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Abstract In an increasing number of mathematics classes throughout the world, tech-
nology is being used for the teaching and learning of mathematics. But knowledge is
limited about the long-term development of students’ mathematical thinking when
learning mathematics with the use of technology. This article reports on the development
of a student and the role of the graphing calculator (GC) in his learning about derivatives
and instantaneous rate of change. This case is compelling, because the student is an
intensive user of the GC and develops flexible problem-solving techniques — techniques
which differ from those of his peers and from what he was taught in mathematics class.
We used the framework of instrumental genesis to investigate how this student’s
mathematical thinking was affected by the use of the GC. Over a 2-year period, we
administered four task-based interviews involving problems on instantaneous rate of
change situated in contexts. We found that the use of the GC may facilitate a learning
process in which instrumentation schemes involving symbolical representations develop
separately from those for the graphical and numerical use of the GC.
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Handheld technology is used in mathematics education in many ways. In an increasing
number of mathematics classes throughout the world, students and teachers use
calculators, laptops, tablets and smart phones for the learning and teaching of mathe-
matics (e.g. An et al. 2014; Dunn et al. 2013). Meta-studies on the use of handheld
technology in mathematics education showed a positive effect on mathematics achieve-
ment. For example, Cheung and Slavin (2013) reviewed 74 studies and conclude that
educational technology applications produce a positive and significant effect on math-
ematics achievement, but with a small effect size.

A specific kind of handheld technology in mathematics classes is the graphing
calculator (GC). Ellington (2003) carried out a meta-study, in which 54 studies on
the effects of (graphing) calculators were analyzed. One of her conclusions was that,
when calculators are included in assessment and instruction, students displayed
improvement in intellectual means necessary for understanding mathematical
concepts, such as the ability to make meaningful connections between functions and
their graphs. Also, Burrill et al. (2002) and Delos Santos (2006) reported on evidence
that the use of the GC improves the ability to link symbolical, graphical and numerical
representations — in particular for the understanding of functions and algebraic
expressions.

After the introduction of the GC in education, researchers zoomed in on the effects
of its use on mathematical thinking of individual students. Trouche and Drijvers (2010)
offered examples of changes in mathematical knowledge that are affected by the use of
the GC, such as how the meaning of an equation can become more graphical to some
students or how students’ ideas about the graphical representation of a function can be
hindered by inappropriate GC-window settings and pixel effects. Another effect of the
use of the GC is the adoption by some students of a trial-and-error, button-pressing
strategy to solve problems (Berry and Graham 2005). These examples show that
development of students’ mathematical knowledge is affected by opportunities and
constraints of the technology.

So, on the one hand, there is evidence that using the graphing utilities of the GC can
promote students to develop strong relationships between symbolical and graphical
forms of functions and derivatives. On the other, the following questions stated by
Burrill et al. (2002) are still relevant: “What is the effect of handheld technology on
students’ ways of mathematical thinking?” and “What are changes, if any, over time in
the ways that students make use of the calculator?’ (p. 46). They suggest that case
studies of students while solving problems would be needed to answer such questions.

Inspired by these questions, we were interested in how a student’s use of the GC and
his or her way of mathematical thinking can develop over time. In this article, we report
on a longitudinal case study undertaken in the Netherlands, in which we monitored the
learning process of the concept of derivative (Roorda et al. 2015). From a sample of ten
students, we identified one, Andy, who was an intensive TI-83 Plus user. We found this
case compelling and important, because it illustrates the phenomenon of how a
student’s understanding of derivative can develop when it is affected by an intense
use of the GC. We think that this case is not unique and that many teachers will
recognize this type of student, who is attracted to using the GC. As such, this in-depth
study of Andy’s mathematical development aims to contribute to a better understanding
of what can be some effects of the access to technology on possible developments in
students’ mathematical thinking.
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Theoretical Background

We first summarize outcomes of research on the learning of derivatives and effects of
technology on the learning processes in calculus. Second, we describe the instrumental
approach that is used as theoretical framework for our study.

Understanding the Concept of Derivative

The concept of derivative is complex in many ways. The mathematician Thurston
(1995) states that there are different views on the concept, such as infinitesimal,
symbolic, geometric, microscopic or rate. According to him, this is not a list of logical
definitions, but rather a list of different ways to think about derivatives. The complexity
of the concept is the cause for the complexity of researching students’ understanding of
the concept (e.g. Zandieh 2000). Building on this work, Roorda et al. (2007) described
different aspects of the concept in a framework by distinguishing three representations
and four layers (see Table 1).

The three representations are symbolic, graphical and numerical, as shown in the
three columns. All three are typically available in a GC, in which a function can be
inserted symbolically and then displayed in a table or as a graph by pressing some
buttons. The four layers are the subsequent steps to go from a function to its derivative:
by taking a difference quotient, then taking its limit to reach a differential quotient and
then by generalizing across all x-values of the domain to reach the derivative function.
Within Table 1, one can make many transitions: for example, the symbolic difference
quotient can be represented graphically as the average slope. Vertical relations in Table 1
can be seen as process—object pairs (Zandieh 2000): for example, the relations between

layers 2 and 3 represent the limiting process. The limit of the difference quotient 3%,

when Ax approaches to 0, results in the object ‘differential quotient’ %.

Difficulties that students experience while studying the derivative may often be
analyzed as missing, wrong or weak links in the derivative framework given in Table 1.
Some studies (e.g. Kendal and Stacey 2003; Orton 1983; Zandich 1997) showed
instances of students who can carry out differentiation rules, but have difficulty relating
the symbolic outcomes at layer 4 to graphs or tables. Kendal and Stacey concluded that
many students had problems linking the numerical to the graphical and symbolic
representations of layer 2 and 3. Park (2013) claimed that some students mix up the
rate of change at a single point in layer 3 with the derivative at variable points in layer
4. Other studies reported on students’ difficulties in understanding the limiting process
from layer 2 to layer 3 (e.g. Hahkioniemi 20006).

Table 1 Representations and layers of the derivative concept

Symbolic Graphical Numerical
Layer 1  function graph of function table
Layer 2 % difference quotient  average slope (of secant line) average rate of change (over an interval)
Layer 3 % differential quotient  slope of tangent line instantaneous rate of change
Layer 4 derivative function graph of derivative function  table with rates of change
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Roorda et al. (2015) described that student ability to make transitions between
representations and layers was an indicator of their conceptual understanding of the
derivative. However, they added that for conceptual understanding, a student also needs
to be able to explain relationships (across representations or layers), use appropriate
language and recognize that different problems can be solved through similar proce-
dures. Thus, the framework of Table 1 assists in analyzing tasks pertaining the
derivative, but it does not capture exhaustively all aspects of students’ conceptual
understanding of the derivative.

As for instructional approaches to strengthen relationships within the concept of
derivative, some researchers have focused on the use of graphing utilities of calculators.
Delos Santos (2006), Heid (1997), and Leng (2011) showed how students can be
supported by using the GC in demonstrating a multi-representational way of thinking
with an appropriate use of a calculator’s graphical, numerical and symbolic
representations.

When looking at Table 1, some relationships among cells are easily made
with the use of a GC. For example, one can introduce the rate function
Y2=(Y1(X+0.001)-Y1(X)) / 0.001 as an approximation of the derivative function.
With this function, a transition between the graph of the original function (graphical layer
1) and the graph of the approximated derivative function (graphical layer 4) can be made,
because both graphs can be seen simultaneously in a single window (Doerr and Zangor
2000), which may lead to an understanding of the rate of change as a function itself.
Newer versions of the GC offer additional opportunities to calculate an approximation of
instantaneous rate of change at one point. The GC used by the student in this article has
an option, which we will denote by calc-dy/dx, which approximates the steepness of the
graph at one point. This is an immediate transition from layer 1 to layer 3.

So, there are indications that using graphing utilities can assist students in develop-
ing relationships between symbolical and graphical forms of functions and their
derivatives. However, Drijvers and Doorman (1996) observed that an intertwining of
algebraic and graphical methods does not occur without struggle: students tended to
regard the various methods as separate and they often choose a single method rather
than linking the representations.

Instrumental Genesis

To study the interplay between the use of the GC and students’ mathematical
thinking, we use a theoretical framework known as the instrumental approach
(e.g. Artigue 2002; Drijvers et al. 2013; Guin and Trouche 1998; Trouche 2004).
In this account, artefacts are distinguished from instruments. An arfefact is an
object, which can be a physical object, but also a formula or a graph; central is
that the artefact is used to carry out a given task. The term instrument refers to a
psychological construct, which consists of a psychological component together
with an artefact (Trouche 2004).

We call the psychological component of an instrument an instrumentation
scheme, in which technical and conceptual elements are intertwined and co-devel-
op. The instrumentation scheme integrates conceptual and technical knowledge of
the use of the artefact. In the term ‘instrumentation scheme’, the word scheme is
used in the sense of Vergnaud (2009), namely as the invariant organization of
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activity for a certain situation. These schemes contain operational invariants, which
is the — often implicit — knowledge that is believed to be true and guides the use
of the artefact. According to Vergnaud, schemes organize individual gestures and
actions in the physical world, as well as interaction with other individuals.

The process of a person learning to use an instrument for a specific task while at the
same time developing knowledge, in other words the process of constructing a scheme,
is called instrumental genesis (Artigue 2002). It works in two directions:
instrumentalization is directed towards the artefact, and includes eventually
(re-)shaping, whereas instrumentation refers to the constraints and opportunities of
the artefact shaping the user’s thinking. The latter is the more important idea for the
purpose of this study.

An important aspect of the instrumental approach is the duality scheme — technique.
Following Drijvers et al. (2013), techniques are “the observable part of the students’
work on solving a given type of tasks (i.e. a set of organized gestures)” and schemes are
“the cognitive foundations of these techniques that are not directly observable, but can
be inferred from the regularities and patterns in students’ activities” (p. 27). In several
studies, instrumentation schemes with their constituent technical and conceptual ele-
ments have been described (e.g. Drijvers and Barzel 2012). Drijvers et al. (2013)
described two schemes of one student (Maria), namely a substitution scheme and a

scheme on equation solving.
However, instrumentation schemes for working with derivatives have not been

described before. A GC offers many possibilities for work on or with the derivative,
because it is a device that integrates different artefacts (Drijvers et al. 2013; McCulloch
2011). A student who is working on a task can use several artefacts, each one being part
of the instrument. Consequently, different instrumentation schemes can be
distinguished.

In this article we distinguish techniques and schemes. Techniques are observable
instances of mathematical activity to solve certain types of tasks, with or without a tool.
For example, for calculating f”(4), there are different techniques: (1) one can calculate
the derivative function f”(x) and fill in x =4 or (2) one can calculate £ (4 + h) and f'(4),
take the difference, divide by %, and take the limit for /2 approaching to 0. For each
technique a different instrumentation scheme exists.

At the outset, we posed the question about possible effects of the GC on the
development of a student’s understanding of the concept of derivative. In terms of
the instrumental approach, the research question addressed in this article is: Which
instrumentation schemes can develop while using the GC in learning about the
derivative? We not only describe the development of a repertoire of schemes, but also
study changing preferences within this repertoire over time.

Methods

We used a case study approach, which can contribute to a better understanding of
complex social phenomena (Yin 2014). The case study focuses on Andy, a Dutch
student in the pre-university science and technology track, which means that he
takes science and mathematics courses at an advanced level. We selected Andy
because he is an example of students whose mathematical thinking is affected by
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intensive GC use. He was one of ten students in a longitudinal study, about which
we reported earlier (Roorda et al. 2015), albeit without zooming in on Andy’s GC
use.

We followed these students over a period of two years, gaining insight into their
long-term development. During that period, we administered four task-based interviews
with problems on instantaneous rate of change and opted for a detailed description and
analysis of their work. While other students increasingly used symbolic differentiation
rules to calculate instantaneous rate of change, Andy preferred to use graphical and
numerical techniques using his GC. The case of Andy gives insight into possible
processes by which knowledge of the GC and of mathematics can develop in
interaction.

Andy’s mathematics teachers classified him as an ‘average student’, who worked
quietly in their lessons, rarely asking questions. One of the mathematics teachers
reported that he often made calculation errors in symbolic manipulation. Andy himself
said that he preferred physics over mathematics: his physics teacher classified him as a
‘good student’.

The Tasks and the Task-Based Interviews

Central to this study are four task-based interviews, labelled TBI-1, TBI-2, TBI-3 and
TBI-4, which were administered at half-yearly intervals as the students progressed from
grade 10 to grade 12. Task-based interviews allow a focus on students’ thinking
processes (Goldin 2000), opening a window onto students’ knowledge, problem-
solving behaviour and reasoning (Koichu and Harel 2007). The tasks were designed
to provide in-depth information about students’ mathematical thinking while using the
concept of derivative, involving different representations (graphs, symbols, tables). To
prevent the interviewees being directly cued to the symbolic nature or representation of
the concept we avoided the explicit use of the mathematical terms derivative and
differentiation, and symbols such as g—;’.

All the tasks made use of situated contexts, in which the variables had a concrete
meaning, such as time, volume, distance or price, while the derivative had the meaning
of the rate of change of certain of these variables (e.g. velocity, marginal costs). The
interview protocol prescribed that a student, having completed a task, was first asked if
he or she knew other approaches to solve the task, and next, if he knew an approach to
check the answer. In this way, we could observe a range of techniques and see how
various instrumentation schemes were developing.

In this article, we focus on three tasks: The Barrel task, the Monopoly task and the
Costs task (see Fig. 1). We sclected these tasks because they offer the interviewee
opportunities to use numerical, graphical and symbolic representations to solve the
tasks. The Barrel-a task was used in all four interviews. The Barrel-b task and the
Monopoly task were used in TBI-1, TBI-2, and TBI-4. The Costs task was only used in
TBI-3.

The focus of the analysis is on one aspect of these three tasks, namely, how Andy
calculated instantaneous rate of change. Because the Barrel and Monopoly task
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The Barrel task (used in TBI-1, -2, -3, -4)
A barrel contains a liquid, which runs out through a hole in the bottom. The volume of the liquid

in the barrel (¥ in m?) decreases over time (¢ in minutes). The volume of the liquid is expressed

by the formula V = 10(2 — %t)z. Also its graph is presented.

a. Calculate the outflow velocity at ¢ = 40.
b. (not included in TBI-3) In another barrel, a pump is used. The out-flow velocity can be
expressed by the formula V = 40 — %t. At what moment will the out-flow velocity by pumping

be equal to the out-flow velocity through a hole in the bottom?

The Monopoly task (used in TBI-1, -2, -4)
For a company, the revenue function is R(¢) =— 0.5¢> + 12¢ and the cost function is

TC(q) = 0.03¢° — 0.5¢% + 4q + 15.

a. For which amount of sold products do the costs increase at the slowest rate?

b. At what production level will the costs and the revenue increase at the same rate?

The Costs task (used in TBI-3)
The formula 7C = 0.05¢°— 1.5¢ + 20¢ + 500 describes the total costs, depending on the amount
of sold products. What is the meaning of 7C’(20)?

Fig. 1 Short descriptions of the Barrel task, the Monopoly task and the Costs task

recurred in the interviews, we can compare across interviews and observe how Andy’s
instrumentation schemes developed over time. We expected to observe several tech-
niques for solving each task: using the symbolic derivative, determining the steepness
of the graph, drawing a tangent line to find instantaneous rate of change, using tiny
intervals (with or without graphing calculator) or using several options of the GC, such
as the dy/dx-option, the Tangent-option or the Nderiv-option. The Costs task was
included in our analysis since it used the prime notation (f”), unlike the other tasks,
which could possibly trigger an association to f " and, hence, to working symbolically
without using a GC.

In each interview, after the task-based part, we asked a few open questions about the
way Andy used the GC in mathematics and other classes. This gave us insight into his
preferences and attitudes with respect to the GC.

All interviews were videotaped and transcribed afterwards. The use of the GC was
recorded on video. However, the camera did not zoom-in on buttons or the screen.
Instead, the interviewer made field notes of the screens used (e.g. calculation screen or
graphing screen), the calculations made, the options used (e.g. intersect, trace), the
window settings used and the formulas entered into the GC.
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Data Analysis

In order to describe Andy’s instrumental genesis, we identified the instrumenta-
tion schemes in the subsequent interviews. Consequently, we analyzed the
interview transcripts, Andy’s written answers to the tasks and field notes on
his GC use. An analysis of the use of artefacts can be carried out at different
levels. For example, to use a certain GC option for calculating a point of
intersection, a student needs several basic-level instrumentation schemes, such
as to fill in formulas correctly, to find a proper window for the plot, and so forth.
So, an instrumentation scheme can consist of instrumentation schemes described
at different grain sizes.

We describe Andy’s instrumentation schemes at two levels. Firstly, we look at
the separate techniques he used to solve a task, identifying each technique,
describing conceptual and technical elements of his knowledge, together with
GC screens and options used, and offering his statements that explain why he
used this technique. This gives insight into his instrumentation scheme related to
that technique. Secondly, we offer an overview over several techniques he used to
solve one and the same task and at the relationships between the techniques that
he used, to provide insight into Andy’s instrumentation scheme related to a certain
type of task.

So, several instrumentation schemes, each related to a specific technique,
together form an instrumentation scheme related to a type of task. The derivative
framework as presented in Table 1 is used to analyze which representations and
layers of the derivative framework are central in Andy’s instrumentation scheme.
The instrumentation schemes in subsequent interviews give us a look at his
instrumental genesis.

The focus of this study is on Andy’s instrumentation schemes in the task-based
interviews. However, we also collected data to contrast him with his peers and with the
taught content. Therefore, we analyzed how derivatives and instantaneous change were
part of the taught content in Andy’s class of grades 10, 11 and 12, and what
characterizes his work in classes and on tests. This analysis is based on the following
sources:

(1) Study planners and textbooks of Andy’s mathematics and physics classes.

(2) Notebooks from his mathematics and physics classes.

(3) His answers to mathematics (calculus) and physics tests (force and motion) in
grades 10, 11 and 12.

(4) Interviews with his mathematics and physics teachers in grades 11 and 12.

The analysis of these data focused on when and how aspects of the concept
derivative were introduced, the role of various representations in Andy’s
mathematics and physics classes and how the GC was introduced and used by
the teachers. The data analysis is based on representations and layers of the
concept of derivatives (see Table 1). Additionally, we will contrast Andy’s work
in the task-based interviews with the repertoire of techniques used by his peers in
terms of the framework of Table 1. For this, we will summarize results from
Roorda (2012).
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Results
We present the results in chronological order.
The Taught Content and Andy’s Work in Grade 10, Before TBI-1

When Andy was in grade 10, the concept of derivative was not yet introduced in his
mathematics classes. However, in Andy’s physics classes the concept of velocity was
introduced by a graphical approach to determine instantaneous velocity on a distance—
time graph (see Fig. 2), namely drawing a tangent to it, then drawing a large rectangular
triangle to the tangent and then calculating the slope of the tangent. In terms of the
framework presented in Table 1, this is a graphical approach at layer 3 without explicating
relationships with other layers and representations of derivatives. From Andy’s notebooks,
and his work on the grade 10 physics test on kinematics, we observe him practicing this
technique. There is no evidence that graphing utilities of the GC were used or mentioned
in his physics classes, but in his mathematics classes the GC was used for plotting graphs.

Results of Task-Based Interview 1 (April, Grade 10)

After reading the Barrel-a task (out-flow velocity at one instant), Andy first considered
drawing a tangent in the diagram on the worksheet. He then decided to work out the
volumes at =40 and =41 in the calculation screen of his GC and subtract one from
the other. He remarked that this value is not the exact answer, because the difference
between two points is not exactly equal to the velocity at one point. So, he calculated
the average rate of change over a unit interval.

X

Fig. 2 Drawing a tangent as taught in Andy’s physics classes: to calculate instantaneous velocity, a tangent is
drawn and the slope p/q is calculated (Middelink et al. 1998)
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In the Barrel-b task, Andy decided to plot both graphs with his GC: “I think they will
intersect when there is the same amount of fluid in both barrels”. After finding correct
window settings, he studied both graphs and added the linear graph of V to the diagram
on the worksheet. By drawing a parallel tangent to the curved graph (see Fig. 3), he
estimated that, at =60, the out-flow velocity of both barrels would be equal. He
checked this estimation by using the trace option of the GC to move to the volume at
t=60 and =61 and calculated their differences.

With the Monopoly-a task, Andy used the trace option again (see Fig. 4) to look
stepwise where the costs increase least. For the subsequent Monopoly-b task, he plotted
the graphs of 7C and R. He used the option Intersect to find the two points of
intersection. He then remarked that what he did is not correct, because “the task is
about increase”. He had no idea how to proceed.

Table 2 summarizes our proposals with regard to Andy’s instrumentation schemes
related to tasks of the type ‘to calculate an instantaneous rate of change’. They were
dominated by numerical and graphical representations at layer 2 by using a unit
interval, and at layer 3 by drawing a tangent. Instrumentation schemes at layer 2 were
a trace scheme and a trace—value scheme. The core operational invariant is the
understanding of derivatives as the increase of the function value per increase of the
independent variable, as represented in both graphical and numerical ways.

Andy was well aware that his approach yielded an approximation. He related his
trace—value scheme to his tangent scheme, by saying that the velocity at one point was
not exactly the same as the increase over a unit interval. Also, after finding an answer
by means of a tangent, he then checked his answer by calculating the decrease over a
unit interval.

At the time of the interview, derivatives had not yet been introduced in his
mathematics lessons. So, the two trace schemes were most likely based on Andy’s
understanding that an increase over a unit interval yields an approximation to the
instantaneous rate of change. His tangent scheme was most probably based on physics
lessons, in which tangents were used to find instantaneous velocity.

Andy’s repertoire comprised of three schemes. One of the nine students also applied
the graphical tangent scheme and another student used a numerical technique at layer 2,
calculating V(41) — V(40). The remaining seven students had no means whatsoever to
calculate or approximate instantaneous rates of change for the given tasks. Clearly,
none of the students could use symbolic techniques, because derivatives had not yet
been introduced. In the mathematics classes, all had learnt to use the GC for plotting
functions, but none of them used tracing in TBI-1. Andy was the only student whose
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Fig. 3 Drawing and calculation of Andy in the Barrel-b task. The Dutch convention for writing numbers
prescribes the use of a comma instead of a period between the unit and the tenths
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Moving over the graph with the trace option
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Fig. 4 An example of Andy’s trace scheme

repertoire comprised of more than one scheme with a variety of representations (both
graphical and numerical) and the GC played a central role in it.

The Taught Content and Andy’s Work in Grade 11, Before TBI-2

In Andy’s mathematics classes, the concept of derivative was introduced at the
beginning of grade 11. The chapter on derivatives started with the transition from a
difference quotient to a differential quotient. The first page showed distance—time
functions and graphs, an average rate of change was given meaning as the average
velocity over an interval and instantaneous rate of change as the velocity at one instant
in time. Thereafter, the slope of the tangent at a graph in the x—y-plane was approxi-
mated by the slope of an increasingly smaller secant line. Thus, the derivative was first

Table 2 Overview of the schemes developed by Andy in TBI-1

Instrumentation ~ Techniques Conceptual elements Technical elements
scheme
Tangent scheme  Draw a tangent on Rate of change is related to the  Calculate the differences of
paper. steepness of the graph: the y and x and calculate %.
steepness of a tangent
represents the steepness of
the graph at one point.
Trace scheme Plot the graph, move To find a minimum increase Plot the graph, press trace
the cursor over the look at the slowest increase and scroll over the
graph and look at of subsequent y-values. graph.
the increase in y. The trace option gives pairs

of x- and y-values. The
GC makes equal steps in
the x-values.

Trace—value Calculate the values The increase over a unit In the trace option, put in an
scheme with the GC and interval is an approximation x-value, press ‘enter’ and
look at the increase to the instantaneous rate of then the GC calculates
over a unit interval. change. the corresponding
y-value.
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linked to physics and real-world phenomena, and thereafter to the slope of the tangent
to the graph. In this introduction, graphical, numerical and symbolic representations
were all used, but this introduction spanned only one lesson. Thereafter, the basic
differentiation rules were introduced and practiced.

Andy’s notebook shows that he spent a lot of time calculating derivatives symbol-
ically to find extremes of functions or formulas for tangent lines (see Fig. 5).

In the interview, Andy’s mathematics teacher said that in her teaching she mentioned
only incidentally how the GC could be used, and she told the class that plotting graphs
would be helpful to understand the function. Also, she mentioned some options of the
calc-menu of the GC, such as ‘intersect’ (to find the coordinates of the points of

intersection of two graphs), and ‘%’ (to find the slope of a tangent). Figure 6 shows

an excerpt of Andy’s notebook about the % option, in which he wrote down the steps to
find the slope of a tangent using the GC.

In the test on the calculus chapter, three weeks before TBI-2, we noticed that Andy
was able to calculate the derivative of polynomials symbolically, such as O(p) = 4p” —
p° and fix) =x° — 3x* — 9x, without using a GC, but also that he sometimes used his GC
to calculate a zero, a point of intersection or a maximum. The teacher commented on
Andy's answer to the test: ““You should work algebraically; GC use provides no points,
even if your answer is correct”. Thus, on the one hand, the teacher gave access to the
GC, but on the other she discouraged its use. One task in the test asked for the velocity
of a falling object. Although it was a mathematics test on derivatives, Andy solved this
task with a rule learnt in his physics classes. His grade on the mathematics test was
extremely low (2.4 out of 10) and his skill at calculating and using derivatives seemed
weak.

Results of Task-Based Interview 2 (November, Grade 11)

TBI-2 was held in November, a few weeks after the introduction of derivatives.

To calculate the out-flow velocity in the Barrel-a task, Andy started by plotting the
graph on his GC and by using the dy/dx option in the calc-menu, came up with a correct
answer. When asked to check his answer, he mentioned: drawing a tangent on the

ROOL pimy @,V
b= o
b= 1L hb
b -l 4D

Fig. 5 Andy’s calculation of the tangent to fix)=x’ —x’ —x — I at the point x=2
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GC: formula — plot graph.

d
- calc6: Zatx=..
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yields the slope of the tangent at x = ...

Fig. 6 Summary of using the GC in Andy’s notebook

worksheet and calculating its slope (by taking two distant points on that tangent line),
and calculating the difference quotient over a tiny interval (he entered r=40 and
t=40.0001 into his GC to find the corresponding values of V). He did not calculate
the difference quotient correctly, because he confused the numerator and the denom-
inator and calculated %. Later on in the interview, he discovered his mistake and
corrected it. He remarked about this tiny interval: “It is somewhat the same as
dx-dy, dy-dx [option of GC], but then calculated by hand”.

In the Barrel-b task, Andy estimated the answer ¢ = 60 by looking at the graph in his
GC. He checked with calc-dy/dx whether the slope at =60 was exactly —333333. The
interviewer asked if he were able to calculate the answer, instead of estimating. Andy
said: “To find this value in a direct way? [...] The line is always 1/3, so you have to find
a point on the other graph where it is the same”.

Andy used the dy/dx-option again in the Monopoly task, where he estimated the
point where the increase of the graph is minimal by moving over the plot and
reading off the calc-dy/dx values. In the Monopoly-b task, he estimated the x-value,
for which the steepness of both graphs is equal. He made his cursor jump up and
down between the two graphs, using the dy/dx-option for calculating the steepness
(see Fig. 7). It was time-consuming and he commented: “I have no idea how to do
this in another way”. Andy did not mention the derivative function in any of the
tasks.

Table 3 summarizes our proposed instrumentation schemes for Andy’s calculating of
the instantaneous rate of change, which was dominated by the GC option calc-dy/dx.
The earlier trace and trace—value schemes (used in TBI-1: see Table 2) were replaced.
The use of calc-dy/dx was combined with inspection of the graphs and estimating
points by looking at the % values that the GC generated in the plot window, identifying
them as the steepness of the graph at different places (see Fig. 7). In his explanations,
Andy related calc-dy/dx to the tangent and also to the increase of the function over a
tiny interval. Actually, he linked the tiny-interval technique explicitly to the calc-dy/dx
option, by stating that the GC also uses tiny intervals to generate %—Values.

Central aspects of his instrumentation scheme of instantaneous rate of change were,
just as in TBI-1, the numerical and graphical representations. However, these were now
at layer 3, as we interpret his change from unit intervals (in TBI-1) to tiny intervals (in
TBI-2) as a limiting process. In the numerical representation, Andy related layer 2 and
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Fig. 7 An example of the calc-dy/dx scheme

layer 3 by linking the tiny-intervals technique to instantaneous rate of change. We
observe that in the symbolic representation this link from layer 2 to layer 3 was weak:
Andy often called the option of his GC the dx/dy option (note the incorrect order) and
he also calculated a difference quotient by using the reciprocal fraction %. In short, the
core operational invariant is an understanding of the derivative as the average increase
of the function over a tiny interval, calculated through the calc-dy/dx technique.

When asked for other approaches for these tasks, not once did Andy mention the use
of derivatives. To him, differentiation was apparently not related to the trace—value
scheme and the calc-dy/dx scheme. Andy preferred using the GC, stating: “Plotting
graphs is quite handy, because you get a good picture of the situation [...] especially the
calc-menu is practical”.

Table 3 Overview of the schemes developed by Andy in TBI-2

Instrumentation ~ Techniques Conceptual elements Technical elements
scheme
Calc-dy/dx Use the GC option Velocity at one moment can be Plot the graph, press option
scheme dy/dx. calculated by the dy/dx dy/dx, press the x-value
option. and press Enter.

The same holds true for
increase at one point of the

graph.
Tangent scheme Draw a tangent on Rate of change is related to Calculate the differences in y
paper. steepness of the graph. and x and calculate % .

The steepness of a tangent
represents the steepness of

the graph at one point.
Trace-value Calculate the values The average increase over a In the trace option, put in an
scheme with the GC and look tiny interval is an x-value, press Enter and the
at the increase over a approximation of the GC will calculate the
tiny interval. instantaneous rate of corresponding y-value.
change.
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Andy’s repertoire in TBI-2 comprised three different schemes, none of which was
symbolic. Out of his nine peers, most used one or two techniques, of which the
graphical tangent technique was used or mentioned by seven of them. There were four
students who used the derivative, but three of these did so inaccurately. Apparently, so
shortly after its introduction, a considerable number of students were not yet able to use
the derivative in the interview. Thus, Andy’s obliviousness concerning derivatives in
TBI-2 was not in great contrast to his peers. However, just like in TBI-1, he stood out
for the breadth of his repertoire and his GC use that he may have learnt from his
teacher. However, not one of the other students had picked up the Calc-menu in the
same way as Andy.

The Taught Content and Andy’s Work in Grade 11, Before TBI-3

In the second half of grade 11, differential calculus was extended to differentiation rules
(product and quotient rule) and its application to special functions (e.g. logarithms) in
Andy’s mathematics classes. The differentiation rules were introduced through the
symbolic limit definition. Derivatives were mostly used to calculate extreme values

and formulas of tangents, such as, calculate the extremes of f(x) = mAW or find the

equation of the tangents to the graph of f(x) = (2x + 1)e* which pass through (0, 0).
Most tasks were expected to be solved algebraically without use of the GC. Sometimes
graphs were used to check an answer.

In the interview, the mathematics teacher said that the focus in the calculus lessons
was on algebraic manipulations. The GC was only used to plot graphs and sometimes
to check answers. So, in terms of the framework, the teacher’s explanations and the
textbook both emphasized the symbolic representation at layer 3 and 4 (derivative at
one point and derivative function) and the graphical representation at layer 3 (tangent).

On a grade 11 test in March, Andy was able to calculate derivatives, to find extreme
values and tangents, but often he also rounded off calculated values instead of giving
exact values (see Fig. 8).

Results of Task-Based Interview-3 (May, Grade 11)

We report on Andy’s work on the Barrel-a and Costs tasks. Neither the Barrel-b task
nor the Monopoly task was included in this interview.

==l

Fig. 8 Andy’s calculus test: solution of the task to calculate the minimum of f{x) =x — 3In(x)
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To calculate the out-flow velocity in the Barrel-a task, Andy used the same tech-
niques as in TBI-2, although in a different order. He started by drawing a tangent to the
graph at the worksheet and calculating its slope. He proceeded by plotting the graph on
his GC and used the dy/dx option to find a correct answer. He remarked, “Another way
is to substitute the formula into the GC. You will get the graph and then you can
calculate the slope with dx/dy at t=40" (see Fig. 5). Finally, he calculated the
difference quotient on a tiny interval, saying: “Without plotting, I can calculate this
answer also by hand, by using for example t=40.001 and t=40”. Andy wrote down
40.001 and 40.000 (see Fig. 9), and said, “That is also what the calculator does, but the
GC does it very small”. He changed the number 40.001 to 40.000001. Again, he did
not mention that differentiation rules could be used to find the out-flow velocity.

In the Costs task, Andy mentioned symbolic differentiation for the first time. After
reading the question, which included the prime notation 7C'(20), Andy remarked, “The
prime will be placed there for a good reason, I have to fill in 20 into the derivative”.
The interviewer asked for the meaning of the answer. Andy stated, “You calculate the
slope of the tangent at ¢ =20, the decrease, when you put it into the graph”. Andy
determined the derivative function and filled in ¢ =20. Because of a typo in the
formula, he got an incorrect answer. So he checked his answer by using calc-dy/dx.
He was convinced that this GC answer was correct, and not his own calculation.

Table 4 summarizes the proposed schemes used by Andy. Just like in TBI-2, Andy
used three techniques to calculate the out-flow velocity in the Barrel task — and again he
did not refer to the derivative. However, in the Costs task, he related calc-dy/dx to
differentiation — it was the first time we observed him doing this, and it was most
probably triggered by use of the prime notation (') in the task. Point of reference was the
slope of the tangent, because, according to Andy, the slope could be calculated with his
GC as well as with symbolic differentiation.

Central to his instrumentation scheme remained the calc-dy/dx scheme. This is
related to the tangent scheme and also to the trace—value scheme over a tiny interval.
Again the graphical and numerical layer 3 aspects were central. Also, it is noteworthy
that Andy mixed up the order of the division, as at several instances he spoke about dx/
dy instead of dy/dx. In this interview we saw Andy linked the symbolic derivative (layer
4) to the graphical layer 3 (steepness of the graph) in the Costs task. Altogether, the
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Fig. 9 Andy’s notes in TBI-3 in the Barrel-a task
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Table 4 Overview of the schemes developed by Andy in TBI-3

Instrumentation Techniques Conceptual elements Technical elements
schemes

Calc-dy/dx scheme Use the GC option Velocity at one moment can be  Plot the graph, press option

dy/dx. calculated by the option dy/dx. dy/dx, press the x-value
The same holds for increase at and press Enter.
one point of the graph.
Tangent scheme Draw a tangent on Rate of change is related to Calculate the differences of
paper. steepness of the graph. v and x and calculate %.

The steepness of a tangent
represents the steepness of
the graph in one point.

Trace—value Calculate the increase ~ The average increase over a tiny In the trace option put in a
scheme over a tiny interval. interval is an approximation x-value, press Enter and
of the instantaneous rate of the GC calculates the
change. corresponding y-value.
Symb—deriv Calculate symbolically The value of the derivative is No technical elements.
scheme the derivative for the  the slope of the tangent.

given x-value.

operational invariants are an understanding of the derivative as the average increase of
the function over a tiny interval, calculated through calc-dy/dx, through graphical
approaches or eventually through the derivative and filling in the point.

When the interviewer asked at the end of TBI-3 whether he used his GC often in
mathematics classes, Andy replied, “Yes, I normally use the GC; algebraic calculations
are more difficult for me”. This judgment of his own algebraic calculation skills
probably affected his choice of techniques to solve the tasks.

Andy’s repertoire in TBI-3 comprised four different schemes, one of which used the
derivative. Out of his nine peers, there were seven students who used the derivative,
and they did that for a variety of tasks, not just when prompted by the prime notation
(). Four of these students used the derivative inaccurately, making errors just like
Andy’s. His peers were able to use or make mention of another technique, mostly the
graphical tangent one. Andy was the only student who used GC options. Moreover, he
used them with a variety of schemes.

The Taught Content and Andy’s Work in Grade 12, Before TBI-4

The fourth interview was held in November, when Andy was in grade 12. For a
year, he had been working on tasks applying differentiation rules. From his
textbook, his notebook and the work on tests, we can see that derivatives were a
recurring topic, because the chain rule, the second derivative and inflection points
were introduced. On a grade 12 test in November, one of the tasks was to calculate
the minimum and the inflection point of the function f{x)=In(2x*+3). Andy
calculated the derivative correctly, but he failed to calculate the minimum and
the inflection point. He made mistakes in his algebraic calculations and often
rounded off calculated values: his ability to work symbolically with derivatives
remained weak.
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Results of Task-Based Interview 4 (November, Grade 12)

Andy solved the Barrel-a task in nearly the same way as in TBI-3. First, by drawing a
tangent on the worksheet; second, by using calc-dy/dx. Third, Andy again stated that he
could use a tiny interval and he wrote: ‘dx-dy by hand, point 40 and 40.001” (note the
incorrect order of dx-dy). In the Barrel-b task, Andy equated the formulas for the
volumes (so, he was not looking at steepness) and he plotted the two volume graphs.
By using the option Intersect, he found two points of intersection (x = 0 and x = 120),
which have no meaning in terms of the posed question.

In the Monopoly-a task, Andy decided to work with differentiation rules, and this
time he is not prompted by prime notation. So, he works symbolically, albeit with his
GC: to find the slowest rate of increase Andy plotted the derivative graph (of 7C’) and,
using the GC option Minimum, he determined x = 5.6 as the point with the slowest rate
of increase. To check his answer, he calculated with calc-dy/dx the slope at x=5.6,
concluding, “the increase at this point is not much”. In the Monopoly-b task, Andy
used the graphs of the derivatives again, but this time he interpreted these graphs
incorrectly, because, after plotting the derivative graphs (see Fig. 10), he wondered:
“They have to increase with the same rate, but one graph is going down and the other
graph is going up, so there is no point where both graphs increase”. So, Andy mixed up
the graphs of the 7C and 7C" instead of looking at the point of intersection of the
derivative graphs, he reasoned about the behaviour of the derivative graph.

Because TBI-4 was the final interview in this longitudinal study, the interviewer
asked a few short retrospective questions. Andy stated that he often uses the GC,
because “it is faster when you do understand it [...] especially when you have to solve
equations, [...] you make easier mistakes in formulas compared with the intersect
option of the GC”.

Fig. 10 Andy plots the graphs of the derivative of 7C and R
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The interviewer asked why he did not use derivatives in the Barrel task. Andy first
replied: “Didn’t I use a derivative? I did use it [...] [ drew a tangent — oh, the derivative,
but, the dx-dy option is the option of the GC to calculate derivative, I know how to do
it”. So, even when explicitly asked, he referred to the derivative in graphical and GC
terms. Later on, he explained that symbolic derivatives were not so clear to him at first,
but also that he could have used derivatives in the last two interviews. As an explana-
tion for not using symbolic differentiation, he surmised that it was perhaps a more
difficult way of solving the tasks.

Table 5 summarizes the proposed schemes used by Andy.

In the final interview, Andy’s instrumentation scheme of instantaneous rate of
change was again dominated by the calc-dy/dx scheme. Just as in TBI-2 and TBI-3,
the same three techniques, calc-dy/dx, tangent and tiny interval were observed, and the
corresponding actions seemed to be connected in his instrumentation scheme. In his
notebook we observed that he practiced many differentiation rules for many different
functions, but he referred to symbolic derivatives only once. And when he did, it was
again GC-based.

Sometimes, links between layer-3 techniques and symbolic differentiation became
visible. For example, in the Monopoly tasks, Andy used the graph of the derivative
function to find a point of minimal increase (Monopoly-a task) and also to find points
with equal increase (Monopoly-b task). In the Monopoly-a task, Andy interpreted the
graph of TC' correctly, but in the Monopoly-b task he mixed up the steepness of the
graph and the steepness of the graph of the derivative. This shows a weak link between
the symbolic representation at layer 4 and the graphical representations at layer 3 and 4.
The main operational invariants are unchanged.

Table 5 Overview of the schemes developed by Andy in TBI-4

Instrumentation ~ Techniques Conceptual elements Technical elements

scheme

Calc-dy/dx Use the GC option dy/dx. Velocity at one moment can  Plot the graph, press option
scheme be calculated by the option dy/dx, press the x-value

dy/dx.
The same holds for increase
at one point of the graph.

and press Enter.

Calculate the differences of
y and x and calculate ﬁ—if.

Tangent scheme Draw a tangent on paper. Rate of change is related to
steepness of the graph.

The steepness of a tangent
represents the steepness

of the graph in one point.

Trace—value Calculate the increase The average increase over a  In the trace option put in
scheme over a tiny interval. tiny interval is an an x-value, press Enter
approximation of the and the GC will calculate
instantaneous rate of the corresponding y-value.
change.
Calc-min Plot the derivative graph ~ The x-value of the minimum  Plot the graph. Press the
scheme and calculate the of the derivative graph calc-min button to find

minimum of this
graph with the GC.

gives the point with
minimal steepness.

the minimum.
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Andy’s repertoire in TBI-4 comprised four different schemes. For one of these, the
calc-min scheme, he needed a derivative, after which he could use the GC again. His
schemes differed from his peers. They frequently used the derivative, and the graphical
tangent scheme (drawn on paper) came second. Three of his peers said that the GC
could also be used for solving the tasks, but their GC competence did not compare with
Andy’s. Andy stood out as a student who, on the one hand, shunned the derivative, yet
on the other used the GC with a variety of schemes.

In the final sub-section, we give an overview of the development of Andy’s
instrumentation schemes and also offer proposed explanations for his development.

The Development of Instrumentation Schemes

Table 6 provides an overview of the observed schemes in the various interviews. In
TBI-1, before the introduction of derivatives, Andy’s preferred instrumentation
scheme was characterized as a trace scheme: he used the trace option of his GC
to generate y-values from which he calculated their stepwise increase. After the
introduction of derivatives, in TBI-2, we observe an uptake of the calc-dy/dx option
of the GC. A characterization of his instrumentation scheme of ‘instantaneous rate
of change’ is the relationship of a trace—value scheme, used by Andy to find the
increase over a tiny interval, a tangent scheme and a calc-dy/dx scheme. These
schemes are explicitly linked to each other by conceptual aspects, such as ‘the
steepness of a curved graph at one point can be found by a tangent’ and ‘velocity
and increase in one point are related to steepness’. Central to Andy’s instrumenta-
tion scheme of instantaneous rate of change are the graphical and numerical layer 3
cells of the derivative framework.

In TBI-3, the same schemes are central in the Barrel task. In the Costs task, a
weak link occurred between symbolic differentiation and calc-dy/dx. Part of Andy’s
instrumentation scheme of instantaneous rate of change is the understanding that
calc-dy/dx and symbolic differentiation can both be used to find the slope of a graph
at a point. This seems to be the link between both techniques. In TBI-4, Andy again
heavily relied on calc-dy/dx. Although in the final task he used symbolic derivatives,
his ability in working in layer 4 with formulas and graphs of derivatives remained
weak. He made calculation mistakes and interpretative ones of derivatives graphs,
while he was confident about techniques related to graphical and numerical repre-
sentations at layer 3.

Table 6 The development of Andy’s schemes

TBI-1

TBI-2

TBI-3

TBI-4

Trace scheme
Tangent scheme
Trace—value scheme

Tangent scheme
Trace—value scheme
Calc-dy/dx scheme

Tangent scheme
Trace—value scheme
Calc-dy/dx scheme
Symb—derive scheme

Tangent scheme
Trace—value scheme
Calc-dy/dx scheme

Calc-min scheme
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Conclusion and Reflections

The central question in this article is which instrumentation schemes can develop while
using a GC in learning about the derivative. We presented the results of one student,
who is an intensive GC user. His case elicits how a student’s understanding of the
concept of derivative can be affected by the access to a GC. Tables 2, 3, 4, and 5
describe six different instrumentation schemes related to the concept of derivative at
different stages in time. Conceptual aspects of the derivative and technical elements of
the GC developed in interaction, such as using the trace option to estimate the steepness
of a graph or the calc-dy/dx option to calculate the derivative at a point. Table 6
describes the development of Andy’s instrumentation schemes over the years. Three
schemes became central: the tangent scheme, the trace—value scheme and the
calc-dy/dx-scheme. One important conclusion, therefore, is that Andy’s schemes main-
tained the operational invariant of understanding the derivative as an average change
over a tiny interval that can be considered in a graphical or numerical way or through
the calc-dy/dx technique. These schemes seemed relatively stable and were hardly
affected by symbolic differentiation techniques.

We have evidence of Andy’s knowledge of the symbolic derivative and of his ability
to apply differentiation rules, because we observed these from his notebooks and from
his work on tests. From the mathematics tests and the teacher interviews we know that
the teacher did not promote intensive GC use, which is reflected in the work by Andy’s
peers, who scarcely use the GC options. While Andy spent much time in mathematics
classes practicing differentiation rules, often calculating tangents and extremes, he did
not mention or use derivatives and differentiation rules in the TBIs, until he saw an
instance of prime notation (') in one of the tasks.

Despite repeated questions by the interviewer about possible alternative approaches,
Andy only once mentioned the derivative spontaneously in the final interview, but then
again he used it in conjunction with the GC. From grade 10 onwards, Andy displayed a
variety of schemes using options of the GC. Therefore, we conclude that these options
of the GC have become part of his instrumentation schemes for situated tasks on rate of
change, and that these seem to have developed separately from his understanding of the
symbolic differentiation rules.

Reflections on the Research

The idea that use of the GC encourages students to create links between graphical and
symbolical representations as reported in Burrill et al. (2002) and Delos Santos (2006)
does not hold for Andy. His development over several years shows that the connection
between symbolical and graphical representations remained weak, even in the final
grade 12 interview.

This seems to be caused by the fact that the GC enables some transitions in the
derivative framework, which “work well” for Andy. He often used the transition from a
function (symbolic representation at layer 1) to steepness of the graph at one point
(graphical representation at layer 3) through the dy/dx option. So, his case shows that
learning processes in mathematics education can be strongly affected by the access to a
GC. Contrary to the conclusion of Delos Santos (2006), who observed that students do
not fully integrate the GC in their mathematical activity, the case of Andy shows that
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the availability of the GC can lead to an instrumentation scheme with strongly
integrated elements of mathematical knowledge and knowledge of the artefact.

It is still not clear to us why Andy’s relationships between symbolic differentiation
rules and graphical, numerical and GC techniques remained weak. We offer two related
potential explanations.

(1) Andy’s instrumentation schemes seem to be affected by his preference for phys-
ics, a subject in which he was a good student. There he learnt in grade 10 that the
steepness of distance—time graphs can be used for approximations of velocity. The
approach in his mathematics classes focused on tangents in the x—y-plane. The
distinction between the two subjects seems to result in a separation between
Andy’s solutions. His solutions to the first type of tasks (on distance—time graphs)
were often approximate, while the solutions in his notebooks to the latter type of
tasks (tangents in the x—y-plane) always involved symbolic calculations. Andy
was aware of the fact that answers of the GC were approximations. However,
because the tasks in the interviews were all situated in contexts, Andy did not feel
the need to find exact values by using differentiation rules.

(2) Andy had a preference for working with graphs. On several occasions, he
expressed that graphs gave him an overview over the situation and they supported
his understanding. For a graph-oriented student like Andy, the step from a trace—
value scheme to the calc-dy/dx option was easily made. For him, the use of calc-
dy/dx was not meaningless button-pressing, but an insightful technique. As a
consequence, Andy seemed to avoid symbolic manipulation, with which he often
made algebraic errors. His work on the calculus tests showed that he was weak
when working symbolically with derivatives. His uncertainty with respect to his
algebraic manipulation ability, combined with his high level of understanding of
graphs, may be an explanation for his preference for plotting graphs and subse-
quent use of his GC.

In an earlier analysis of Andy and his nine peers (Roorda 2012), based on the
derivative framework of Table 1, Andy could only be identified as an outlier regarding
his GC use, without distinguishing between the different GC-based schemes at a finer
grain size. The theory of instrumental genesis (Artigue 2002; Drijvers et al. 2013; Guin
and Trouche 1998) was helpful in identifying six different instrumentation schemes and
in describing the interplay between the technical and conceptual elements in relation
both to the artefact and the given tasks.

The case of Andy confirms what Trouche and Drijvers (2010) have already pointed
out earlier, namely that the use of technology in education can have complex and
subtle effects: instead of being a tool that promotes links between representations, the
use of the GC can result in a learning process drawing on graphical and numerical
representations, a process that seems to develop separately from symbolic
representations.

We also want to reflect on the extent to which the study’s results are affected by
the instruments used. We observed that links between graphical and symbolical
representations were weak for Andy. This result may be affected by the fact that
most tasks used in this research did not encourage the use of differentiation rules.
However, if in Andy’s schemes symbolic differentiation rules were strongly linked to
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velocity, steepness or increase, we could have expected Andy to mention the option of
using derivatives. However, this only happened towards the final stage of his sec-
ondary school career and, again, he used the derivative as a GC option. This
contrasted with his peers who increasingly preferred to use derivatives combined
with the use of a tangent for solving the very same tasks (see Roorda et al. 2015).
Compared with them, Andy was singular in his intensive use of the GC and with his
avoidance of symbolic manipulation.

The generalizability of the results of a case study is an important issue (Lincoln and
Guba 2000; Stake 2000; Yin 2014). Lincoln and Guba (2000) argue that, on the one
hand, case studies contain factors that are highly specific for the studied context, which
cannot be generalized. On the other hand, they suggest that case study results are
working hypotheses, which are transferable to some extent. The degree of transferabil-
ity is a direct function of the similarity between contexts, and working hypotheses may
be applicable in other contexts.

In the case of Andy, the teacher mentioned GC options only incidentally. Thus, it
was not an exceptional environment in which the GC was excessively promoted. The
minimal uptake of GC options by Andy’s peers testifies to this. The case of Andy
shows that the development of instrumentation schemes in relation to the choices of the
teacher is a subtle process with outcomes that are sometimes unexpected. This article
presents some evidence that students sometimes rely more on graphical and numerical
output of the calculator than on symbolic calculations.

We suppose that such a preference for graphical and numerical representations may
occur for several options of the GC, such as finding the point of intersection, calculat-
ing extremes and finding an area with an integral. More generally, technology that is
used while a student is learning a concept can become an integral part of a student’s
conceptual knowledge and can strongly influence or even replace mathematical knowl-
edge that is seen as important from the teacher’s viewpoint.

One might wonder if it is a problem that Andy did not relate symbolic differentiation
rules to GC options. An advantage of Andy’s approach is his early uptake of graphical
and numerical techniques. While his peers in grade 10 could not solve the tasks on
instantaneous rate of change, Andy solved these by approximation by means of a unit
interval. This yielded satisfactory answers (in his eyes, at least). A disadvantage of his
fruitful approach was that he had few reasons to supplement his schemes with symbolic
differentiation rules. We surmise that if Andy succeeds in linking symbolic differenti-
ation techniques to his plot-trace scheme and his calc-dy/dx scheme, he will obtain an
excellent conceptual understanding of the concept of derivative at layer 3 across all
representational aspects (see Table 1).

We assume that there are more students with learning processes similar to Andy. The
purpose of this article is not to argue that the GC should not be used in mathematics
education, but rather to emphasize that some students strongly rely on graphical and
numerical outcomes, resulting in a weak relationship with symbolic representations.
These students will benefit from an approach where they are encouraged to discuss
relations between symbolic and graphical/numerical representations. Therefore, the
case described in this article has a practical relevance for mathematics teachers, because
insights into the effects of a GC on mathematical thinking and learning will assist
teachers in adapting their teaching to opportunities for and barriers to students’ learning
processes.
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