effective tasks are ones 
that help learners become more competent. The goals of such tasks are clear, the 
criteria are well known, and the students are given opportunities for self-assessing 
along the way.

In the work of Wiggins and McTighe (pp. 197–224), a set of design prompts is 
suggested for analysing the learning activities. These implore the designer to ask 
whether one has made it clear to the students where the unit is headed (and why), 
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to hook (and hold) their attention, to allow them to experience doing the subject, to 
rethink (and reflect) along the way, to evaluate their strategies, to tailor and person-
alise the task to their own preferences, and to organise the activity using a whole-
part-whole1 format. The italicised words’ first letters spell out WHERETO, which is 
the name given to these design prompts.

Black‑Box Thinking

While not formally a part of the UbD framework, as noted previously, the term 
black-box thinking could be applied to situations where a student uses results with-
out understanding the underlying process. Falbel (1991) argued that tools, such as 
computers, should be transparent and convivial, in the sense that the social arrange-
ments people create around their use should afford the users of these tools to invest 
the world with meaning:

When home computers started to appear in the mid-1970s, they were […] 
bought in kit form to be assembled at home [and] were designed to be tinkered 
with. Not so any more. […] This constitutes a reduction in conviviality, the 
hallmark of which is self-reliance. The computer is becoming more and more 
opaque—a veritable black box. The message here [on the label] is clear: You 
cannot understand it; you must rely on the experts. […] Learning to program 
a computer can in some sense make it a more convivial tool [and] allows one 
to shape the tool to one’s needs and tastes. This allows for more freedom and 
flexibility as far as what the computer can be made to do and what it can be 
used for. (pp. 32–34)

Importantly, when students engage in black-box thinking, we should be careful 
not to say that they are unable to understand, but rather that they have not engaged 
with how the result was found as something to be understood. In these cases, it may 
simply be that the task does not require students to attend to this aspect: all that is 
asked of them is that they get a correct answer without highlighting the importance 
of explaining how that answer was derived.

Thus, while black-box thinking can be said to represent knowledge, in the sense 
that the students know how to formulate a query of the computer to get an answer, 
understanding in our context means that they also know how the computer finds the 
answer, and that they are able to interpret and connect it to other forms of knowledge 
as well. In our interpretation, black-box thinking is not what Wiggins and McTighe 
(2005) would consider to be understanding, but it is nonetheless particularly relevant 
for contexts that involve computing.

1  First, one considers the big picture (the subject of the activity taken as a whole), then one goes into the 
details and, finally, one goes back to the big picture and connect the dots between those detailed pieces of 
knowledge.
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Literature on Integrated Design

Integrating mathematics learning with computing is perhaps best illustrated by a 
counter-example. In what we might call a disintegrated design, the students learn to 
code in a context that is mathematical only by accident, with learning activities such 
as creating a web-page for flight booking with a database back-end. Presupposing, 
then, that students know how to program, instructors introduce them to the relevant 
math software libraries and focus on the application of these presupposed skills.

A potential problematic issue with this approach is related to transfer of learning: 
the context in which learning takes places has an impact both on the learning itself 
and on the potential for transfer to other contexts (Billett, 2013). Hence, learning 
to code in a non-mathematical context plus learning mathematics does not neces-
sarily imply that students will be able use code effectively in mathematics. How-
ever, as computational methods are becoming part of the scientific disciplines to an 
increasing degree (Weintrop et al., 2016), opportunities now exist to have students 
do authentic scientific work that involves computing.

Indeed, science education researchers have explored the integration of compu-
tational thinking and practices within science contexts among school aged children 
(e.g. Farris & Sengupta, 2014; Farris et al., 2020; Sengupta et al., 2018; Wagh et al., 
2017) and undergraduates (e.g. Caballero, 2015; Caballero et al., 2019; Hambrusch 
et al., 2009; Magana et al., 2013; Odden et al., 2019). Such work highlights endeav-
ours in the research community to better understand ways in which computing might 
support science education.

In the mathematics education literature specifically, there are numerous exam-
ples of different computational tools being implemented as part of learning activity 
designs in university mathematics. For instance, Dimiceli et al. (2010) showcase a 
design where the symbolic Computer Algebra System (CAS) features of the Wolfra-
mAlpha app are being used as an asset in an introductory calculus course. In another 
instance, Caglayan (2016) demonstrates a way to use the GeoGebra dynamic soft-
ware to visualise Riemann sums in a similar setting. Beyond showcasing designs 
that incorporate these technological tools, there are also studies that investigate the 
relationship between task design and students’ use of them. Olsson (2019) compara-
tively investigated two designs that used GeoGebra, in this case a task involving 
functions designed for schoolchildren in grades 7 to 9.

There are also examples of software being designed specifically for educational 
purposes. One such example is Grid Algebra (Hewitt, 2016), a software designed for 
learners as young as 9–10 years old to visualise the four basic arithmetic operations 
as movements on a grid when solving linear equations. The software called Config-
ure (Greenstein, 2018) similarly lets younger students visualise and conceptualise 
topological equivalence. In their respective articles, both of these authors outline 
their strategies and principles that they employed in designing their software.

In addition to using pre-existing software and writing dedicated software for edu-
cational purposes, there is a third option: having students write or modify computer 
programs written in a generic programming language. An integrated approach then 
demands that these programs are written in a mathematical context. Examples of 
this include the work of Lockwood and De Chenne (2020), in which students relate 
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combinatorial counting problems of different types to corresponding conditional 
statements in Python programs, and that of Ramler and Chapman (2011), where stu-
dents statistically analyse whether missed notes in the Guitar Hero video game were 
randomly distributed by writing code in R.

The work we present here resembles these last two examples and belongs in the 
same category. Our work is focused on university students using the Python pro-
gramming language in a mathematical setting (the context is described more closely 
in the first sub-section of the next section). In this article, when we say comput-
ing, we refer to machine-based computing, “the practice of developing and precisely 
articulating algorithms that may be run on a machine” (Lockwood & Mørken, 2021, 
p. 405). In practice, that means our students used Python programming to articulate, 
visualise and solve mathematical problems.

Buteau and colleagues (2020) point to a central feature of what this mathemati-
cal coding entails: in order to articulate a mathematical process in a programming 
language, one translates into the language what one would do by hand. To do this, 
one must realise that the code can indeed work in a similar manner as one does 
by hand, which is neither self-evident nor independent of what kind of mathemati-
cal work one engages in. Integrating coding in mathematics then entails support-
ing the students in learning: in the words of Buteau and colleagues, “to transform a 
programming technology into a rich ‘mathematical instrument’ enabling him/her to 
[participate] in programming-based mathematical work” (p. 1029).

Research Questions

Having described understanding by design and articulated our attention toward inte-
grated design, we now present our research questions. When using the term “under-
standing” in these questions, we mean specifically the characterisation of under-
standing given by Wiggins and McTighe (2005) previously discussed.

1.	 Which features of the tutorial design do students attend to when they demonstrate 
understanding of a mathematical concept (as opposed to black-box thinking)?

2.	 Of which mathematical and computational concepts did our students demonstrate 
understanding?

3.	 What did we, as designers, learn about designing for students’ understanding from 
the iterative process of tutorial design?

Methodology

We classify this study as an instance of design-based research (DBR), where infor-
mation about students’ learning experiences informs subsequent rounds of design 
and instruction. In DBR, one defines pedagogical outcomes and creates learning 
environments that address them. One modifies the process until the desired out-
comes are attained and one finally reflects on the process. A strength of DBR is 
that it allows researchers to address complex, often cross-disciplinary, problems. In 
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addition, DBR also lends itself to authentic, inquiry-based tasks, is able to reveal 
new design principles, and works on long-time scales (2 to 5 years) with continual 
refinement (Reeves et al., 2005).

One limitation of DBR in the form of case studies, as we use here, is a lack of 
generalisability. Therefore, the research questions just presented should not be inter-
preted as aiming for a theory that is universally valid. There is also a concern that 
such studies are biased, in the sense that they involve the researcher’s subjectivity. 
This concern can be alleviated to some extent by triangulation of data from multiple 
sources and cross-validation by other researchers (Teegavarapu et al., 2008). We col-
lected video, code, worksheets, and asked follow-up questions of our subjects, and 
the other authors helped triangulate the propositions of the first author (see the third 
sub-section below).

We find all of this to be in alignment with the design principles of Wiggins and 
McTighe and our research questions above. To identify design features that students 
attended to and described the concepts they understood, we needed several cycles 
of design to produce the desired outcomes. In particular, the final research question, 
with its focus on extracting design principles from our experience, aligns well with 
DBR.

Context of Study

A tutorial is defined as an educational approach where, “instructors are provided 
with a classroom-ready tool to target a specific concept, elicit and confront tena-
cious student misconceptions, create learning opportunities, and provide formative 
feedback to students” (NRC, 2012, p. 129). Besides the research itself, the tutorials 
we made were important end-products of the process. It was important, however, 
that the research helped define the standards and contributed to the quality of these 
products.

We designed three tutorials for the first-semester course MAT-INF1100: “Model-
ling and computations” (Mørken, 2021), which is in common to mathematics, phys-
ics and electronics students at the University of Oslo (UiO). This course is taught 
alongside courses in calculus and programming, and is intended to link these courses 
together. This set of courses is intentionally co-ordinated. Typically, a mathematical 
concept is first covered in calculus; then, MAT-INF1100 covers how to implement 
the concept numerically, and finally, the students write Python code to do just that 
in the programming class, as described by Malthe-Sørenssen and colleagues (2015).

Additionally, a few other models for such integration exist, for example, co-
ordinating joint computational projects for mathematics and engineering courses at 
Chalmers University of Technology, Sweden (Enelund & Larsson, 2006; Enelund 
et al., 2011). Some universities offer explicitly designed courses to foster, such as 
MICA (Mathematics Integrated with Computers and Applications) at Brock Univer-
sity, Canada (Ben-El-Mechaiekh et al., 2007; Buteau & Muller, 2017). Furthermore, 
occasionally mathematics and computing are integrated in a third context, like bio-
science (Nederbragt, 2020).
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However, the UiO model, in which concepts are reinforced across multiple 
courses and programming is systematically integrated for first-year students, is 
not common. We point this out to provide some overall context for the study we 
describe, and to situate our design activity within the broader departmental, pro-
grammatic, and university systems in which our study took place.

Data Collection

The study was designed and conducted in five distinct phases, as shown in Fig. 1:
For the two implementation phases, we recruited students for interviews in two 

ways: (a) asking them to volunteer using an online form during one of the first lec-
tures of the semester and (b) recruiting groups of students during in-class observa-
tions (not possible in the final interview phase due to COVID-19 requirements).

In the initial implementation phase, we conducted eight interviews with a total 
of thirteen students, of whom five participated in two interviews and the rest in one. 
Each interview covered just one of the three tutorials we designed. Gina and Benja-
min in the Initial Design phase had already been interviewed using an earlier tuto-
rial, whereas Martin, Lydia, and Roger from the same setting would be interviewed 
again using a later one.

In the second implementation phase, we conducted seven interviews with seven 
students, of whom four participated in three interviews (all the tutorials) and the rest 
in one. Rita and Lena from the Second Design phase were present in all three inter-
views, and the interview we present excerpts from here was their second one.

In both phases, the first author interviewed the students and gave them instruc-
tions to work together to solve the tasks as they would in class. We captured a video 
of the students and the whiteboard they used, a separate video of their work on the 
computer screen, and an audio recording of their conversation.

The students were told to work together as they would have in a normal group ses-
sion for the course, using the interviewer as a teaching assistant to answer questions. 
If the students did not ask, the interviewer would initially refrain from intervening, 
in order to have as much data as possible be attributed to the tutorial designs and not 
subsequent interventions. However, if there was danger of the students spending too 
much time progressing down the wrong path (or not at all), the interviewer would 

Fig. 1   Phases of the design experiment with corresponding subsequent sections of this article (the boxes 
indicate the three design phases, while the arrows indicate the two implementation phases, with data col-
lection and analysis)
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intervene once we had a clear picture of what the students intended to do. This was 
done to ensure they would have sufficient time to complete the entire tutorial.2

Follow-up questions were saved for the end of the interviews: specific questions 
asking students to elaborate on interesting choices and actions during the interview 
were noted down by the interviewer as the interview progressed and asked about at 
the end. While this tends to affect validity, as students have to recall their experi-
ences from earlier in the interview, it ensures that their thought processes during 
the interviews themselves were affected as little as possible by the interviewer (van 
Someren et  al., 1994). More general questions pertaining to the students’ back-
grounds and their thoughts on the tutorial designs were asked at the same time. 
These questions were agreed upon by the authors ahead of time.

Analysis

To analyse the data, we employed the pre-existing framework of Wiggins and 
McTighe (2005) in a top–down approach3 to identify evidence of understanding. 
After the interviews were concluded, we had the audio transcribed and the first 
author flagged episodes that matched the evidence for understanding that was identi-
fied during the preceding design phase.

This evidence corresponded to the six facets of understanding. We rarely saw 
students express empathy with outside points of view or self-knowledge, and we 
suspect the tutorial did not promote these forms of understanding to any significant 
extent. In many instances, however, our students did explain, interpret, apply knowl-
edge, and demonstrate perspectives.

As discussed earlier, the way we used the six facets of understanding required 
students doing these things without blatant cues from the interviewer. This is not to 
say that no understanding could result from hints (which would be made intention-
ally vague so as not to rob the students of an opportunity to demonstrate understand-
ing). Ideally, the students would also justify the choices that they made, but in some 
cases, we relaxed this requirement. For instance, when Rita and Lena made use of 
mathematics to solve what we, as designers, imagined would be a computational 
problem, and then used the mathematical results to simplify their computer pro-
gram, we labelled this a case of applying knowledge, even though the students did 
not justify the latter action explicitly. This should be considered a methodological 
limitation, and the remedy, from a future research point of view, is to include follow-
up questions that address this specifically.

3  The exception to this is that we also identified black-box thinking, which is not covered by Wiggins 
and McTighe. On these occasions, we looked for instances in which the students did not display under-
standing and, at the same time, when they attempted to use the computer to find an answer for them with-
out engaging with how the computer did that or how one may be sure that one can trust this answer. In 
short, these are instances in which the students treated the computer as an expert.

2  See footnote 8 for a good example of something the students attempted that we later confirmed would 
have cost them a lot of time with little to show for it.
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The first author translated the episodes from Norwegian into English and 
enhanced them by inserting images from the video recordings to provide additional 
insight into how the students worked with the tutorial. The first author then coded 
the flagged episodes according to which facets of understanding the students exhib-
ited, and what they paid attention to at the time or just before, as evidenced by what 
they looked at (in the video), worked with or talked about. The rest of the research 
team independently reviewed and validated these coded episodes. It is possible that 
the students could have paid attention to or thought about things we were unable to 
capture with this approach, which is an important limitation. We therefore do not 
claim to have found the complete set of features and understanding.

We also checked the tutorial text to ensure that the understandings were the stu-
dents’ own: for example, when students expressed an understanding that mirrored 
text from the tutorial or hand-out, these episodes were omitted to ensure that we did 
not mistake a borrowed expert opinion for the students’ own. We then examined the 
content of these understandings (of what the students demonstrated understanding).

Finally, the first author selected the episodes that most clearly impacted the 
design process or otherwise provided evidence of the tutorials working especially 
well or poorly according to the learning goals. We partly based these justifications 
on follow-up questions to the students after each interview, which helped inform 
the subsequent design phase. Once again, the other authors validated this selection. 
Even though this article is an exploratory case study, we wanted to ensure that we 
picked representative cases that each added something to the take-aways we formu-
late at the end of the article, including cases that we, as teaching designers, found 
illuminating and instructive in the process.

In the following section, we describe the evolution of the Taylor expansion tuto-
rial through each of the five phases described in the previous sub-section.

Initial Design: Choices in Taylor Expansions

The initial design consisted of the three phases of backwards design: learning goals, 
evidence for understanding, and learning activities.

Learning Goals

The learning goals for the initial design sought a compromise between several 
concerns. Firstly, we considered the potential for including a significant compu-
tational component that warranted a hands-on approach. Some of the pre-exist-
ing course material tended to lean toward the mathematically abstract side of 
things, and we wanted to bring in the computational domain to a larger extent 
than before. Secondly, we did not want to stray too far from the pre-existing 
learning goals of the course (as summarised in Mørken, 2021), so as not to risk 
the students experiencing the activity as irrelevant. Thirdly, we wanted to fol-
low Wiggins and McTighe’s (2005) definitions of an understanding as something 
that needs to be uncovered, not covered; something that makes use of the facts, 
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but also that explicitly requires the learner to make sense of the content. Finally, 
we wanted to focus on a topic which students had difficulty from the traditional 
approach, in the experience of faculty teaching the course.

We reviewed the learning goals at the course level and discussed the focus 
of the tutorial with faculty teaching the course. They suggested that one topic 
that students found particularly difficult was the fact that certain functions would 
display divergent behaviour in certain regions when adding additional terms to 
a Taylor series: the more terms one adds, the worse the accuracy gets. We found 
this counter-intuitive behaviour to be an excellent example of a concept that 
required uncovering. The reasons for this behaviour are detailed in Appendix 1.

Our learning goals for the initial design were thus that the students should 
understand that:

•	 more terms are not always better;
•	 the choice of the point a around which to construct the Taylor expansion is not 

always merely a matter of convenience;
•	 while we can make the mathematical error (remainder) arbitrarily small, the 

presence of rounding errors means that there is a practical limit to how good 
the approximation can become on a computer.

Evidence for Understanding

Having defined the learning goals, we moved on to examine what we would con-
sider credible evidence for students understanding the concepts involved. An 
important limitation of our context is that we were not re-designing an entire 
course, but rather just designing tutorials to fit into one. Throughout the semester, 
in each of the three weeks when a tutorial would be run, we had access to 1 hour 
of the students’ time in class and up to 2 hours for the students who participated 
in interviews. Therefore, we were not in a position to design formal assessments; 
whatever evidence we required needed to be part of the tutorial itself.

To that end, we designed the tutorials as academic prompts. These required 
the students to think critically and not just recall knowledge. The focus was on 
students providing explanations and defending their choice of methods. Typically, 
such problems are open-ended, which was not the case here: there existed an opti-
mal choice for the pair of parameters a and n (number of terms in the Taylor 
expansion).

Even so, by requiring that the students use their hands-on experience with the 
computer program to justify their eventual choice of parameters, we expected that 
the tutorial worksheets would be able to provide evidence for four of the six fac-
ets of understanding as follows: (a) explain (and prove) why the choice of param-
eters is important, (b) interpret the plots (identifying rounding errors), (c) apply 
their knowledge by identifying optimal parameters and writing code that meas-
ured the error, and (d) display self-knowledge by comparing their initial intuition 
with experiences from working with the tutorial and reflecting on the process.
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Learning Activities

The initial tutorial design took a cue from the Maryland Tutorials in physics (Redish, 
2009), by having students use their intuition to sort out statements about Taylor polyno-
mials into those with which they agreed and those with which they disagreed. Some of 
these would be statements that often, but not always, apply, such as, “adding more terms 
increases the accuracy of a Taylor approximation.” This task sought to have students think 
about what they believed to be true regarding Taylor polynomials, and we repeated the 
same task at the end of the worksheet for comparison. In this repeated task, students were 
given the opportunity to comment on statements of which they had changed their opinion, 
or statements which they interpreted differently after having completed the tutorial.

After the initial task, we asked students to find expressions for the Taylor expan-
sion of f (x) = x−2 and its remainder. We provided them with code that plotted the 
remainder for various choices of the parameters and asked them to look for patterns 
in these plots (see Appendix 1 for details).

Next, we asked them to analyse their own formula for the Taylor expansion and 
identify the factor that would eventually dominate, and then determine for which 
parameter choices this factor would grow without bounds. This factor would be the 
main source of the divergent behaviour and identifying it would also help students 
identify the region of stability where the expansion always converges.

Their next task was to compare the result with the plots and explain how they 
were connected (the students would be able to see the region of convergence in the 
plots). Finally, we asked them to explain what it means for a Taylor polynomial to 
converge. The idea was that they would connect the known concept of convergence 
for a series of numbers to convergence of Taylor terms in the sum. As the final step 
of the design, we used the design standards of Wiggins and McTighe (2005) to vali-
date the learning goals, evidence of understanding, and learning activities.

In the following section, we will convey the results of this first design, followed 
by an account of the next round of design in the following section. The result of that 
design then follows. We describe our final design in the penultimate section, fol-
lowed by a discussion of the results and design lessons in the final one.

Results, Part I: Initial Implementation

In this section, we describe some results from the first round of implementation. We pre-
sent data from two different interviews — one with four students and one with three — and 
describe what we learned from those interviews. In particular, we focus on where the tutorial 
described in the previous section fell short of our expectations, and the changes we made based 
on these experiences. Most of the relevant excerpts from the interviews will be summarised.

Once the design was finalised, we set up interviews with volunteer students 
recruited from earlier in-class observations of an earlier tutorial, as well as some 
students who had volunteered to be interviewed at the start of the semester. Due to 
scheduling conflicts, we had to break up the groups, so that some, but not all, of the 
students had worked together before.
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The interviews for each tutorial were scheduled the week before that tutorial 
was to be used in class. This is likely to have raised the difficulty for the interview 
groups, as some students might not yet have been familiar with Taylor expansions.

Benjamin, Gina, Martin, and Ruth

The first group consisted of four students. Martin had had previous experience with 
computer programming and often suggested what the group should do. Gina was 
verbally active and asked many questions throughout the interview, often initiating 
discussion around the mathematical concepts involved. Benjamin and Ruth spoke 
less than the other two and, for the most part, contributed observations and questions 
without guiding the activity of the group as much as Gina and Martin.

Martin solved the initial mathematical task to find the Taylor expansion almost sin-
glehandedly, as he was the only student who was familiar with the concept. The others 
expressed that they had not had time to look at the material by the time of the interview. 
Gina took charge of writing the Python code that reflected Martin’s work on the white-
board. With input from the rest of the group, she wrote the necessary functions and ran 
the code to produce plots.

As it happened, Martin made a mistake that made it difficult to reproduce the 
expected results: in the Taylor expansion, he differentiated with respect to the 
wrong variable, f (i)(x) instead of f (i)(a) . We conjecture that this happened because 
the tutorial used that variable in the example derivatives: f � (x) = −2x−3 instead of 
f
�

(a) = −2a−3 . When this happened, Martin was attending to his correct formula 
for the general Taylor expansion on the whiteboard, and his general formula for the 
derivative (using the inappropriate variable) on his worksheet.

He displayed understanding in deriving these general formulas and was able to 
explain what he was doing to the other students. The result was a series of plots that 
looked almost right, but not quite. In interpreting the tasks, students assumed their 
plots (such as the one in Fig. 2) were correct, when they did in fact look quite differ-
ent from the expected results (as shown in Fig. 11 in Appendix 1):

As a result of this, the interviewer had to intervene and alert the students to the 
fact that their plots did not look right. A cursory examination of the code did not 
reveal the error, which was only discovered by the first author after the interview 
had concluded. In the end, the interviewer had to show the student figures of correct 
plots that they could use to answer the questions on the tutorial worksheet. As such, 
the tutorial did not succeed in giving the students opportunities to self-assess, as 
they had to depend on the interviewer for this.

Another problem that required interviewer intervention was the task asking stu-
dents to analyse which factor in the Taylor terms would dominate when the number 
of terms grew large. As it turned out, the expression Martin wrote on the white-
board4 for Taylor term number i

4  The error where he had f (i)(x) instead of f (i)(a) was still present in Martin’s expression, but that, in 
itself, would not have prevented them from completing this particular task.
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did not group all the powers of i together as we had anticipated, but instead kept 
them as two separate factors. As a result, it was difficult for the students to pick any 
one of these factors as the dominant one — it would depend on how far x was from 
a . Again, it was demanding for the students to self-assess their expression. They 
were able to interpret what was asked of them and to explain their thinking, but the 
tutorial did not support them in figuring out what do to when they did not know 
what to do, to put it in the terms of Wiggins and McTighe (2005).

The interviewer again had to intervene, assuring the students that they could not 
have known that writing the expression in the way they did would make the task 
difficult to complete. Gina then transformed Martin’s expression into a more usable 
one on the whiteboard. It turned out that even with an expression that was easier 
to work with, the students had some difficulty seeing that ci would eventually grow 
larger than i for any c > 1.

In particular, the interviewer’s example of 1.01i revealed that they seemed to 
focus on the slow initial growth of 1.01i compared with i itself. This seems to have 
prevented them from seeing (or remembering) that exponential growth will always 
overtake linear growth at some point.5 Only when the interviewer pointed this out 
to them did they agree that 1 was the limit for the exponential term dominating the 
growth, and that 0.99i would drop off toward zero as i grew larger. This blatant feed-
ing of information unfortunately left little for the students to uncover.

While the students in this instance were able to justify their answer and generalise 
knowledge about functions, it also demonstrates that this version of the tutorial often 
got the students caught up in details rather than pointing them toward the big ideas 
and essential questions.

T(x, a, i) = (i + 1)(−x)−2−i(x − a)i

Fig. 2   Plots produced by the 
students’ code in the first-phase 
interview (note the difference 
with Fig. 11 in Appendix 1)

5  An example of such a comparison when i  grows large would be that i! > ci > im , where c > 1 is a real 
number and m > 1 is an integer. In short, factorials dwarf exponentials, which again dwarf integer powers.
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In terms of the design principles, it was not clear to them where the instructional 
unit was headed and why, which would have been necessary for us to claim that the 
tutorial was effective. This was amply illustrated toward the end of the interview, 
while asking follow-up questions:

Interviewer:  Have you thought about why we are calculating approximate 
functions that we already have exact expressions for? What is the point of that? 
We do have …
Gina:   I’m wondering the same thing, I don’t really know, ha-ha. I was think-
ing …
Benjamin:   But what is it you use Taylor polynomials for, really?
Interviewer:  Didn’t [the professor] tell you?
Benjamin:   I didn’t catch it, but I think [inaudible]
Ruth: [inaudible]  didn’t say that much about it either
Martin: Erm, as long as you don’t take a limit where [the number of terms] 
goes to infinity then you have a, is it closed form it’s called? Like, one that you 
can calculate simply, though. […] A sine [inaudible] has a direct one, or like 
an expression you can just plug everything into.
Interviewer:  [Crikey], that reminds me of something, because if there was no 
log function in Python, how would you be supposed to calculate it?
Martin:   Yes. [Gina and Ruth voice agreement]
Interviewer:  Then you could actually, ah, I have no idea how the logarithm is 
calculated. But you could use Taylor, but then you just have to know about the 
limitation,6 heh-heh.
Martin: But I think it’s that way the computer does it with the [inaudible] 
functions, that they make some approximation or other of the type Taylor poly-
nomials or something, and uses that to calculate …
Interviewer:  Yeah.
Gina:   Huh.
Ruth:   Cool.

The students indicated that they would be interested in trying to make their own 
log function using Taylor polynomials. This would have provided a means to hook 
and hold their attention that was missing in this first version of the tutorial. As such, 
the tutorial was not as engaging as we would have hoped. Unfortunate as these prob-
lematic issues were, the initial implementation did give us opportunities to adjust 
and improve the tutorial.

In sum, this interview alerted us to four issues with the tutorial: (a) we misled the 
students into differentiating with respect to the wrong variable; (b) we assumed the 
students’ Taylor expansion to be of a form that easily would allow them to identify 
the dominating factor, which was not always the case; (c) we assumed the students 
were used to reasoning around identifying with dominating factors, which they were 
not; and (d) we lacked a way to hook and hold the students’ attention.

6  The narrow area of convergence: 0 < x < 2a.
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Roger, Mathias, and Lydia

Before we move on to the next design phase, however, we summarise an excerpt 
from another interview, which took place later the same week. We had been able 
quickly to tweak some of the issues that arose for the first group of students; namely, 
we updated the example to use the variable the students would need to use, and we 
provided a plot that students could use to check their results against. Note that these 
were only minor edits and did not constitute a new design phase.

In this interview, three students (whom we call Roger, Mathias, and Lydia) were 
working on a slightly revised version of the same tutorial. Mathias filled much the 
same role as Martin in the previous group, having had previous experience with 
Python programming as well as being able to explain mathematical concepts to the 
other students. Lydia, like Gina, was verbally active and used questions to drive the 
process of understanding the assignment. Roger, generally, was more focused on 
completing the assignment as a goal of its own and participated in the discussions as 
a means to that end.

Thanks to the aforementioned revisions, this group of students did avoid differen-
tiating with respect to the wrong variable and obtained the correct plots. But Roger 
several times expressed a concern about them having trouble seeing the forest for 
the trees, as it were. A little later, he elaborated on this when prompted by the inter-
viewer, connecting his confusion to his lack of understanding of Taylor polynomials 
as a concept at that point in the semester. Lydia, on the other hand, seemed to have 
difficulty keeping track of all the different variables involved.

The second interview thus alerted us to the following issue: the tutorial’s focus was too 
narrow and did not point the students towards resolving the issue that was essential from 
their point of view (What is a Taylor polynomial? What is it good for?). Furthermore, the 
amount of information the students had to attend to felt overwhelming at times.

In both interviews, the tutorial overshot the 1-hour target and, as a result of these 
issues, it was dropped from a wider test run in class the following week and flagged 
for a thorough redesign from the ground up. In spite of these very real problems, 
the tutorial did succeed in one thing: the students spent a lot of time trying to make 
sense of what they were doing and, in many instances, provided evidence for their 
understanding by explaining their reasoning. Even though the tutorial was success-
ful in this regard, we still wanted to create a version of it that also gave the students 
a clear goal, made Taylor expansion seem relevant to them and did not overwhelm 
them with information. We also wanted to provide more opportunities for self-
assessment, so that the students could have realised earlier and by themselves that 
something was off with their plots.

Second Design: What Are Taylor Expansions Good For?

During and after the initial round of interviews, we discussed the emerging issues 
with course instructors and education research colleagues. We compiled the follow-
ing list of improvements that could be made to the tutorial for the second design 
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phase: (a) to forego the narrow focus on convergence of Taylor polynomials for the 
bigger issue demonstrating a use for approximating known functions, (b) to develop 
the tutorial to show students one way Taylor polynomials are useful, not just tell 
them, (c) to provide sufficient scaffolding so that students are not using all their cog-
nitive resources to keep track of the different variables, and (d) as far as possible, to 
retain students’ engagement with the concepts and help them not use the computer 
as a black box.

Learning Goals

An issue with Taylor polynomials that we identified in the first round of interviews 
is that students may not understand the point of them: if you already have the exact 
function, why bother with an approximation that is less accurate? Finding good 
motivations for Taylor expansions can also be a challenge for teachers (Johnson, 
2011). Some even suggest that we might not want to motivate Taylor expansions at 
all (Šikić, 1990).

An often-overlooked point is that, in computers, approximations are central to 
computing most quantities that go beyond the four basic arithmetic operations. 
While these operations, that computers excel at, will suffice for calculating any poly-
nomial, other common functions such as exponential, trigonometric, and logarith-
mic functions are not at all trivial for computers to deal with (Arlin, 2012). As such, 
we depend on these approximations every day, often without being aware of them.

From an educator’s perspective, we noticed that the two issues mentioned above 
are intricately connected. If we imagine, as we did in the interview quoted in the 
previous section, that we are re-inventing the computer from scratch, how would 
we go about programming the first logarithm function? The students in the inter-
view responded with interest when confronted with this mystery. What is the secret 
behind this magician’s trick?

Taylor polynomials would seem to provide a solution, as polynomials only 
require the computer to master the four basic mathematical operations. But this sim-
plicity comes at a heavy cost: one must pick a point a that is close to the input value 
x to create the polynomial; otherwise, the number of terms required for sufficient 
accuracy is prohibitive, even for a modern computer.

To make matters even worse, if the function is a logarithm, we have to pick the 
point that we expand around with care, or the accuracy may worsen as we add more 
terms (see Appendix 1). It seems that creating one Taylor expansion for all values 
of the logarithm would require us to expand around a point so far from 0 that the 
accuracy would be abysmal for small numbers. On the other hand, if a way could be 
found to overcome these difficulties, we would, in effect, have killed two birds with 
one stone: Taylor approximations would be useful in a fundamental sense and the 
way logarithms are calculated on the computer would become much more transpar-
ent to us.

As the second version of the tutorial neared completion, it was suggested by fac-
ulty teaching the course that we also include the concept of the remainder in the 
tutorial. The reasons for this were (a) that students struggled with this concept and 
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could benefit from hands-on experience with it and (b) that if the students were 
making their own log functions using Taylor polynomials, the remainder would be 
useful to them as it provides an upper bound of the error.

We ended up with the following revised learning goals for the second version of 
the tutorial.

The students should be able to:

•	 explain how computers calculate logarithms;
•	 explain the usefulness of Taylor polynomials for known functions;
•	 explain how the representation of real numbers on the computer is helpful here;
•	 interpret plots of the remainder;
•	 apply what they have learned to pick good parameters;
•	 see the problem from both a mathematical and computational perspective, and 

be able to merge these perspectives;
•	 identify own preference for working computationally or mathematically and self-

assess their understanding of either.

Evidence for Understanding

To ensure that we had evidence for all these understandings, the updated tutorial 
explicitly asked the students to explain and interpret. A stated goal of the tutorial 
was that every student in the group should understand what was going on, and they 
were encouraged to discuss things they were unsure about with the teaching assis-
tants. The final tasks invited the students to reflect on using mathematics and com-
puting together in this fashion.

Learning Activities

The new version of the tutorial first introduced the essential questions: how are log-
arithms calculated and what are Taylor polynomials good for? Then, the students 
were given functions that calculated the Taylor polynomial and were asked to write 
a function that calculated the absolute remainder. We listed and explained all the 
functions and variables involved, in order to help students not become overwhelmed 
by all the symbols, as Gina had been in the previous version.

The starting point for the re-designed tutorial was to figure out how computers 
actually calculate logarithms of real numbers. The key to acceptable accuracy turned 
out to be a mapping that reduces the range of the function from all positive real 
numbers to a very small region (see Fig.  4 below and Appendix  2). This elegant 
trick not only addressed both the first two bullet points listed above, but also addi-
tionally leveraged and made relevant something that was already part of the curricu-
lum: understanding representations of real numbers on the computer.

After this was done, we incorporated the concept of the remainder, so that the 
students could control and predict the error of their approximation. We anticipated 
that such an approach could support the idea of re-inventing the logarithm from 

231Digital Experiences in Mathematics Education (2022) 8:213–255



1 3

scratch, which our students in the first round of interviews found so intriguing: being 
able to estimate the error without needing to compare with a pre-existing function 
would add to the learning activity’s authenticity.

When the students had a working remainder function, we asked them to implement 
their own log function in several steps: (a) provided the representation of real num-
bers in the computer, find out what happens when you apply the logarithm to such a 
number; (b) implement the result as a function in Python using a Taylor expansion; 
and (c) self-assess their work against a test case (see Fig. 13 in Appendix 2). We gave 
the students a machine-accurate value of ln(2) to use in their function.

Next, the students combined the results of the previous two tasks. They could 
change the parameters in the remainder plot to find parameters that made the remain-
der accurate enough in the entire interval between 0.5 and 1. We found that an upper 
limit of 10−10 for the remainder made Taylor expansion accurate enough for our pur-
poses. Then, they were to use these same parameters in their own log function and 
compare the result with the log function from the standard numpy library in Python.

Finally, we asked the students to reflect on the big ideas involved and their own 
learning.

Results, Part II: Second Implementation

We conducted a new round of research interviews with students in 2020, one year 
after the initial round. This time, the interviews took place at the same time as the 
group sessions, where the other students worked on the same tutorial in class. From 
our experience with the first implementation phase, we deemed the designs to be fin-
ished enough that there would be no longer be a need to update them between inter-
views and classes. This change also helped with scheduling, as we knew the students 
to be available for interviews at that time and making sure we did not mix students 
from different cohorts.

Due to COVID-19 safeguards, we interviewed two groups of only two students 
for this particular tutorial and gave them dedicated tasks. One student was desig-
nated to work on the computer, which mirrored its screen on a large external display 
for the other student and the interviewer to see easily. The other student was desig-
nated to work on a large whiteboard when necessary. The interview protocol was 
otherwise unchanged from the first phase.

Most of the interesting episodes in the second phase came from our interview 
with two students whom we will call Lena and Rita. They were both fairly outspo-
ken and took initiative to drive the work forward. Rita expressed a preference for 
working mathematically over doing programming and chose the whiteboard, while 
Lena, who worked the computer, had some limited coding experience from high 
school IT classes that mostly focused on web pages, databases and the like. None-
theless, throughout the interview, they both contributed substantially to the work on 
both the whiteboard and the computer.

To save time, we provided Rita and Lena with a sheet that contained both the 
general remainder formula and the formula as applied to the logarithm specifically. 
Based on this, the students wrote the code in Fig. 3, which calculated the value of 
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the remainder and then used provided test code to make a plot that confirmed the 
correctness of their implementation.

Using Taylor Polynomials to Approximate the Natural Logarithm

Their next task was to use the representation of real numbers on the computer to 
make their own log function. Rita quickly thought of applying logarithm rules to 
the exponential representation of a number, and wrote down the expression that she 
had suggested on the whiteboard (Fig. 4). She then asked the interviewer if that was 
what they were supposed to find. The interviewer confirmed this, and we note that 
being able to self-assess the results would have been advantageous for the students 
at this point.

Rita’s further speculation that the point of the exercise was to investigate round-
ing error suggests that the purpose of manipulating the expression in Fig. 4 was not 
entirely clear to the students. Even though they were able to do what the task asked 

Fig. 3   Rita and Lena’s implementation of the function that calculated the remainder(They wrote lines 
22–27, while the rest were given in advance as scaffolding. The function name errorterm was, in later 
versions, changed to remainder, in order to evoke better the relevant mathematical concept in familiar 
terms.)

Fig. 4   Rita’s usage of logarithm rules on the machine representation of x , effectively reducing the 
domain of the logarithm from all positive numbers to allowed values for the mantissa (between 0.5 and 
1) (The variable names are the same ones we used in the tutorial text, intended for Python variables. Note 
that Rita was flexibly able to apply mathematical thinking to these variables nonetheless: she switched 
from Python syntax to mathematical syntax after the first line.)
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them to, they were not sure that they were finished with the task, and we think it 
likely that they were trying to connect the task to things they had seen in lectures. 
While Rita’s analysis of the error could be the start of a fruitful mathematical argu-
ment in itself, it appears that the purpose of this particular task should have been 
clarified for the students; in other words, they were not entirely sure where the tuto-
rial was headed and why.

Afterwards, Rita and Lena attempted to connect their work on the whiteboard to 
what they had learned in class and to the plot from their code, until the interviewer 
encouraged them to move on to the next task. They went on to write the code for the 
logarithm function, but they ran into an issue with the provided taylor function that 
calculated values of the Taylor expansion: Rita did not understand why they had to 
use it and asked the interviewer why that was.

It took only the mention of taylor being an approximation in order to have Rita 
conclude, correctly, that it was an approximation for the logarithm used in Fig. 4. 
Until the interviewer mentioned this, she only referred to this function as the sum of 
general Taylor terms, not something related to the logarithm in particular. Further-
more, she was able to explain the relation between this function, the remainder and 
the log function the students were tasked to make.

There may be a connection between the tables of variables and functions in the 
beginning of the tutorial, and this kind of reasoning. Overall, we noted that the stu-
dents had far less difficulty keeping track of the various variables and functions than 
the students in the first implementation phase, and we attribute this to these tables 
and better alignment with the course compendium’s (Mørken, 2017) choices of vari-
able names.

Rita and Lena wrote the function in Fig.  5, after some further clarifications 
from the interviewer. They tested the function and confirmed that it produced the 
expected result. Next, they proceeded to choose better parameters than the default 
ones. After some discussion and experimentation with parameters, they found out 
that n = 1000 made the code run rather slowly. They settled for n = 100 and decided 
that they wanted the parameter a in the middle of the interval of interest:

For practical reasons (see Appendix 2), the code used ln(a) as an input parameter 
instead of a itself. To get a in the middle of the interval 0.5 ≤ x < 1 , the students 
would need to know the value of ln(0.75). They could have found one by trial and 
error through plotting the remainder (as plots like the one in Fig. 6 do display the 
value of a ), but Rita expressed some dissatisfaction with this approach, and stated at 
the end of the interview that she generally liked precise expressions for quantities.

Fig. 5   Rita and Lena’s implementation of the logarithm function(They wrote line 33 and 34; the rest 
were given in advance.)
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How Many Terms? A Mathematical Approach

Rita and Lena tested their choice of parameters and found that they resulted in accu-
racy well beyond what was needed for the entire interval, as seen in Fig.  6. The 
interviewer, noticing that the accuracy was, in fact, well beyond what the tutorial 
required,7 challenged the students to find out how few terms they could get away 
with.

They looked up the mathematical formula for the remainder once more and decided 
to look for an analytical solution. This was not anticipated: the design had simply 
assumed that the students would use trial and error and let Python do the heavy lift-
ing (which would indeed be a black box approach). That the students themselves saw a 
possibility we missed as designers was both a pleasant surprise and a reminder that we 
should not underestimate our students’ potential appreciation of mathematical rigour.

This impromptu addition to the tutorial (that was later added to the final ver-
sion we describe in our penultimate section) caught the attention of both students, 
which certainly fits well with the WHERETO prompt for designing learning 
activities in the UbD framework. In terms of evidence of understanding, we shall 
soon see that this challenge got them to apply their mathematical knowledge to 
the task. Beyond this, there are two features of the design that we claim helped 
the students in this work and may also have influenced them in believing that 
such an approach would be fruitful in the first place.

First, we see that the students’ attention was directed to the formula, which pro-
vided them with a solution for the remainder in the particular case of the logarithm. 
Having this formula available, whether it be the result of the students’ own work or, 
as here as a provided resource, may have served as a natural entry point. This for-
mula became the right-hand side of the equation they were about to set up.

Second, we also see that they were given a simple, if arbitrary, threshold for the 
remainder at 10−10, as opposed to not knowing or having to guess. Trusting that this 
threshold would produce good-enough approximations (which we shall see that it 
did), supported setting up the left-hand side of the equation. Put more concisely, 
the design offered up quantities that the students were able to assume being equal 
to each other, and then investigate analytically what followed from that assumption.

Shortly after asking Lena for the remainder formula of the logarithm (provided 
in the hand-out we gave the students), Rita repeated her suggestion of setting up an 
equation, but seemed a little bit unsure whether or not that was better than trial and 
error. The interviewer commented that if they did not use trial and error, they would 
need to test for a lot of x values to ensure that the remainder was below the threshold 
everywhere. Rita then demonstrated her understanding by being able to justify the 
analytical approach:

Rita:   Oh yeah, no, but I thought that we just tested for 0.5 and 1 because 
that’s the worst case.

7  A remainder smaller than 10−30, or 30 decimals would be much more accurate than the 15–16 decimals 
the computer can accurately represent in 64-bit double precision. Hence, the rounding error that comes 
from using this precision would be about 1015 times larger than the mathematical error in the Taylor 
expansion itself.
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Interviewer:  You wanted to test the end-points where, sort of, it’s the worst 
case?
Rita:   Yeah.
Interviewer:  That sounds like a really good idea to me.

We interpret this exchange to be afforded by two design features. First, the tuto-
rial explicitly mentioned and explained worst-case thinking, in helping students pick 
a value for the unknown parameter � (described in Appendix 2). This might have 
influenced Rita’s thinking about the current task, as she used the term “worst case” 
explicitly. Note that Rita provided evidence for perspective here, as she looked at a 
problem designed to be solved using computing in a mathematical way.

Second, just prior to asking for the formula, Rita had seen the plot of the remain-
der for the entire interval and noticed its U-shape (Fig. 6) and seemed to have inter-
preted that “higher is worse” in that plot, allowing her to identify the points that 
were worse in terms of accuracy than all the rest. In addition to this plot, the stu-
dents were attending to the example plot in the tutorial (Fig. 13, in Appendix 2) and 
had both plots side by side on the computer screen.

Rita attended to the remainder formula and proceeded to set it equal to 10−10. 
She then attempted to solve the resulting equation on the whiteboard. Unfor-
tunately, the unknown parameter n ended up in two different places, as seen in 
Fig. 7, and the students quite correctly concluded that they lacked the mathemat-
ical tools to eliminate one of these while preserving the expression’s correct-
ness. They tried the common approach of taking the logarithm of both sides to 
get the unknown quantity out of the exponent, but, as a result, ended up trapping 
the other instance of the unknown inside the logarithm:

The typical way to deal with the latter would be to reverse the process, in 
effect making it circular without bringing the students closer to a solution. At 
this point, Lena suggested representing the result of their mathematical work in 
Python, so that they could find a solution. The students were able to justify why 
they would want to do that: isolating the unknown variable proved impossible 

Fig. 6   The remainder plot with 
Rita and Lena’s initial choice of 
parameters
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with the methods available to them. Being able to see the problem from the van-
tage points both of mathematics and of computing fits well with the perspective 
sub-category of understanding in the UbD framework.

We attribute this particular occurrence to the overall framing of the tuto-
rial as a computational activity. We emphasised the computational nature of the 
work in the design and provided mathematical resources as handouts  separate 
from the main tutorial. We believe this led the students to expect needing to use 
Python throughout and to have a low threshold for resorting to computational 
solutions.

In the same way, it is possible that having many more years of experience 
with mathematics (as opposed to computing) may have equipped these students 
with a low threshold for resorting to analytical mathematics on the whiteboard. 
However, it should be pointed out that giving the students designated responsi-
bilities — one being in charge of the computer, the other the whiteboard — may 
have enabled each of them look for opportunities to use “their” tool. If so, it 
may warrant consideration to make this a permanent feature of the tutorials even 
after COVID-19 safeguards are no longer required.

Solving the ‘Unsolvable’ Equation

Rita and Lena’s first attempt at solving the equation using computing was an exam-
ple of the black-box mentality that we hoped the tutorial would help the students 
grow out of: Rita asked twice if she could use GeoGebra to solve this equation, 
claiming that would be the simplest way to find the answer (as you could just write 
the expression) and that she was skilled in this kind of solution. What triggered the 
black-box approach seemed to be that the students recognised that they were una-
ble to find an analytical solution, by attending to the impossibility of isolating the 
unknown quantity.

GeoGebra, which featured among the examples in the integrated design litera-
ture section of this article, is a plotting software which has been commonly used 

Fig. 7   The end-point of Rita’s first whiteboard calculation of the number of terms
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in Norwegian high schools throughout the 2010s. The approach that Rita described 
would entail simply writing down each side of the equation and reading off the solu-
tion based on the point of intersection, and it is possible that this was Rita’s go-to 
strategy when faced with something she could not solve by ordinary means.

It is important to note that Rita’s explanation is correct: this equation is impos-
sible to solve analytically. Its solution is called the product log function or Lambert 
W-function, and is simply defined as the inverse function of f (W) = WeW (Weis-
stein, n.d.). This is not an explicit definition of the kind these students are used to, 
and we suspect they would not find it very helpful.

While recognising that the equation could not be solved analytically, and that 
a numerical solution might still be possible demonstrates understanding as in 
the six facets defined by Wiggins and McTighe, Rita appeared animated when 
explaining this, and we interpret this as frustration that her mathematical work 
appeared to be going in circles. She stated in the follow-up questions that she did 
“like having an expression for things” and seemed to prefer solutions with math-
ematical rigour. We interpret her preoccupation with using GeoGebra to solve the 
equation as the only alternative she saw when the equation could not be solved by 
ordinary means.

Lena’s comments, in contrast, seemed to indicate that a solution might be found 
by hand, but that she doubted she had the required skill. One could argue that 
GeoGebra does not have to be used in a black-box fashion, as the students could 
have discussed the merits of plotting the solution and found an intersection point 
more generally, perhaps by using Python to do so, since GeoGebra was not avail-
able during the interview. This they did not do and, alongside Rita’s statement that 
“GeoGebra can do it for us,” Lena provided support for our interpretation of this 
event as black-box thinking in the follow-up questions.

After the students had completed the tutorial, she linked using computing in 
mathematics to convenience:

Lena:   No, really, the thing is that when there are very complicated expres-
sions, or like when we have something raised to the power of a thousand or 
something like that.
Interviewer:  Mmm. [affirmative]
Lena:   Then you do quickly think that it can’t be done by hand. But that it’s 
quite easy to type. And then you get an answer. So, then you save some time.

Their first Python attempt went along similar lines, as they translated the equation 
into their Python editor and tried to find some function that would solve it for them:

Rita:   How do you, like, get that to solve for n?
Lena:   Yeah. Are there some functions in Python? “Solve equation” or some-
thing like that?
Rita:   Maybe. Try some thing or other. Just write something like “from math 
import *”, it’s guaranteed to be a, sort of, math module.
Interviewer:  [laughs] I think it’s a bit advanced to do that … to solve it sym-
bolically, that is.
Lena:   OK.
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Rita:   There isn’t something called “solve”?8

The interviewer instead suggested a more low-level approach that (a) lever-
aged Python features the students had already used in class and (b) focused on how 
Python found the answer rather than the efficiency of finding it. To avoid blatant 
cues, he described what he wanted the program to do, in hopes that the students 
would recognise it, rather than using familiar terms. Framing it as having Python try 
many different values, the students immediately remembered the concept of loops, 
and the interviewer further suggested that such a loop could run until they were 
happy with the error.

This exchange demonstrates Rita and Lena’s understanding of a loop as a way 
for the computer to repeat something with variation. Here, the students showed that 
they were able to see the challenge of solving the equation from a computational 
perspective once the relevant concept had been made relevant (and not in an explicit 
way).

We note that, unlike her statement that she was skilled in GeoGebra, Rita stated 
that she was initially unsure how to implement a similar statement in Python, even 
after they had translated the idea of a numerical solution to a loop. When the inter-
viewer built on their suggestion by mentioning a while loop in particular, and by 
pointing their attention to the fact that they could decide when the loop should stop, 
Rita was able to convert her whiteboard equation to a conditional statement that 
helped her decide when the loop would finish.

Even though conditional statements are written so that the loop continues as long 
as it evaluates to True, it is often useful to think about it inversely as a stopping con-
dition: we want the loop to stop when we are satisfied with the remainder. Hence, 
we want the expression to evaluate to False at that point, and not before. Thus, the 
conditional we desire is one that evaluates to True as long as the remainder remains 
too large. While the interviewer might have to take the credit for highlighting this 
idea, attending to the interviewer’s hints and the equation on the whiteboard led Rita 

Fig. 8   Rita and Lena’s code to 
solve the equation computation-
ally

8  Actually, there is! After the interview, we used sympy to see what such an attempt might have looked like:
  import sympy
  n = sympy.Symbol(‘n ‘)
  sympy.solve((n + 1)*3**(n + 1) – 10**10, n)
  This code, however, proved to be very resource-intensive and ran for fifteen minutes before it was ter-
minated without producing any result. We take this as additional justification for directing the students 
away from this path.

239Digital Experiences in Mathematics Education (2022) 8:213–255



1 3

and Lena to demonstrate their ability to interpret the situation and apply their pro-
gramming knowledge by translating the equation into an inequality, which they did 
of their own accord.

The students wrote the short program in Fig.  8, containing a while loop that 
would start at the smallest possible number of terms n = 1 and increase the number 
of terms9 until the accuracy was acceptable. This program used Rita’s whiteboard 
work as its basis and, unlike the original formula, contained no fractions, negative 
exponents or absolute values, thereby simplifying the expression considerably. Run-
ning their code, Rita and Lena got the results shown in Fig. 9.

While the accuracy was good at x = 1 , the remainder was still too large around 
x = 0.5 , and the students seemed disappointed with the result until the interviewer 
offered some encouragement and pointed out that one of the end-points looked good. 
Rita eagerly responded that she now realised they had to check both end-points and 
pick the largest number of terms that resulted from either of these. This indicates that 
she not only was able to interpret the output in the context of her earlier whiteboard cal-
culations, but was also able to look forward and apply that interpretation to formulate a 
plan for getting the result they wanted. It seems that the appearance of the threshold in 
the plot as a horizontal dashed line was helpful for Rita to come to this conclusion.

Rita then repeated her calculation for x = 0.5 and, during the process, explained 
why a smaller value of x led to a larger remainder. While demonstrating that she 
was able to interpret and explain the situation in this way, Rita was attending to the 
plot of the remainder (on screen), her earlier equation for x = 1 (still visible on the 
whiteboard) and the interviewer’s reminder about the parameter � (see Appendix 2) 
in that equation. Additionally, she took a mathematical perspective to the plot in 
question.

Fig. 9   Rita and Lena’s revised 
parameter choices, leading to 
a remainder that was too large 
near x = 0.5

9  The interviewer had not suggested that the loop ran through values of n in ascending order; this was 
the students’ own idea. It might be that the interviewer’s suggestion of the loop stopping when the 
remainder was good enough was sufficient to have the students start with as few terms as possible and 
gradually move on to a larger number of terms, though they did not articulate their reasons for writing 
the program in this way.
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Rita continued until she arrived at an expression containing a negative sign inside 
an absolute value, which Lena suggested would in effect cancel out the minus sign. 
This demonstrates one additional benefit of implementing her work on the white-
board. Instead of having to use a Python function such as abs(…) to deal with the 
absolute value, they were able to apply their mathematical knowledge to simplify 
the task and write more readable code. As before, in their finished expression that 
went into the while loop

they had removed all fractions and negative exponents from the equation.
While modifying the program, the students first attended to Rita’s whiteboard work 

(repeated at the interviewer’s request for x = 0.5 ) and then their old code for x = 1 . In 
the end, all that was required was replacing the value 3 with the value 2 (see Table 1).

This may look like black-box thinking at first glance. However, we conjecture that 
this insight built on the mathematical understanding that the students demonstrated 
earlier, even though they did not repeat these demonstrations at this stage.

If the problem had been framed as a code problem, it is possible that the students 
would have accepted more convoluted code, as opposed to the observed simplify-
ing what they could before coding. We therefore postulate that having the students 
take the analytical path as far as they can, before being forced to switch to Python, 
is desirable in light of the learning goal that students should be able to see problems 
from both a computational and a mathematical perspective.

This raises an interesting question, however. Is such work devalued (in the students’ 
eyes) by the existence of a way to get around the problem by using various Python func-
tions and packages instead of mathematics? Rita and Lena’s initial desire to use math.
solve() and find a quick solution seems to point away from the understandings we seek. 
If the students see computing primarily as a means to make laborious mathematics more 
convenient, then it is possible that they would prefer the black-box solution.

Their satisfaction with how they found their answers might suggest otherwise, 
though. Rita was able to explain, with some enthusiasm, why the remainder was dif-
ferent between the two end-points, which we posit she could not have done had they 
simply translated the formula verbatim into Python. It is possible, however, that these 
students were somewhat exceptional in their appreciation of mathematical rigour. Rita 
stated during the follow-up questions that she felt her work was “more correct” when 
she did analytical mathematics by hand, which seems to suggest that she would prefer 
going as far as possible with math alone before using computational tools.

(n + 1) ⋅ 2n+1 < 10
10

Table 1   Effects of changing x 
on � and the remainder

x a � Remainder

1 0.75 0.75 1

n+1

||||

(
1

3

)n+1||||

0.5 0.75 0.5 1

n+1

||||

(
−

1

2

)n+1||||
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After some more work, Rita and Lena found a solution that gave an acceptable 
remainder for both end-points ( n = 27 ), see Fig. 10.

The interviewer then suggested they try out their log function from the previous 
task with these parameters, at which point Rita started considering how they could 
have found the parameter value ln(0.75) without resorting to numpy’s log function:

Interviewer:  We did cheese this one10a bit, but …
Lena:   Well, so it was twenty-seven, and seventeen for the last one?
Rita: But log nought point seven five, isn’t that … no. Kidding. It’s the loga-
rithm of three over four, that. But it isn’t any … Because we have … we do 
have the logarithm of a quarter … since that is two times the logarithm of two, 
but we don’t have the logarithm of three.
Lena:   No.
Interviewer:  That would be creative too, I didn’t even think of that.

Here, Rita demonstrated understanding by explaining how to apply the logarithm 
rules and what information they would need, that is, ln(3) , to find the number they 
wanted. This reasoning seems to have been prompted by Lena’s question and the inter-
viewer’s sentiment that this was, in a sense, cheating or “cheesing”. Her attempt to find 
this number by other means can be interpreted as a desire to re-create the work of the 
original log-function designers in a self-sufficient way, without having a previous log 
function available.

Summary

To summarise, we found that quite a few features of the new version aligned with 
the design standards of the UbD framework, which we used to evaluate the teaching 
designs. These features are listed in Table 2:

Fig. 10   Rita and Lena’s final, 
optimal choice of parameters

10  The interviewer allowed the calculation of ln(0.75) using the built-in Python function to save time, 
after the students had expressed a preference for having a in the middle of the interval.
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However, there remained some issues that we flagged to be of interest for the final 
design phase. Table 3 summarises these issues.

With these lessons learned in the second round of interviews, we moved to the 
final design phase.

Final Design

The first major change we made to the final phase was to make different versions 
of it to allow for flexibility with regard to time. We initially designed the tutorial to 
take students one hour to complete, but in practice, the time was closer to one-and-
a-half hours, in some cases even two. Nonetheless, our data indicated that the time 
was well spent by the students. For this reason, we decided to provide two versions 
of the tutorial that educators could choose from: an extended 2-hour version and the 
original 1-hour one. In the latter case, we cut some tasks from the tutorial, at the 
cost of less opportunity for insight and discussion.

In Table 4, we show which tasks are present in each version of the final tutorial, 
as well as the version that was used in the case that we presented in the previous 

Table 2   Alignment of second version features with UbD design standards

Feature Alignment with UbD standards

Redesigning log function from scratch Clear goal, hook students’ attention (WHERETO), 
focus on big ideas

Task goals Explain, interpret and apply (six facets of under-
standing)

List of variables with familiar names Organise for engagement and effectiveness 
(WHERETO)

On-the-fly suggestion to find optimal number of 
terms

Students need to rethink and revise (WHERETO)

Opportunity for mathematically comparing the 
remainders at the end-points

Explaining why they are different (six facets of 
understanding)

Table 3   Unresolved issues for the final design phase

Issues of interest for the final design phase
Students spent considerably more than the allocated 1 hour on the tutorial
The purpose of the transformation ln(M) + E ⋅ ln(2) was not sufficiently clear — how may the students 

evaluate their work on this transformation as sufficient and move on?
The role of the computational function taylor() was not sufficiently clear
Using ln(a) as an input parameter encourages using the optimal value ln(0.75) , but the tutorial does not 

support finding this value in any meaningful way
Some scaffolding may be needed to break the apparent habit of students looking for black-box solutions 

to problems they regard as difficult
Will students see the value of the mathematical work when they can also use Python to ‘brute force’ the 

problem without opportunities to demonstrate understanding?
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section. In addition, we suggest an optional exercise that can be used to extend the 
two-hour version further if desired. These task numbers refer to the final version of 
the tutorial, published in Appendix B of Sand (2021).

From the interview with Rita and Lena, we learned that the purpose of the 
transforming ln(x) using logarithm rules should be better motivated. The students 
needed to know when the task was complete and why we were asking them to do 
it. To that end, we added a question to have the students consider the accuracy of 
taylor(mantissa) compared with taylor(x) . The students may not be used to reason-
ing in this way; hence, some scaffolding is beneficial to make the purpose of the task 
clear. This also adds an opportunity for self-assessment, so that they can see whether 
the result of their work is meaningful.

The next task, asking the students to implement their own log function, also 
needed revision. Rita and Lena had not realised that the function taylor was meant 
to be used as a stand-in for the logarithm itself. Therefore, we clarified the text of 
the task to highlight this fact.

The interviewer’s suggestion, that the students figure out how few terms one 
could get away with, was met with enthusiasm by Rita and Lena, who used both tra-
ditional math and computing to pin-point this number in a flexible way. We therefore 
added this as a formal task, encouraging students to use traditional math as far as 
they were able, then switching to Python if need be. We kept the hint asking if there 
were a way to have Python test many different values of n , as that proved effective at 
getting Rita and Lena to think about loops.

Finding the value of ln(0.75) to machine accuracy turned out to be reasonably 
simple using the Taylor expansion with a = 1:

ln(0.75) ≈ ln(1) +

n∑

i=1

(−1)i−1(i − 1)!1−i

i!
(0.75 − 1)i =

n∑

i=1

−
0.25

i

i

Table 4   Versions of the tutorial (in the 1-hour version, students will have access to all the results they 
need from the tasks that have been omitted). For the interview, Task 1 was omitted due to time con-
straints, whereas task 8 was not conceived until after the interview, in part based on the interview data. 
Tasks originated during the interview and which the students completed are marked as “Included” in the 
right-most column, even though they were not prepared ahead of time.

Tasks 1h version 2h version Interview: Rita and Lena

1 Not included Included Not included
2–3 Not included Included Included
4–7 Included Included Included
8 Not included Included Not included
9 Not included Included Included
10 Included Included Included
11 Not included (Optional) Included
12 Included Included Included
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The students can use the provided Python function taylor to calculate this. We 
could instruct them to set n = 100 , which from the experience of Rita and Lena is 
likely to be more than enough to save them the trouble of estimating the optimal 
number of terms a second time. This demonstrates that Taylor expansions can also 
be used to find the values of troublesome constants, and that the computer is well 
suited to work with these expansions.11

Considering the length and complexity of the tutorial overall, however, we 
decided simply to provide the machine-accurate constant for ln(3) instead. If the stu-
dents have time to spare, it is better spent working with the optional task of compar-
ing the two remainders at the end-points and explain why one is smaller than the 
other. Based on this experience, we believe that asking students to explain this is 
another way to produce evidence of their understanding.

Discussion

In this final section, we discuss our findings and relate them to our research ques-
tions, before outlining future possibilities for research.

Design Features

The first research question concerned the features students attended to when demon-
strating understanding. While we do not have direct access to students’ thought pro-
cesses, our analysis identified three core features that they looked at or talked about 
just before or during processes of explaining, interpreting and applying knowledge. 
These were (a) the purpose of code, (b) plots, and (c) handwritten math.

The purpose of code can be thought of in terms of its interface (the “what”), as 
opposed to its implementation (the “how”). When thinking about the latter, we saw 
our students engage in black-box thinking, especially if the problem seemed difficult 
or tedious. It was when they considered the former (as Rita and Lena did with the 
taylor function) that we saw the students demonstrate understanding as defined by 
the UbD framework. This suggests that students are less likely to slip into black-box 
thinking when they are encouraged to take the bird’s eye-view, enabling them to see 
the forest for the trees.

The plots, especially the ones the students had made themselves, and the students’ 
mathematical work also provided several opportunities for demonstrating under-
standing. A good example of both is Rita using the plot in Fig. 9 and her on-going 
whiteboard work to explain why the remainder looked different at the end-points. 

11  Alternatively, one can write a Python program that looks for a fraction − n

d
 that is as close as pos-

sible to ln(0.75) as possible. By starting with n = 1 and d = 4 , incrementing both by one whenever 
−

n

d
> ln(0.75), or incrementing d by one otherwise, we found that −21∕73 is a very good approximation. 

The downside of this approach is that we needed an accurate log function to estimate the error for each 
fraction, which is not optimal if the context is the pretence that no such function exists, and we are trying 
to write the first one.
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We find it very interesting that both computational and mathematical representations 
were used together to demonstrate understanding. This result is similar to the find-
ings of Lockwood and De Chenne (2020), in which students used computational 
representations (code and output) to explain the connection between mathematical 
concepts (combinatorial problems and their outcomes). Yet our results are also dif-
ferent, because our students used representations from both domains in their math-
ematical reasoning.

Mathematical and Computational Concepts

Given our learning goals, the second research question focused on which concepts 
the students understood. In light of this, we would like to highlight three concepts 
that our students two sections back demonstrated an understanding of (a) the useful-
ness of Taylor expansions and the remainder, (b) worst-case thinking, and (c) the 
relationship between mathematics and computing.

Our first group of students grappled with the questions of what Taylor polynomials are 
and what they are good for. As we mentioned earlier, this experience is not unique. Rita 
and Lena, on the other hand, had an epiphany when they considered the taylor function as 
an approximation that allowed the computer to calculate something complex to arbitrary 
precision, and the remainder as a way of measuring how good this approximation was. 
This suggests that our approach allowed students to focus on the “why” as opposed only 
to the “how,” which was the essence of the questions these students were asking.

Rita was also able to generalise the concept of worst-case thinking: she explained 
that, instead of checking all possible cases, we can check only on the ‘worst’ ones 
— if they are acceptable, all other cases will be as well. This concept is obviously 
useful in making analyses of very large data sets tractable and efficient. We posit 
that employing this kind of mathematical reasoning led the students to write more 
efficient and readable code, as opposed to a brute-force approach that let the com-
puter do all the heavy lifting. A similar argument can be made for the simplifications 
the students made to their equation.

This leads us to the third concept: how mathematics and computing relate to each 
other, as experienced by the students. Rita and Lena were guided by the tutorial to 
combine logarithm rules and computational representations of floating-point num-
bers. This resulted in a powerful transformation that mapped a half-open set to a 
closed one. In this case, we would have liked the students to explain in greater detail 
what they thought was going on. To what extent they were able to generalise the 
experience unfortunately remains an open question.

We are better positioned to claim that the students understood that one can use 
an equation to find the input of a program that produces desired output, and that 
one may use a loop to solve an equation that is very hard or impossible to solve by 
hand. In these cases (despite some hints from the interviewer), the students largely 
came up with these ideas on their own. We cannot claim that this experience led to 
students being able to generalise these understandings to other contexts, as Wiggins 
and McTighe (2005) and Lobato (2012) emphasise. We have identified a context, 
however, in which the students were able to demonstrate these understandings.
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Design Lessons Learned

Our final research question concerns the lessons we, as designers, learned from the 
process of iterative design. We identified four major take-aways: (a) clarity matters, 
(b) re-invent something real to engage the students, (c) students need dots to con-
nect, and (d) students need opportunities to self-assess.

One of the major differences between the first two initial designs involves the amount 
of time students spent understanding the information and the tasks on the worksheets. For 
instance, much time in the first version was spent remembering what the variables stood 
for, as some of them were given different names from the ones the students were used to. 
Collecting all variables and functions in tables with short explanations proved very help-
ful to students in the second version of the tutorial. Because the students’ time is valuable, 
and cognitive load is a limiting factor to understanding, clarity matters.

While our sample size is too small to claim generalisability, we have demonstrated 
the possibility of students engaging strongly with the premise of re-inventing early 
work whose results they use often. The group of students that struggled with purpose 
and direction in the first version were excited by the mere idea, and the second version 
students demonstrated that the work felt relevant and authentic to them, as Wiggins and 
McTighe (2005) prescribe. Likewise, the air of mystery from the essential question, 
“How do you calculate logarithms with only the four arithmetic operations?,” sustained 
students’ engagement throughout. We should note, however, that the research interview 
setting and access to a “TA” at all times might have contributed to this effect, so this 
conclusion is not definitive. Nonetheless, our results suggest that mystery and authen-
ticity engaged the students, which makes for effective learning.

From our first version, especially, we learned that if students are to connect the 
dots and relate pieces of knowledge, they need dots to connect: assuming students 
have prerequisite knowledge is dangerous, as in the case of dominating factors. Fur-
thermore, even when students have the dots, they may need to see them as relevant 
in context, as in the case of loops in the context of equations. An important design 
lesson is therefore that students should have opportunities to review “basic” knowl-
edge and to see this knowledge as relevant and useful, because this helps them con-
nect the knowledge that they have. This supports their demonstrating understanding 
through applying knowledge, in the terms of Wiggins and McTighe (2005).

Finally, students need opportunities to self-assess, especially in tasks that build 
on the results of previous tasks. In the first instance, we saw confusion as a result 
of an early error, which the students had no opportunities to detect until they failed 
to get the result that the tutorial described in vague terms. While ‘debugging’ both 
code and mathematical work can sometimes be useful practice, it is generally better 
to give students test cases early and often, so the search space for errors is limited 
and they spend their time more productively.

Future Research

In addition to these findings, we have identified several promising prospects for 
future research. One could investigate further the split between interface and 
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implementation of functions mentioned under “Design Features” earlier in this sec-
tion, in order to find out how common it is that students are unable to recognise 
what a piece of code is doing, because they are too focused on the specific details 
of how it is done. In computer science education terms, if the students manifest an 
understanding of all the parts, but not the relations between them, they have difficul-
ties considering a block of code as a whole (Lister et al., 2006). What we would pro-
pose, then, is to extend this research to computing in a mathematical context.

Another avenue of future research that we regard as promising is to investigate 
how widespread black-box thinking is among high-school students, and how the for-
mation of this mindset is influenced by the way computational aids are used in high-
school mathematics classes. With the introduction of computer programming into 
Norwegian school mathematics, students will no longer get a fresh start with com-
puting when they enter university and, as such, a comparative study between current 
and future students might also be possible for a limited time.

To comply with COVID-19 protocols and recommendations, we gave each stu-
dent in the second phase groups a designated responsibility: one worked on the com-
puter, as Lena did, while the other wrote on the whiteboard, like Rita. It is possible 
that having each student represent a particular perspective in this way was beneficial 
to the students, and we cannot rule out that some of the results were affected by this 
designation. While we also saw examples of Rita using computational language, and 
Lena mathematical, we see value in investigating the effects of this way of work-
ing in a separate follow-up study, either to strengthen the claims in this article or to 
identify another potentially important design factor.

Finally, we envision studies involving a larger number of students. One way to 
accomplish this is to put the finished tutorials in a format that allows for assessing 
evidence of understanding more systematically, building on the UbD framework and 
the findings of this article. This would allow for investigation of how widespread 
these understandings are in the classroom, and how they are distributed among the 
student population. This would necessitate the design of rubrics to assess to what 
extends the students understand in different ways, which is something the UbD 
framework already supports.

Appendix

Appendix 1. Initial tutorial design details

Earlier, we summarised a peculiar feature of the logarithm and its derivatives, 
namely that, outside a certain region of convergence, adding more terms to the Tay-
lor polynomial makes the accuracy progressively worse. This has profound conse-
quences for our choice of the point a used to create the Taylor polynomial: for this 
class of functions, the choice of a cannot simply be dictated by convenience, but 
must be chosen so that for a maximal input to the function xmax we want to Taylor 
expand around the point a = xmax∕2 (see Example 9.10 in Mørken, 2017).

As seen from the remainder when plotted (see Fig. 6), it is desirable to have a in 
the middle of the interval. Then, all that remains is to determine the number of terms 
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n one needs to ensure the required accuracy. For this, one needs only to consider the 
worst-case values x = 0 and x = xmax , since the error (the remainder) grows smaller 
the closer to a one comes.

After the initial task, we asked our students to find the Taylor expansion of 
f (x) = x−2 , providing the first few derivatives to enable them to see the general pat-
tern f (i)(a) = (−1)i+1(i + 1)!a−(2+i) that they could plug into the Taylor formula. 
Next, we asked them to implement the following mathematical functions as Python 
functions (here presented with correct solutions):

The first function returns term number i of the Taylor polynomial12  and the latter 
is the relative error, a common measure of accuracy. These functions would then be 
used by two programs that we provided the students with. These programs plotted 
the relative error as a function of x in two different ways: (a) for several different 
values of a , keeping n constant (Fig. 11) and (b) for several different values of n , 
keeping a constant (Fig. 11).

After producing the plots, the students were allowed to change the constant 
parameter of each program and asked to explain the effects of both parameters. We 
asked them to interpret what the plots were telling us, especially concerning the 
rounding errors in the bottom of the plots, and the regions evident in Fig. 12, where 
more terms make the approximation worse.

Appendix 2. Second tutorial design details

Earlier, we broadly described how computers implement logarithm functions and high-
lighted the importance of mapping all positive real numbers to a small interval, so that 
one can control the accuracy. One way to do this mapping is to exploit the way a posi-
tive real number is represented as a mantissa and an exponent in the computer (which, 
incidentally, was already part of the course curriculum),

where 0.5 ≤ M < 1 and E is an integer. We can obtain M and E using the Python 
function called math.frexp(), which the students used in Fig. 5. Taking the logarithm 
of each side and applying logarithmic laws with which the students are familiar, we 
obtain

taylorterm(x, a, i) = −
(i+1)

a2

(
1 −

x

a

)i

relerr
(
y, yexact

)
=
|||
y−yexact

yexact

|||

x = M ⋅ 2E,

ln(x) = ln(M) + E ⋅ ln(2)

12  In this first design, we chose f (x) = x−2 so that, unlike with the natural logarithm, there would be no 
need to treat i = 0 as a special case, and to allow for negative values of x . In retrospect, it is clear that 
f (x) = x−1would have achieved the same effect, and it would also have been easier to work with for the 
students.
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which simplifies things more than is apparent at first glance. If we use Taylor 
polynomials for our logarithms,13 ln(x) requires machine-accuracy for all real num-
bers, whereas ln(2) is a known constant, and ln(M) only requires us to approximate 
the logarithm accurately for numbers between 0.5 and 1 (Hammen, 2012).

In the course compendium, the absolute value of the remainder can be written in 
two ways. The first involves an integral, and we judged that adding a second layer of 

Fig. 11   Relative error for the Taylor expansion of f (x) = x−2 , with n = 15 , for different values of a (Orig-
inally, we called the number of terms kmax , which confused some of the students, who were used to n 
from the lectures. As a result, we changed this in the second design phase. Note that the second axis 
is logarithmic, hence the “noise” for small values of relative error represents the presence of rounding 
errors. In this plot, we see indications of higher values of a, resulting in a broader region of high accu-
racy for this function.)

Fig. 12   Relative error for the 
Taylor expansion of f (x) = x−2 , 
with a = 5 , for different 
numbers of terms (note the 
divergence outside the interval 
0 < x < 2a)

13  In practice, approximations requiring fewer terms than Taylor polynomials are used, but the basic idea 
is the same (Hammen, 2012).
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inaccuracy by having the student integrating numerically was needlessly complex. 
Therefore, we chose the other representation of the remainder of a Taylor polyno-
mial n terms:

In fact, the only thing distinguishing this expression from that of the (n + 1) term 
of the same Taylor polynomial is the replacement of f (n+1)(a) by f (n+1)(�) , where 
min(a, x) ≤ � ≤ max(a, x) . We do not know the precise value of this number unless 
x = a , in which case the remainder is simply zero (Mørken, 2017, pp. 220–221).

We decided that we could use this limitation to make a point to the students: 
when in doubt, pick the worst-case scenario. In this case, that meant choosing the 
� that makes the remainder as large as possible. That way, we do not risk under-
estimating the error, only overestimating it. In our case, f (x) = ln(x) , the absolute 
remainder becomes:

In this case, with � in the denominator, we obtain the largest possible remainder 
by picking � = min(x, a) . The resulting expression would be usable by the students 
to plot the accuracy of their approximation over a range of x values, without resort-
ing to a direct comparison with a pre-existing log function, as in the relative error 
approach we described above in Appendix 1.

R(x, a, n) =
|
|
|
|
|

f (n+1)(�)

(n + 1)!
(x − a)n+1

|
|
|
|
|
.

R(x, a, n) =
||
|||

1

n + 1

(
x − a

�

)n+1||
|||
.

Fig. 13   Test case for the remainder function (If the students’ function reproduced this plot, they were 
free to move on to the next task. Note the slight asymmetry of the curve. The dashed line represents 
our good-enough threshold value of 10−10 for the remainder. In this second version, the students had to 
change the plotted region as well, from (1, 14) to (0.5, 1). In the final version of the tutorial, we give 
them instead an example in the interesting region (0.5, 1) right off the bat, to give students more time to 
focus on activities that point toward the learning goals.)
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To ensure that students got the plots that we expected them to, we gave them a test case 
using some default parameters to test and self-asses their function with (see Fig. 13). Note 
that we used ln(a) instead of a as a parameter for these functions, so that the zero term of 
the Taylor polynomial would simply be the value of that parameter. We can always recover 
a = eln(a) , and this approach ensures that we do not have to calculate ln(a) — we can simply 
choose it instead. 
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