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Abstract
This article relates a case study on how a conversation with materials and diagrams – the
actual use of materials and diagrams to think, imagine, explain, collaborate, design and
build – featured a certain kind of interplay betweenmaterial and digital components. The
physical components present in this setting included a water wheel, which is a wheel
driven by flow of water whose rotational motion is a classic example of chaotic
dynamics regulated by Lorenz equations. Digital components allowed for real-time
graphical displays corresponding to the turning of the water wheel. We selected for this
article a sequence of episodes from an interview with Jake, an undergraduate student
majoring in engineering. Through a micro-ethnographic analysis, we reflect on how
Jake combined the responsiveness of the digital displays with the tangibility of the water
wheel to gain insight into some of the intricacies of oscillatory motion.

Keywords Diagrams .Materials .Micro-ethnography .Oscillatorymotion . Plural speech .

Polyvalent events . Tool use .Motion sensors . Embodied cognition

In this article, we discuss mathematical activities such as using tools and creating
diagrams as particular instances of conversations with materials and diagrams. We start
by theoretically framing this statement, articulating the seemingly contradictory idea of
“conversation” in such contexts. We are particularly interested in highlighting the
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complexity of these conversations, pointing at the irreducible significance of physical-
ity and feelings in the doing of mathematics. To do so, we present and analyze episodes
from an interview in which an undergraduate student, Jake, makes sense of a particular
device we call the water wheel, and investigates certain graphical configurations
expressing its movement. The functioning of the water wheel will be described in the
methods section, which also contains an explanation of the kind of graphs that are
digitally produced by means of photogate sensors and a software interface.

We present six episodes selected from the second interview with Jake, where
he investigates some of these motions by using hand-produced diagrams, digi-
tally produced ones and the actual manipulation of the wheel. As he encounters
an unexpected diagram, we observe how the conversation with the water wheel
and the graphs evolves along the expressive, performative and temporal dimen-
sions of activity with diagrams. We characterize the ways in which qualitative
differences emerge through bodily interaction with devices allowing for the
development of new kinds of sensitivities, and we highlight the role of
materiality-feeling as crucially involved in the mathematical investigations with
the water wheel.

In this article, we discuss two kinds of diagrams: 1) inscriptions on a white
board, and 2) computer-generated graphs displaying data collected by means of
electronic sensors. The latter allows us to explore a particular type of interplay
between physical and digital tools; namely, the behavior and responsiveness of a
complex physical artifact intertwined with the generation of graphical displays
reflecting temporal events that may not be easily perceivable in a direct fashion.
The main example of this interplay that has been investigated in mathematics
education is the use of motion detectors (e.g. Nemirovsky, 1994; Nemirovsky,
Tierney & Wright, 1998) in which case materials are physical bodies in move-
ment and digital diagrams are real-time depictions of kinesthesia. This is a
setting in which diagrams become responsive to physical movement and bodies
strive through moving to produce intended diagrammatic shapes.

With the water wheel, the body movement in question centers on the rotation of the
wheel that can be driven by hand or autonomously turned by means of water flow.
Something that is primarily distinctive in the use of motion detectors is that graphical
displays tend to be endowed with feelings arising from bodily engagements with
proprioception and kinesthesia. The power of these felt bodily engagements for
mathematics learning is that they evoke sense-making resources that are not clearly
otherwise at play (e.g. Ferrari, 2019).

Theoretical Background

In this section, we elaborate on two themes: 1) prior and contemporary conceptualiza-
tions of diagrams and materials in mathematics education, and 2) conversations with
materials and diagrams and plural speech. We overview ideas within mathematics
education in relation to the use of materials and diagrams to situate better the contri-
bution of this article. Plural speech is a type of conversation that helped us conceive
how interactions with materials and diagrams can be properly described as
conversations.
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Prior and Contemporary Conceptualizations of Diagrams and Materials
in Mathematics Education

During most of the last quarter of the twentieth century, representationalism has been a
prevalent perspective in mathematics education to characterize the use of diagrams (e.g.
graphs) and materials (e.g. manipulatives) – diagrams and materials as representing
mathematical ideas in ways that are more or less direct, misleading or partial (Post,
Wachsmuth, Lesh & Behr, 1983). Given the biases of any representation in featuring
some aspects and blurring others, the necessity of using multiple representations (Lesh,
Post & Behr, 1987) seemed evident, such that the common core of the represented idea
would emerge through their mutual translation.

Theorists of representationalism have often invoked the distinction between internal
(i.e. mental) and external (i.e. physical) representations and the ways they transformed
into each other via externalization and internalization (Goldin & Kaput, 1996). The
prevalence of representationalism has been disrupted by the massive socio-
technological presence of calculators and computers. It is clear that even a calculator
does something more than representing ideas: it seems somehow to process and
transform them, or at least assist in these pursuits.

New theoretical perspectives arose with headings such as “distributed cognition”,
“situated cognition” and “extended mind” (Clark & Chalmers, 1998; Greeno, 1998;
Nunes, Schliemann & Carraher, 1993; Salomon & Perkins, 1989). Most of the work of
distributed cognition theorists focused on information processing and ranged from the
thesis that cognitive work “off-loads” onto the environment to the one that the
environment is part of the cognitive system (Wilson, 2002). Papert (1980/1993)
developed an influential perspective arguing that, beyond the processing of informa-
tion, materials and computers are tools “to think with”.

The conception of having conversations with materials and diagrams advanced in
this article moves towards a view according to which they co-think with living beings.
It resonates with post-humanistic perspectives de-centering thought from human indi-
viduals (de Freitas & Sinclair, 2014). In this view, thoughts circulate or flow across
living beings, materials and diagrams. While diagrams have a material existence, such
as inked inscriptions on paper or pixelated marks on a computer screen, we distinguish
diagrams from materials because, in many cases, diagrams themselves are oblivious to
forces or mechanisms that tend to be prominent in causal relations among materials,
such as gravitational forces or chemical mechanisms of combustion. Within limits,
there is a sense in which diagrams can be physically immutable (Latour, 1990),
whereas materials cannot. In addition, diagrams do not exist apart from actual or
imaginary performances they participate in (Nemirovsky, Kelton & Rhodehamel,
2013). Devoid of performative enactments, diagrams vanish leaving, at most, a faint
leftover of marks or traces.

Conversations with Materials and Diagrams and Plural Speech

This article elaborates on the idea of conversations with materials and diagrams – a
phrase that we have borrowed from Bamberger & Schön (1983) to which we added
“diagrams – referring to the actual use of materials and diagrams to think, imagine,
explain, design and build. Referring to conversations with materials and diagrams
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seems to be a misnomer. How is it possible to converse with things that do not speak,
do not wait for their turn to respond and do not argue for or adopt thoroughgoing
commitments? If the notion of conversation with materials and diagrams is to have any
sustenance, it must refer to a type of conversation that can also happen among people.
We propose that this kind of conversation appears to be well characterized by
Blanchot’s (1992) term “plural speech”, namely one that, as initially characterized by
Blanchot and elaborated upon by Bojesen (2019), helped us to conceive how interac-
tions with materials and diagrams can be properly described as conversations.

In order to work with an example of a conversation with materials, as a reference for
the ensuing introduction of plural speech, we will describe the events analyzed by
Bamberger and Schön (1983). Their article describes Dora and Ann’s exploratory
arrangements of Montessori bells. Dora and Ann are two adults without musical
training who participated in this working session with these bells, which are a set of
five, labeled X, Y, Z, P and Q, that look identical, each generating a sound with a
distinct pitch. The main instruction had been to use the bells to generate tunes that they
like. Over her first four moves, Dora physically separated two groups of bells, X–Y–Z,
and P–Q, sensing these two groups do not belong together. Dora named the sound of
P–Q as one of a doorbell: “Dora unintentionally discovers within the materials a
surprising new object [i.e. a doorbell]” (p. 72). Shortly thereafter, Ann remarked that
P and Q “belong to a different set” (p. 72). This comment seemed to prompt Dora to
look for a different arrangement, one that included Q separated from P. After several
attempts, Dora wondered what could be done with Q. Then Ann tried X–Q and then X–
Q–Y. Listening to the sound that the latter sequence generated, Dora found that she
liked the tune: “Oh! That sounds nice!” (p. 72). Ann and Dora’s conversation with the
Montessori bells followed a meandering course along which they discovered, among
others, a doorbell and a nice tune. The role of the Montessori bells in these transactions
was neither passive nor marginal: that the sound Q–P constituted a doorbell, for
example, was fully embedded in their materiality.

In contrast to dialogical conversations, Blanchot worked to articulate an alternative
type, one which would not be “a matter of teaching something or of extracting the truth
by going from one interlocutor to another, as did Socrates in order to keep seeking the
true through the vicissitudes of an unyielding conversation” (1992, p. 213). This
alternative conversation type – plural speech – would encompass those that, “unlike
dialogue and dialectic, [do] not imply that contradicting and contrasting thoughts
should be brought to shared consensus or internal resolution” (Bojesen 2019, p. 650).
Blanchot argued that plural speech must be one in which, rather than developing
general points or arguments, the conversants proceed through separate affirmations.
Instead of striving to explicate “an ordered set of words, experiences, and principles”,
speakers avoid development, so that it is, “a matter of thinking by separate affirmations.
Someone says something and goes no further. Without proof, reasoning and logical
consequence.” (1992, p. 339). In plural speech, he added, the point is not so much to
say what is thought, but to think what is said. As it can be illustrated by the P–Q bells
sounding a doorbell, the aim of plural speech is not to reach consensus or convince, but
to mobilize thought, allowing for the interruption of speech “by which the unknown
announces itself” (p. 78).

Plural speech is a kind of conversation for which it makes sense that materials and
diagrams can participate as legitimate interlocutors. They affirm things, such as that in
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certain conditions a material structure reaches a state of instability or a certain diagram
transforms itself into a desired form, without necessarily advocating for encompassing
viewpoints or lines of action, and without asserting the truth or the existence of
something, which means that rather than reaching final closure, puzzling or perplexing
questions often mobilize other supervening puzzling or perplexing questions. By
participating in plural speech, materials and diagrams, like the Montessori bells in the
work of Ann and Dora, co-think: they contribute to emerging ways of thinking which
can be equally or symmetrically attributed to brains, bodies, tasks, materials and their
socio-individual histories.

The Water Wheel

The water wheel is a fascinating example of a physical device that can exhibit
a variety of different rotational motions, including pendulum-like behavior (with
both small and large amplitudes), more complicated periodic behavior and
chaotic behavior. The dynamics of the water wheel can be described with a
system of three differential equations (see Nemirovsky & Tinker, 1993, for a
derivation of these equations). Those that model the dynamics of the water
wheel bear a striking resemblance to the famous system of three differential
equations that Edward Lorenz created to study air circulation and which
ultimately led to the discovery of sensitive dependence on initial conditions,
which is one of the main properties of chaos (Gleick, 1987).

In the analysis presented here, we focus on the behavior of the water wheel that
resembles pendulum-like behavior. The students we worked with were all mathematics,
science and engineering majors and, hence, were familiar with oscillatory motion,
especially that of a pendulum with small displacements. The water wheel, however,
also affords an opportunity to examine oscillatory motion where the back-and-forth
rotations range between 180 and 360 degrees.1 In the interviews, the students created
and explored a variety of different graphical means to depict such oscillatory motion,
including time-series graphs of angular velocity and angular acceleration, and phase-
plane graphs in the angular velocity-angular acceleration plane. We next give an
overview of the physical device and how it operates.

As shown in Fig. 1, the water wheel consists of a circular plexiglass plate with 32
one-inch diameter plastic tubes around its edge. Each tube has a small hole at the
bottom. The plate turns on an axle and is free to rotate. The tilt of the axle can be
adjusted between 0 and 45 degrees from the vertical. Water showers into the eight
uppermost tubes from a curved pipe with holes along its underside. A submersible
pump sends water to the pipe, with a valve to regulate the flow. An oil bath between
nested cylinders at the center of the wheel provides dynamic friction for the axis of
rotation. Raising or lowering an oil reservoir varies the oil level in between these
cylinders. (See the supplementary video clip “Jake and the water wheel” from the first
interview.)

1 A pendulum under small displacements reaches its maximum angular acceleration at the point of maximum
displacements, which is also where velocity is zero. If the displacements are large, however, the maximum
angular acceleration is obtained when the weight is at the same height as the center of rotation and does not
correspond to the velocity being zero.
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The angular velocity of the water wheel is measured by two photo-electronic sensors that
detect the motion of a pattern of black lines on the wheel top. A computer interface permits
users to graph angular velocity versus time, angular acceleration versus time, and angular
velocity versus angular acceleration while the wheel is turning (Nemirovsky&Tinker, 1993).
Water showers into the tubes when they are carried underneath the shower pipe. As the wheel
turns, the water gathered in each tube provides a torque around the axis of the wheel. Because
each tube leaks water from the bottom, the amount of water in each tube decreases over time,
until that tube again swings upward to be under the shower pipe to receivemorewater. During
periodic motion, water tends to accumulate in a bell-shaped distribution in the tubes, which
students often call “the heavy spot” (see Fig. 1 or the video in the supplementary material
entitled “Water Wheel”). With different choices of tilt angle, flow rate, bearing friction and
initial water distribution, themotion of thewheel exhibits a variety of periodic, almost periodic
and chaotic motion, as well as period doubling and transition into chaos.

In the episodes thatwe have selected for this article, thewheelwas usedwithoutwater flow
allowing for dynamic exploration with physical interaction, either by turning it by hand or by
adding weights – marbles inserted in some of the tubes (see Fig. 2a). In the latter case, the
water wheel was mathematically equivalent to a pendulum that could swing all around its
center of rotation, even making complete revolutions, as illustrated by Fig. 2b.

Methods

We conducted a total of eight, 90- to 120-minute, open-ended, individual interviews with
three undergraduate students. Each studentwe interviewed had completed differential, integral
and multi-variable calculus and had taken or was currently taking differential equations. The
interviews used a set of pre-planned tasks as a springboard for exploration of mathematical
ideas that proved of interest to the student, rather than as a strict progression of problems to
complete. We did not know ahead of time what would be of interest to students, what they
would find problematic, or what they would find challenging.We therefore used the prepared
tasks as a resource rather than as a strict progression of problems to complete.

Fig. 1 The water wheel
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As a result, each interview took on its own character, even though students engaged in
similar problems. This was not surprising for us because the mathematics that students
encounter is not in the tasks nor is it in the water wheel, but rather develops through their
interactions and dialogue with the tasks, the interviewer, the available tools (e.g. the water
wheel, the computer software), and the norms and expectations that emerge during the
interviews. Our perspective on this issue is influenced by the theory of symbolic
interactionism as developed byBlumer (1969) and a theoretical orientation that views learning
as both a social and psychological accomplishment (Cobb & Bauersfeld, 1995).

In this article, we attend to the experiences of one student, Jake, in his second of three
interviews.We focus on this because it was in this session that he created and justified graphs
and diagrams, and also explored digitally produced graphs of the water wheel’s motion. As
such, this interview was most helpful in our understanding the nature of conversations with
materials and diagrams. Jake encountered a perplexing computer-generated graph that was
qualitatively different from what he had predicted. Moreover, he eventually reconciled the
graphs, in large part due to touching physically and sensing the forces at play in the motion of
the water wheel.

All interviews were videotaped and transcribed. Copies of any written work produced by
the student and interviewer were also retained. Since the second interview integrated a
computer interface with photogates (see Fig. 1), which enabled students to generate real-
time graphs of angular velocity and angular acceleration, we used two video cameras during
this interview – one focusing on the participants and one on the computer screen. We
systematically reviewed all videotapes and transcripts, first breakingdown each interview into
approximately ten-minute episodes, wherever there seemed to be a natural break or change in
focus.We then developedwritten summaries for each of these episodes. Systematic review of
these summaries helped us identify several key episodes that were then analyzed in detail.
Analyses of these episodes were discussed by all four authors in order to develop a shared
sense of interpretation and to minimize careless interpretations.

Our analytic methods are grounded in micro-ethnography (Erickson, 1996, 2004;
Goodwin, 2003). Micro-ethnography encompasses a collection of techniques and
means of analysis tracing the moment-by-moment bodily and situated activity of
subjects engaged in certain events and interactions. Talk, gesture, facial expression,

Fig. 2 a Marbles inserted as weights in some of the tubes (top view); b equivalent pendulum able to turn all
the way around
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body posture, drawing of symbols, manipulation of tools, pointing, pace and gaze are
all instances of modalities to be traced. This approach to analyzing the data enabled us
to trace body activity over short periods of time in complex multiplicity (i.e. talk, gaze,
gesture, posture, facial expression, tone of voice, etc.). These fine-grained, documented
events helped us shape and extend our interpretations of the conversations Jake
engaged in with the material resources at hand, the diagrams and graphs he produced,
and the computer-generated graphs that spoke to him.

We avoid interpretive commentaries reducible to saying that a certain event is an
example of some phenomenon or process previously identified in the literature. While
the event is likely to be related to some of them, it must inspire original contributions.
Micro-ethnographers document and pay close attention to potentially countless nu-
ances, because any event can prove a reflection of a complex mesh of material, social,
psychological, technological, symbolic, historical and biological aspects, including
those regarding the worlds of the analysts themselves. Literature from philosophy,
mathematics and the social sciences play crucial roles in expanding our interpretive
horizons and not in prescribing what we would see. If all we could see was a faithful
repetition of that which has been reported in the literature, it would mean that we had
stopped practicing close listening.

Selected Episodes

We present our analysis of conversations with diagrams via six contiguous episodes
during the second session. Except for Episodes 3 and 5, which are only briefly
summarized, each includes one or more tables with transcript excerpts and annotated
figures highlighting relevant gestures and bodily engagement. Tables are followed by
reflective analysis. The use of italics inside the numbered transcripts marks words or
expressions that are uttered in an emphasized manner (e.g. slightly prolonged).

Episode 1: Temporalizing Diagrams on a Whiteboard

Informed by his work in the previous interview, Jake starts his analysis by re-creating
acceleration versus velocity graphs based on two graphs of velocity versus time (a
sinusoidal graph centered on the t-axis and a sinusoidal graph above the t-axis).

Commentaries about Table 1

Invoking his recollection, Jake draws a circle. A prominent aspect of our analysis is that
a conversation with diagrams, which is what Jake develops, is a performance. The
diagrams – graphs in this case – enter into an animated interaction among themselves
and with the diagram user which is bodily enacted by means of gestures, talk and
drawings. The most central contribution of a performance with diagrams, we propose,
is the occurrence of polyvalent events. The qualifier “polyvalent” conveys the sense
that these events combine diverse temporalities, such as the temporality of the perfor-
mative acts (e.g. the series of utterances by Jake in Table 1) and the temporality of the
diagrammed events (e.g. imaginary turning of the water wheel at varying speed).
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The time of diagrammed events by the water wheel and the time of the
performance itself are two temporal trajectories that can merge and bifurcate:
aspects that occur simultaneously in one may succeed each other in the other.
For example, a “zero acceleration” condition on the motion of the water wheel can
be indicated by a series of drawing acts, such as marking the circle (Table 1, row
1) as it crosses the horizontal axis and a local max or min (Table 1, rows 3–4), and
by uttering twice, “These are the points where the acceleration is zero” (Table 1,
rows 3–4). An event would be univalent if it expressed itself along a single
temporal trajectory.

Note how any act of drawing introduces its own performative temporality: he
draws the circle counterclockwise, from a certain point to another (Table 1, row
1). The arrow of time in a drawing act can be more or less relevant; perhaps
the only thing that mattered to Jake here was to obtain a circular shape,
whether it were drawn counterclockwise or not. However, the rotational direc-
tion will soon become significant as he strives to show how the velocity versus
time graph creates necessary constraints on how the circle gets to be drawn.

As he continues, Jake says, “These are the points where the acceleration is
zero”, probably indicating the points where the circle crosses the horizontal axis.
Then he “deactivates” his left hand in order to move his right one to indicate the
points on the velocity versus time graph where the acceleration is zero (Table 1,
rows 3–4). Note that this kind of choices, such as moving up the right hand and
deactivating the left one, are not deliberate decisions but rather spontaneous bodily
acts that fall smoothly into place; they are part of what the body already knows as
it engages in a conversation with diagrams. But then Jake says something that
pulls him back (Table 1, row 5): “Because velocity is zero. Wait, wait, wait.”

Commentaries About Table 2

At the end of Table 1, Jake says, “Because velocity is zero” at a time in which the
diagram tells that it is not. The mismatch calls for a “stepping back” (“Wait, wait,
wait”). Upon sensing a contradictory attribution of acceleration and velocity being
both simultaneously zero at a point in time in which velocity is not zero, Jake
moved to reconfigure the overall relationship between the two graphs: “accelera-
tion is the derivative of velocity”, “the slope [i.e. not the function] is zero when

Table 1 Re-creating an acceleration versus velocity graph for the case of the sinusoidal velocity–time graph
above the t-axis

# Text Gesture Image

1 Jake: “If I recall correctly, was 

somewhere, like, around here.

Draws a circle counterclockwise from the 3 

o’clock position on the x-axis

2 Because, as the, uh… Points with left hand to the start of the velocity versus time graph

3 These are the points where the 

acceleration is zero. So, that’s, 

these two, 

Points to first local max (1), first local min (2)

4 these points where the 

acceleration is zero.

Points to second local max (3), second local 

min (4)

5 Because velocity is zero. Wait, 

wait, wait.”

Crosses arm and bring hand to chin

Acceleration

Velocity

1

2

3

4

Velocity

Time
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the acceleration is zero”. This kind of reconfiguration of relationships triggered by
local contradictions is, in all likelihood, a common occurrence in conversations
with diagrams: a momentary sense of contradiction pulls the diagram-maker back
to reassess overarching relationships across diagrams.

Jake ends by marking all the instances of an “acceleration zero” event (Table 2, row 4).
Marking the successive occurrences of an event is a discrete temporalizing that “jumps” from
one occurrence to the other. Our next commentary will highlight a continuous temporalizing
of diagrams.

Commentaries about Table 3

In Table 3, Jake temporalizes the velocity versus time graph in a manner different from
how he had done just moments ago: it is now about a continuous going from the origin
to the first local maximum, instead of marking discrete sequential moments. From the
origin to the first max “velocity increased”, “acceleration’s positive” and, along the
way, acceleration reaches a maximum after which it goes toward zero. This kind of
temporalizing “to become” (“acceleration becomes zero. But, the velocity becomes
maximum.”) indicates the nature of the change: it is a continuous becoming. Jake
spontaneously moves his finger from–to instead of jumping the marker here-and-then-
here as he did in Table 2.

Table 2 Locating where acceleration is zero.

# Text Gesture Image
1 Jake: “Acceleration is the, Points toward the acceleration versus velocity graph

2 uh, derivative of velocity Points toward the velocity versus time graph

3 So, yes, the, this, uh, the slope is 

zero 

Draws twice horizontal tangent line at 

first local max

4 That’s where the acceleration is 

zero.”

Draws horizontal tangent line at (2), 

(3), (4)

Table 3 Noting the interplay between velocity and acceleration.

# Text Gesture Image

1 Jake: “So, um, and this velocity increased Points to top-most velocity 

versus time graph and traces 

from origin to first local max

2 So, the acceleration . . . OK, now, over here, 

acceleration’s positive. 

Points to y-axis and the velocity 

graph

3 So, it must be here right where the 

maximum acceleration 

Traces from y-axis to first local 

max

4 And, acceleration becomes zero. But, the 

velocity becomes maximum. And, as 

velocity starts to”
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Commentaries about Table 4

Jake discusses going from the origin to the first max of the velocity graph, but
this time we can see that he is also tracing the corresponding arc in the
acceleration versus velocity graph (Table 4, row 3). Jake follows a becoming,
by co-tracing, with his left and right hands, the goings of both graphs. Note
again the verbs that populate his utterances, some of them in present continuous
tense: “acceleration is going”, “velocity is also increasing”, “velocity becomes
maximum” and “acceleration becomes zero”. Perhaps the clearest example of a
continuous change corresponding to a kind of “going through” is the last one:
he taps the crossing of the horizontal axis and, rather than describing it as
acceleration “being” zero, he voices its “becoming negative”.

Episode 2: Creating Digital Diagrams by Driving the Wheel

In this episode, Jake transitions to the water wheel where he pushes and moves the
wheel by hand to create digitally produced graphs. This is the first time that he has
used the sensor capability to produce graphs in real time.

Commentaries about Table 5

As Jake works to have the water wheel turning in an anticlockwise direction and going
in a cyclic sequence of “fast and slow”, he uses both hands to drive the wheel
accordingly, while keeping one or the other hand in touch with the wheel. Afterwards,
following his first glimpse at the computer screen, he notices that parts of the graph are
invisible, as they occupy regions falling outside the screen’s graphic space. Jake’s
assessment is immediate: “I made it too fast. Too drastic…” From this experience of
drawing digital diagrams by driving materials –the water wheel itself in this case– a key
question comes to us: how is this way of generating diagrams different from doing so
with markers on a whiteboard, as discussed in Episode 1?

One first discernible difference is that the speed with which he moved the marker on
the whiteboard was not a matter of concern. We are so used to drawing with a marker

Table 4 Co-ordinating the velocity versus time graph with the acceleration versus velocity graph.

# Text Gesture Image

1 Jake: “OK. So, as we start here, Points to the start of the velocity graph 

on they-axis

2 acceleration is going, is at, at, its 

max.

Points to 12 o’clock position on circle 

with right hand

3 And, velocity is also increasing, too. Traces along sine graph towards first 

local max (1) and moves clockwise on 

circle in 12 to 3 position

4 And, over here, velocity becomes 

maximum.

Points to first local max (1) of sine and 3 

o’clock position on circle

5 But, the, uh, acceleration becomes 

zero. And, acceleration becomes 
negative here.”

Lifts marker from and taps on circle in 3 

o’clock position

Vel

Time

Vel

Accel
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or pen that whatever speed is “natural” to the drawing body is to be enacted. On the
other hand, Jake acknowledges that there is something like going too fast or too drastic
with the turning of the water wheel. Exceeding desirable boundaries in the motion of
the water wheel is a matter relative to the graphical display.

In addition to changing the velocity scale to register a wider range of velocities,
during Jake’s next attempt to record a graph (Table 5, row 3), he moves the wheel much
slower. Each fast/slow cycle gets displayed as successive vertical ovals shifting right and
left, all of them within the displayed region of the graph (Table 5, row 3). While the
change of scale involves a choice of new quantitative limits for the velocity axis, the
overall slowing of the turning wheel, as driven by his hands, requires a qualitative
difference in the kinesthesia of Jake’s hands and arms, and of the water wheel: the wheel
is to go slower in a way that is not quantified but felt. Jake’s subsequent examination of
the computer screen validates the new less-drastic movement of the wheel.

Commentaries on Table 6

If, compared with Table 5, one thinks of the utterance of Table 6 as a distinct way of
generating a diagram, namely moving the wheel while looking at the computer screen,
the difference is clear: imagine drawing a considerably complex diagram or graph with
a marker that does not leave traces on the whiteboard until it is finished, when it
becomes visible all at once. Jake, who in Table 5 had been making the wheel oscillate
by slowly dragging it back and forth with both hands while standing over it and looking
at it, now completely changes his way of handling the wheel, by regularly pushing it
back and forth from the same point of contact (Table 6). He is now sitting and keeps his
focus on the computer screen. We observe a change in his overall pattern of action
(from standing to sitting; from using both hands to pushing with one hand; from
focusing just on the wheel to gazing continuously at the screen while moving the
wheel), which entailed a new mode of visuo-tactile performance.Following Chris’s

Table 5 Creating digital diagrams.

# Text Gesture Image

1 Chris: “So, you are 

trying to make it 

go…?”

While recording a graph of acceleration versus 

velocity, Jake turns the wheel in an anti-clockwise 

direction for fifteen seconds; he is standing up and 

silently looking at the water wheel

2 Jake: “Fast and 

slow. Yes. And, I 

think I made it too 

fast. Too drastic.”

Looking at the computer screen and noticing that 

parts of the graph step outside the visible range of 

the axes

3 Chris helps Jake to change the scale of the axes so that the graph can 

display a wider range of velocities. Jake turns the wheel in an anti-

clockwise direction for eighteen seconds; he is standing up and silently 

looking at the water wheel. As compared with the previous run, he turns 

the wheel more slowly, with slight touches of both hands: the computer 
screen displays the graph shown.

Velocity

Accel.

V

A
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advice, he calibrates and feels the movement of his hand/wheel while ascertaining
visuo-graphical responsiveness on the computer screen.

Episode 3 (Brief Summary): Creating Digital Diagrams with a Heavy Spot

The “heavy spot” was a term coined by Jake in the previous interview to describe bell-
shaped accumulation of water that happens with back-and-forth, pendulum-like mo-
tion. To generate a heavy spot without water flowing through the tubes, Chris gives
Jake several stacks of marbles taped together, which they insert inside several contig-
uous tubes of the water wheel. Jake then creates digital diagrams using the marble-
made heavy spot. In particular, he creates a series of slightly superimposed circles
centered on the origin by setting the wheel in motion, so that the heavy spot does not
move far from its equilibrium position at the bottom of the wheel. He seems unsur-
prised with the circular-shaped graph, since it appears sufficiently in line with his initial
drawing on the blackboard and his initial recollections and expectations. He observes
the circle gradually reducing in size and the graph collapsing to the origin point, as both
acceleration and velocity tend to zero when the wheel slows down and, eventually,
stops at the equilibrium point. This sets the stage for the next episode in which Jake
encountered a surprising digital graph.

Episode 4: Expecting a Circle but Finding an Apple

This episode begins with Chris proposing a new situation to be explored with the water
wheel, one for which itsmovement starts with the heavy spot at the top position, then it
is released to oscillate freely.

Commentaries about Table 7

This new situation (Table 7) might be seen, in principle, as simply a variation on the
case Jake was investigating just before, as it still involves back-and-forth movement of
the wheel, but this time starting with the heavy spot close to the top height. Neverthe-
less, it actually reconfigures the conversation. Think of any conversation between two
people: a little variation, for example a rewording of a previous utterance or a slight

Table 6 Attending to the graph production in real time.

# Text Gesture Image

1 Chris encouraged Jake to 

proceed differently by “doing 

the wheel and watching the 

graph...in real time [i.e. 

simultaneously]”

Jake proceeds accordingly, starting at 

around the 9 o’clock position, rotating 

the wheel counterclockwise to around 3 

o’clock position

2 Jake then rotates clockwise back to 9 
o’clock position, all the while looking at 

the computer screen

A

V

Digital Experiences in Mathematics Education (2021) 7:167–191 179



change in the tone, can completely change the course of the discourse, e.g. creating
discomfort or distance in one of the interlocutors. This is so because each event is
permeated by affective tones, which in turn characterize the ways in which we are
responsive to events.

Commentaries about Table 8

In this case (Table 7 and 8), the movement of the water wheel creates a diagram on the
screen that is unexpected for Jake. It is as if the wheel was now proposing a new
diagram, different from the expected “more or less circular” one discussed by Jake at
the whiteboard in Episode 1. Now, the overall shape is described similar to “an apple”
as soon as Chris recreated it at the whiteboard (Table 8, rows 4–5). Jake interrogates
himself about the strange behavior of the graph, “why the acceleration went down
momentarily” (Table 8, rows 1–2). This is a bit like a conversation in which one of the
conversants says something puzzling, even nonsensical, prompting others to enquire,
questions of the sort of: Why? What do you mean? How come?

While in a regular conversation another utterance follows on, in this conversation
with materials it reverberates primarily in the ways in which Jake is moving. Jake steps
back, laughs and raises his eyebrows, then he brings the left hand to his chin appearing
puzzled about the apple-shaped graph. By looking at these ways of moving, even if we
had not seen the graph on the screen, we would acknowledge a rupture or discontinuity
in the conversation.

Table 7 Finding a surprising, digitally-produced, acceleration versus velocity graph.

# Text Gesture Image

1 Chris: “So, what if we take our 

heavy spot and started farther, 

like up here?“

Chris rotates the wheel such that marbles are 

at 11 o’clock position

2 Jake: “Oh, OK.”

Chris: “Just when it’s about to. 

Ready?”

Jake projects his body towards the wheel with 

eyes wide open, then moves to the computer 

screen and clicks to restart the software

3 Jake: “Yeah.” Chris releases the wheel, while Jake stares at 

the screen where the following graph is 

originating

4 Jake sits back and looks puzzled, first at the 

wheel, then at the computer screen, folding 

his arms

5 Chris: “Huh. Why do you sit 

back and fold your arms, 

Jake?”

Chris folds his arms, too, and laughs

V

A
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Note the central role of the digital display based on the measures from specialized
sensors. Normally, the apple shape is not visible during the water wheel’s motion;
without the sensing instrument, it would have just been a skipped-over phenomenon.
Like a doctor examining a patient, the conversation is not only with the patient: it is
also with a panoply of observation techniques and instruments. Here we get to one of
the core ideas we want to contribute for this special issue: the centrality of the interplay
between the physical and the digital when the latter plays the role of an instrument,
helping to make tangible and visible myriad aspects that otherwise would simply
remain unnoticeable.

Episode 5 (Brief Summary): Developing a Theory for the Apple Shape

Between the end of Episode 4 and the beginning of this one, Jake spent two and a halfminutes
observing the wheel in motion and tracing it on the concurrent graphing, with a particular
emphasis on the acceleration as the heavy spot neared the top-side. He identified that the upper
and lower dimples on the apple graph corresponded to zero velocity: they had to have
happened when the heavy spot was close to the top, coincident with the wheel changing
direction.After a close visuo-tactile examination of thewheel inmotion and the corresponding
graphs of acceleration versus velocity, Jake remarked, smiling, that he was entertaining an
explanation for the apple shape.

Table 8 Puzzling over the unexpected graph.

V

A

V

A

# Text Gesture Image

1 Jake: “Well, I was thinking 

why the acceleration...went 

down 

Jake traces from the lowest point in 

quadrant four to the y-intercept, which 

elevates slightly, and then emphatically 

raises his eyebrows

2 momentarily. He traces from the lowest point in the 

fourth quadrantto the y-intercept, which 

elevates slightly, past to the lowest point 

in the third quadrant

3 Ohhhh.” He brings left hand to chin and looks 

again puzzled at the screen

4 Chris: “So, it did 

something like,”

Chris starts drawing the curve on the 

blackboard, stops when the marker 

touches the vertical axes for the first time 

and looks at Jake

5 Jake: “Yes, yes, like, an 

apple.”

Chris: “Like an apple.”

Jake: “Yeah.”

Chris completes the curve and Jake stares 

at the whiteboard where Chris is drawing

Digital Experiences in Mathematics Education (2021) 7:167–191 181



The focus of his investigation had been to identify the specific moments of the
wheel’s motion during which the creation of the dimples took place. Something must
occur at that time, originating a dimple. Attending to transient qualities accompanying a
puzzling event, we think, is a critical process in a conversation with materials. In
striving to understand what would be happening to the water wheel as the heavy spot
reached the highest levels, Jake had observed a certain “jiggle” of the marbles, which
coupled the wheel’s change of direction and the free room that the marbles had within
the tube holding them at the heavy spot. The marbles seemed to be going up at the time
in which the wheel started to push them back down, activating them as in a moment of
hesitation. Jake wanted to show this happening to Chris. As he releases the wheel, he
followed the heavy spot with his head, trying to observe minute movements of the
marbles. As the “jiggle” of the marbles was not visually obvious, Jake resorts to an
alternative: he leaves the room to come back with some paper tissues, which were
subsequently used by Chris and Jake to stuff the tubes containing the marbles so that
they could not move inside.

Episode 6: Touching and Feeling Variations in Weight

Between the end of Episode 5 and the beginning of this one, Jake and Chris stuff pieces of
paper tissues into the tubes holding the marbles, so that the marbles would be tight inside,
preventing them from moving. We pick up where Jake tests out his theory (Table 9).

Commentaries about Table 9

Upon releasing the water wheel, the wheel’s response was immediate: the apple-
shape movement is insensitive to little movements of the marbles. Against Jake’s
expectation for the validity of the theory he had developed in Episode 5, he felt
shifted back to ground zero. He stayed holding his forehead while looking at the
water wheel for a long time. What is the significance of such silent staring from

Table 9 Realizing that his theory was invalid

# Text Gesture Image

1 Chris: “Tell me when 

to let go.”

Chris holds the heavy spot near the top

2 Jake: “OK.” Chris lets the wheel move 

3 Jake: “Huh! So, it’s, 

it’s not.”

The software starts creating an ‘apple-shaped’ graph, 

Jake laughs

4 Chris: “It’s not the 

movement?”

Jake: “It’s not the 

movement.”

Jake folds his arms and laughs

5 Jake: “OK. Well. It’s 

not the movement. 

Huh.”

Jake laughs nervously then holds his forehead with his

left hand for fifteen seconds

V

A
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slightly afar, away from touching and moving things? It is clear that thoughts are
in intense motion, but what kind of thoughts? How can we grasp this thought-
movement from a conversational point of view?

In fact, we noticed that this kind of silent staring happens very often in
conversations with materials and diagrams: the material/diagram makers step
back and quietly look at them. Unless a possible sense-making image of things
quickly comes up to one of the conversants, they are likely to “step back” and
inquire about the situation as a whole. It is like probing the place and its history
from a rather holistic point of view, trying out this angle and that angle, until
finding one that seems to be promising, triggering a more in-depth focused
seeking.

Commentaries about Table 10

As the episode continues (Table 10), Chris suggests looking at alternative digitally
created graphs. This prompts a radical change through which Jake ceases staring and
gets into the active mode of touching and moving the water wheel.

Jake abandons his first theory, discussed in Episode 5, due to the experiment
in which he uses the tissues to prevent the marbles from moving inside the tubes.
Following Chris’s suggestion, he looks for another type of graph to investigate
the motion of the water wheel, or another “angle” from which to look at the
strange event. These graphs are available within the system as different modes to
capture digitally the phenomena modelled by the water wheel, enlarging the
ways in which we can explore what is going on from different angles.

Concerning this, it is of interest for our contribution to the special issue to
highlight two aspects. First, the digital sensors offer a widening perception of an
event. It is hard to observe acceleration and changes in acceleration by direct
sight while the movement of the wheel (and any movement) is happening, but
these are unfolded through the sensor which is able to sense and display them
graphically. Second, different graphs for the same event have the potential to
broaden its polyvalence. The software connected to the sensor displays a number
of graphs, which are different ways of unpacking the same “thing” from different
points of views and ways of relating qualitative aspects of movement (as velocity
and acceleration). Each of them speaks differently about the event and, at the
same time, the event is more than their sum. As we see in this segment, selecting
a new type of graph can trigger a new line of investigation and/or shed new light
on a previous digital diagram.

Jake’s choice of the acceleration versus time graph immediately surprises him
(“whoa!”, [Table 10, row 4]). The appearance of a “wicked move” (Table 10,
row 10), namely a dimple that characterizes the periodic graph the software
shows (Table 10, rows 4–6), does not explain the why of the situation, which is
what Jake is investigating, but rather creates a different feeling for the same
event, as if he has heard it differently uttered or explained, or seen it under a
new light. That intuition might emerge because of the ways in which the event
has been told, or because it reminds the conversant of a similar situation,
creating a sense for which that aspect could be of interest in understanding the
present situation.
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Commentaries about Table 11

Addressing Chris’s question (Table 11, row 3), which focuses on the location of the
heavy spot that corresponds to the “wicked move” in the graph, Jake starts to point out
variations of acceleration as the wheel moves. He starts by re-stating that the maximum
is near the top, when the velocity changes direction and localizing zero acceleration at
the bottom position of the wheel (Table 11, rows 4–5). Note that, in the portion of the
graph that is now of interest for Jake, acceleration undergoes a slight but very
significant variation that creates the maximum-relative minimum–maximum sequence
we observe in the dimple. Jake orients himself inside the conversation by localizing
first two extremes of acceleration (zero and maximum) along the wheel.

Table 10 Exploring acceleration versus time graphs.

# Text Gesture Image

1 Chris: “We could try some other 

graphs…I don’t know if that helps 
or not. But there is a whole palette 

of graphs. You know, feel free to 

choose whatever you like.”

Chris and Jake look at each other

2 Jake: “Yeah. OK, Yeah, yeah, OK. 

OK. 

Jake nodding, grabs the mouse 

and looks for the different 

options of the software 

3 Yes, yes, OK. Actually then, I’m 

going to try. Well, velocity,

Jake rapidly gazes at the wheel, 

Chris stops it from swinging

4 I know, won’t help too much. So, 

I’ll try acceleration versus time. 

Whoa! 

He clicks on acceleration versus

time, the software displays the 

graph; Jake is surprised by the 

little dimples at each min and 

max

5 OK. See, look at this He points to the first minimum in 

the graph

6 I mean, uh, kind of goes down. 

But, minimizes, but, and, it comes 

up a little bit. And, then it goes 

down again, comes up”

He follows with index finger the 

piece of graph he is describing 

7 Chris: “So, let’s write it on the 

board.”

Jake: “OK.”

Jake looks at Chris and smiles

8 Chris: “So, this is acceleration 

versus time?”
Jake: “Right, right.”

Chris grabs the marker and draws 

two orthogonal axes on the 
whiteboard

9 Chris: “And, it does?”

Jake: “It, uh.”

Chris: “Do you want to graph it?”

Chris and Jake both look at the 

computer screen and Chris passes 

the marker to Jake

10 Jake: “Yeah. It’s going to kind of 

go like this. This kind of wicked 

move.”

Jake draws the graph, then stares 

at the graph with folded arms, 

then at the computer screen, then 

back at the whiteboard

Accel

time
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A new question by Chris (Table 11, row 6) asks Jake to focus on the point of
maximum acceleration. Jake continues to move the wheel slowly around, and the heavy
spot to different positions, controlling the oscillations with one hand or the other. He
slows down his utterance, following the back-and-forth movement with his head
(Table 11, rows 4–6). But then, while driving the oscillations with his hand, he starts
to feel how heavy the heavy spot is at different angles and, contrary to his expectation,
he feels that it is not heaviest at the top (Table 11, rows 7–8). He interrupts his own
sentence and says “What?!?” (Table 11, row 9), looking again puzzled and stepping
back from the wheel. We next examine the relevance of feeling weight and force in
moving the wheel as a way of elucidating the role of touching and sensing variations
and changes in conversation with materials.

Commentaries about Table 12

In Table 12, Jake articulates his insights about force gleaned through actual feeling the
heavy spot on the wheel as it moves. At the bottom position, he says that, “the force is
zero” (Table 12, row 7) while at the side he feels greater weight: “I feel more weight
right now” (Table 12, row 2). Concerning the top position, he says, “the weight is
almost zero up here” (Table 12, row 3). These utterances bring forth ways in which
Jake is now adjusting his own mapping of acceleration around the wheel, creating a
new sense for acceleration relative to the force felt at the side position. In Episodes 1
and 2, we commented on the performative aspects temporalizing diagrams on the

Table 11 Focusing in on the ‘wicked move’.

# Text Gesture Image

1 Chris: “Yeah. So, what is this wicked 

move up here?”

Chris points to the part of the graph 

that is in-between the two first high 
peaks

2 Jake: “Yeah, that’s, I don’t know. Um.” Jake looks at the water wheel

3 Chris: “So, What’s. Where is it 

happening? Does it happen when it’s, 

like this?”

Chris places the heavy spot at a certain 

angle near the bottom 

4 Jake: “OK. When it’s up here, that’s 

when the acceleration is the maximum.

Jake indicates the heavy spot near the 

top on the left side

5 And here, the acceleration is zero.” He holds the heavy spot near the 

bottom

6 Chris: “How do you know where the 

acceleration is maximum?”

He continues to move the heavy spot 

around to different locations

7 Jake: “Um. Well. One thing that I just 

noticed is that, uh. 

He continues to slowly move the wheel 

around with his right hand on the heavy 

spot

8 It seems to, uh, uh, it, it seems to be 

proportional to the, well, see, as this 

thing goes up.

He moves the heavy spot with left 

hand, clockwise, to the top

9 It seems to…What?!?” He releases the wheel, smiles, puzzled, 

then holds his chin with left hand

Accel

time
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whiteboard. Temporalizing the variation of acceleration as the wheel turns is now
involved in a crucial performative aspect: sensing how heavy the heavy spot feels.
Feeling the water wheel (the heavy spot) is hard work. It entails developing a new
sensitivity to the movement of the wheel and a qualitative refinement to localize
acceleration.

The previous comments bring forth a crucial point for our contribution: materiality-
feeling gets to be significant through physical involvement with the wheel. Getting a
feeling for acceleration by moving the device is something which is not mediated nor
apparent, and is largely not replaceable by software-simulated behavior. It is true that
one could find the point of maximum weight – that is the point of maximum
acceleration – just by “applying” Newton’s laws and the force of gravity, which is
something that Jake had developed during the previous interview session. However,
Jake is here illustrating another path, more direct, bodily and sensuous. This path is
available through materiality-feeling and is too-often absent in the doing of
mathematics.

Table 12 Feeling variations in weight.

# Text Gesture Image

1 Jake: “One, one thing I’m noticing is that 
uh.

He moves the wheel around with 
right hand, looks at the computer 

screen, left hand still holds his chin

2 Well, see, as I move this, I feel more 

weight right now you know. 

He moves heavy spot so that it is 

in the left most position (3 

o’clock) –he is sensing the weight 

of the heavy spot with his index 

finger slightly inside one of the 

tubes 

3 But, the, uh, weight is almost zero up 

here. 

He moves the heavy spot to the top

4 Um. So, in other words, you know, up 

here [top], I don’t have to apply, uh, as 

much force. 

He moves slightly the wheel 

around the top position

5 As a matter of fact, it pretty much stays 

there.

He removes his hand from the 

wheel

6 But, if it’s in, you know, the middle. But, 

over here is, the force is like, the, uh, like 

a maximum. 

He brings the heavy spot at the 

side

7 Um, um. And, uh, over, over here, of 

course, you know, the force is pretty much 

zero.

He brings the heavy spot at the 

bottom, opens his left hand

8 So, uh, I don’t know, force due to gravity, 

I think, it’s, uh, like, like, almost zero. 

He brings the heavy spot to the 

upper position, then lets it go down

9 And, over here it, it seems to be most, the 
force seems to be most strongest. And, 

over here [at the bottom], of course, uh, 

the, the, uh, force is zero.”

He brings the heavy spot to the left 
side (3 o’clock) and then releases 

the wheel
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Accounting for the Origins of the Wicked Move

To conclude, we summarize Jake’s subsequent conversation with the water wheel and,
given the space constraints, forego annotated transcripts and figures. As Jake continues
his touching and sensing, he undergoes a key insight. Referring to the point in which
the wheel changes direction in its oscillation, he observes that, “over here, it passes the
maximum acceleration point. But, yet, over here [at the point where it changes
direction, near the top], it’s, there’s still acceleration left.” He is revealing that, at the
top, when the velocity changes direction, “there’s still acceleration left”, as opposed to
being maximum acceleration. This is a crucial realization to account for the wicked
move, which encompasses making sense of a quick and subtle variation of acceleration
as time passes.

It would probably not be noticed or sensed if the digital graph were not
available. Moreover, localizing it is achieved through direct manipulation of the
wheel, and the development of a new sensitivity with respect to the dynamics
of the wheel. Jake then locates the where/when of the wicked move: it is right
above the 3 and 9 o’clock positions. He also makes a prediction for how to
eliminate the apple shape: “in other words, if I start, like, up around here [at
the 9 o’clock position] on the, it should go, it shouldn’t become like an apple
shape”. Jake proceeds to test his new theory and finds that the digitally
produced graph is as he predicted.

Discussion and Conclusion

This article details a case study on how a conversation with materials and
diagrams –the actual use of materials and diagrams to think, imagine, explain,
collaborate, design, and build– featured a certain kind of interplay between
physical and digital components. The physical components present in this
setting included the water wheel, while digital components allowed for real-
time graphical displays corresponding to the turning of the water wheel. The
article encompasses five episodes that have been transcribed and commented
on. In this discussion, for each of the five annotated episodes, we distillthe
foremost ideas we have learned about and hope to contribute.

Polyvalent Events

In Episode 1, we interpreted Jake’s use of diagrams as temporalizing them by
embedding them in a performative stream of activities meshed with the past
and potential behavior of the water wheel. At the end of Table 1, the perfor-
mative stream included a “stepping back”, triggered by a hint of contradiction,
aiming at reassessing overarching relationships among diverse diagrams. We
distinguished two types of temporalizing – discrete and continuous – with the
former characterizing the passage of time as a sequence of separate events,
with the latter focusing on the present continuous mode of event-becoming. We
characterized these events as polyvalent: they merge and bifurcate diverse
temporalities.
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Emerging Intensities

In Episode 2, we discussed differences between drawing diagrams on a whiteboard and
generating digital diagrams by moving the water wheel. We pointed to a major
difference in that, while drawing diagrams rendered many aspects of the drawing acts
as inconsequential or to be taken for granted (e.g. how fast we trace a circle), the
genesis of digital diagrams involved lively encounters with momentous features (e.g.
how fast to turn the water wheel), which engaged Jake in the development of a sense or
a feel for them. For our purposes, it is useful to think of such sense or feel as varying
along an “intensity”:

We are thus led to define the intensity of a superficial effort in the same way as
that of a deep-seated psychic feeling. In both cases there is a qualitative progress
and an increasing complexity, indistinctly perceived. (Bergson, 1913/1950, p. 26)

We interpret an intensity as a gradation of qualitative differences going from “less” to
“more”, or vice versa (Bergson 1913/1950, Chapter 1), differing from an extensity such
as the axis of velocity in the graph displayed in Table 1, row 1, which is ordered from
left to right according to quantitative differences amenable to addition and multiplica-
tion, in that intensity is a source of felt differences unsuitable to arithmetic operations.
Jake’s movement of the wheel, as he worked to appreciate its graphical effects, enabled
him gradually to develop a kinesthetic sense for what might be “too fast” or “slow
enough” attuned to contextual demands, which is what we customarily refer to as
“getting a feel for it”.

Note that Jake’s development of a lived intensity for how fast to turn the water wheel
was based on body motion, the exertion of subtle forces and the on-going graphical
responsiveness on the computer screen. While it is possible to experience intensities
with simulated mechanisms, such as, say, a digitally simulated water wheel with sliders
continuously varying its rotational speed, the physicality of the water wheel offers an
extraordinarily broad range of sensorial and kinesthetic engagements that are largely
unavailable with a simulated one. Kinesthesia, muscular enactments, touch and tangi-
bility are currently difficult to involve with pure simulationsproperly. The materiality of
the water wheel can be thought of contributing a radical broadening and richness of
emerging intensities, subsequently available to the collective imagination by means of
gestures, diagrams and wordings.

Digital Sensors and the Emergence of New Forms of Sensitivity and Responsiveness

In Episode 4, the digital graphs display what appears to be an unmediated relationship
with the motion of the water wheel. They are responsive, in real time, to minute
changes in the angular speed and acceleration. This sensitivity to subtle changes as
they occur opens up a new window into the behavior of the water wheel, and prompts
sudden shifts in the conversation with materials and diagrams, such as the evident
disruption occasioned by the unexpected dimples. The apple shape that momentarily
follows the initial movement of the water wheel is not directly visible in its physical
motion. In this sense, digital graphs act as micro- or macro-temporal lenses. But, even
more significantly, their being responsive in real time enabled Jake to broaden the
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conversation, by making it inclusive of additional observational and handling tech-
niques. Note that this real-time responsiveness is equally important in the use of body-
motion detectors, as well as in dragging within a dynamic geometry application.
Sensitivity and responsiveness help make a tangible myriad of kinesthetic and sensuous
aspects that otherwise remain unnoticeable.

Conversation with Materials to Test Theories

In Episode 5, we described how Jake concluded that the dimples occurred during the
first few cycles, when the heavy spot was close to the top. Something must have been
happening then: the dimple was an event whose moment of occurrence Jake had
identified. Then he turned to the water wheel for a close physical examination of the
circumstances of the puzzling event. As he followed the motion of the heavy spot, he
perceived the marbles were undergoing a subtle jiggle when they changed the angular
direction of their movement. It was as if they hesitated,momentarily. However, when he
tried to show the jiggle to Chris, it was not clearly occurring, which prompted Jake to
think of indirect means of revealing the jiggle: materially disallowing it would elimi-
nate the dimples.

Materiality-Feeling

In Episode 6, the failure of the jiggle to explain the dimples was followed by fifteen
seconds during which Jake silently stared at the water wheel while holding his
forehead. This suggested to us another kind of “stepping back”: probing the materials
and diagrams holistically, trying out this angle and that one, until finding out a point of
view that seems to be promising. This happened when Jake switched to graphs of
velocity versus time: the “wicked move” became apparent. This new way of scrutiniz-
ing a puzzling event called for a novel examination of its circumstances: how the
weight of the heavy spot felt at different angles. He underwent a surprising sensing: that
maximum lightness occurred when the heavy spot was at the top, not at the lateral
sides. This was the beginning of re-assessing when the wicked move started and ended,
over the course of which Jake exercised the power of materiality-feeling. We concluded
that a contribution of the physicality of the water wheel, not replaceable by ordinary
simulated behavior, is bringing materiality-feeling into play.

With this article, we have strived to illustrate and advance theoretical
approaches, hopefully inspirational, on how conversations with materials and
diagrams can interweave physical and digital synergies, animating bodily ways
of mathematics learning. The particulars of a selected set of short episodes
necessarily restrict of what the study is a case. Ours is a case of an exploration
of a complex dynamical system – a water wheel furnished with electronic sensors
and real-time digital displays – led by an undergraduate student majoring in
engineering who was keen to share his ways of doing things. Further investigating
how some of the core ideas we have learned about (e.g. polyvalent events,
emerging intensities, digital sensors and the emergence of new forms of sensitivity
and responsiveness, conversations with materials to test theories and materiality-
feeling) play out in other settings is an indispensable step to developing, tuning
and critiquing these ideas further.
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