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Abstract
Existing learning-based dehazing algorithms struggle to deal with real world hazy images for lack of paired clean data.
Moreover, most dehazing methods require significant computation and memory. To address the above problems, we propose
a joint dual-teacher knowledge distillation and unsupervised fusion framework for single image dehazing in this paper. First,
considering the complex degradation factors in real-world hazy images, two synthetic-to-real dehazing networks are explored
to generate two preliminary dehazing results with the heterogeneous distillation strategy. Second, to get more qualified ground
truth, an unsupervised adversarial fusion network is proposed to refine the preliminary outputs of teachers with unpaired clean
images. In particular, the unpaired clean images are enhanced to deal with the dim artifacts. Furthermore, to alleviate the
structure distortion in the unsupervised adversarial training, we constructed an intermediate image to constrain the output of
the fusion network. Finally, considering the memory storage and computation overhead, an end-to-end lightweight student
network is trained to learn the mapping from the original hazy image to the output of the fusion network. Experimental
results demonstrate that the proposed method achieves state-of-the-art performance on real-world hazy images in terms of
no-reference image quality assessment and the parameters.

Keywords Generalize · Lightweight · Real-world hazy images · Dual-teacher · Fusion

Introduction

Images captured in hazy weather often have blurred edges,
reduced contrast, and shifted color due to the scattering
effect of floating practices in the environment. The obvious
image degradation caused by haze can significantly affect
the performance of computer vision systems, such as object
detection [1–3], image segmentation [4], and classification
[5]. Single image dehazing aims to recover the haze-free
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image from the degraded input. As a long-standing research
problem in the vision community, it has attracted more and
more attention in the computer vision and graphics commu-
nity.

Mathematically, the haze process can be described with
the physical scatteringmodel,which is formulated as follows.

X (μ) = Y (μ) T (μ) + A (1 − T (μ)) (1)

where X (μ) and Y (μ) indicate the hazy image and the
corresponding haze-free version. T (μ) and A denote the
transmission map and the global atmosphere light. Specif-
ically, the transmission map T (μ) = e−βd(μ) can be
expressed with the depth map d (μ) and the medium extinc-
tion coefficient β that reflects the haze density.

Given a hazy image X , recovering its haze-free ver-
sion Y is a challenging ill-posed problem. Existing methods
always estimate the transmission map T (μ) and the global
atmosphere light A with various priors, such as the color
attenuation prior [6] and the dark channel prior [7]. Unfortu-
nately, statistical priors do not always hold for hazy images of
the real world, leading to limited performance in a complex
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practical scene [8]. Furthermore, these prior-based methods
always suffer from nonconvex optimization problems with
high computation overhead [9].

With the advent of deep neural networks [10], learning-
based methods have achieved excellent performance. Super-
vised methods either utilize the neural network to estimate
global air lights and transmission maps [11, 12], or gener-
ate clean images with the large-scale paired dataset [13–16].
However, most synthetic datasets are constructed based on
the assumptions that spatially invariant attenuation coeffi-
cients, overcast lighting and wavelength-independent [17].
These assumptions do not always hold in many real scenes
[18]. The dehazing networks trained with the synthetic
dataset cannot perform well in real scenes due to the domain
discrepancy between the synthetic and real domains. Since
it is difficult to collect large mounts of perfectly aligned
paired real data, some unsupervised methods [19–21] try
to translate hazy images and unpaired clean images with
the cycle constraint through generative adversarial learning
(GAN). Nevertheless, these unsupervised GAN-based algo-
rithms rely heavily on selection of the training data due to
the unstable training process and model collapse. Recently,
some researchers have taken this issue up with synthetic-
to-real strategies. Shao et al. [8] proposed the first domain
adaptation algorithm to reduce the domain gap by trans-
lating images from one domain to another domain. Since
there are no ground truths for the real world hazy images,
Wu et al. [22] synthesized several types of hazy images and
proposed a real image dehazing framework with codebook
priors (RIDCP). Taking into account complex degradations
in real scenes, Qiao et al. [23] proposed an algorithm with
the ensemble network and the intermediate domain module
(ENID) to reduce the large distribution discrepancy between
the synthetic and the real domains. However, due to the lack
of paired clean real data, existing synthetic-to-real algorithms
struggle to process the complex degradations in real-world
hazy images, especially in the distant regions, such as the sky
areas. Furthermore, thesemethods focus on improving gener-
alization in real scenes without considering memory storage,
whichmay bring difficulty in resource-limited environments.
For example, the domain adaptation dehazingmethod (DAD)
has 54.59 million parameters [8].

To improve real-world image dehazing performance with
computational cost, we propose a joint dual teacher knowl-
edge distillation and unsupervised fusion framework for
single image dehazing in this paper. First, considering that
there is no ground truth for real-world hazy images, two
synthetic-to-realistic networks RIDCP [22] and ENID [23]
are explored as teachers to generate twopreliminary dehazing
results with a specially designed strategy in the first stage.
Specifically, the real-world hazy image is used as input of
one teacher with the usual distillation strategy. Furthermore,
considering severe information degeneration, the hazy image

is also enhanced to feed into the other teacher to generate
another hazy result. Second, to obtain more qualified ground
truth, an unsupervised fusion network is proposed to refine
the outputs of two selected teachers via adversarial learning
in the second stage. To deal with the dim artifacts, unpaired
clear images are further enhanced with the color-preserving
adaptive histogram equalization(CPAHE) [24] to improve
the image quality of dark regions. To alleviate the struc-
ture distortion in the unsupervised adversarial training, the
result of the fusion network is constrained with the interme-
diate image, which is obtained with adaptive similarity maps
according to the chrominance information and the gradient
modulus of the LMN color space. Finally, considering the
memory storage and computation overhead, an end-to-end
lightweight student network is trained to learn the mapping
from the original hazy image to the output of the fusion net-
work.

Compared with state-of-the-art dehazing methods, the
proposed method can effectively recover haze-free images
with vivid color. As shown in Fig. 1, only the sky regions
of the proposed method are blue and visually pleasing. The
contributions of the proposed method are summarized as fol-
lows:

• We propose a joint dual-teacher distillation and unsu-
pervised fusion framework for unpaired real-world hazy
images. Considering that there are no ground truth for
real-world hazy images, two synthetic-to-real dehaz-
ing networks are explored to generate two preliminary
dehazed results with different distillation strategies.

• We propose an unsupervised fusion scheme with a sin-
gle generative adversarial network to refine preliminary
dehazing results of two teachers. Unpaired clean images
are enhanced to overcome the dim artifacts. Furthermore,
to alleviate the structure distortion in the unsupervised
adversarial training, we constructed an intermediate
image to constrain the output of the fusion network.

• Comprehensive experiments demonstrate that the pro-
posed method achieves state-of-the-art performance on
the real-world hazy images, in terms of no-reference
image quality assessment and the parameters.

Related works

Prior-basedmethods

The classical dehazing algorithms mainly analyze the degra-
dationmechanismof hazy images, and then estimate physical
parameters such as transmission maps and atmospheric light
based on certain image priors. The clear images are restored
from estimated parameters and hazy images based on atmo-
spheric scattering models. He et al. [7] proposed the famous
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Fig. 1 Visual comparison of dehazing results for real-world haze images. Only sky regions of the proposed method are blue and visually pleasing

dark channel prior by statistically analyzing the channel
information of clear images, which meant that clear images
have at least one channel with lower brightness except for the
sky area. The dehazing algorithmwith the dark channel prior
can cause obvious color distortion and blocky defects in the
sky area of the image.Many subsequent algorithms improved
the dark channel prior algorithm fromdifferent aspects.Dai et
al. [25] combinedRetinex theory to optimize the atmospheric
scattering model, and decomposed the clear images into
a reflection map and a spatially varying illumination map.
BorKar and Mukherjee et al. [26] applied the dark channel
prior to theYchannel of theYCbCr color space and estimated
the transmission map in the RGB color space. Finally, the
brightness information of the dehazed image was adjusted
to avoid the dim artifact in some regions. Although these
methods improved the dehazed results to some extent, they
sometimes led to obvious color distortion for the varicolored
hazy images. In addition to the dark channel prior,many algo-
rithms proposed different types of priors. Kaur et al. [27] first
estimated the transmission map and atmospheric light based
on the gradient channel prior and optimized the transmission
mapusingL0-guidedfiltering.Although it partially corrected
for the problem of color distortion, the hyper-parameter
selection was quite cumbersome. To improve the efficiency,
Liu et al. [28] proposed a rank one prior for the statistical
analysis of images, which greatly improved the efficiency in
practice. Ju et al. [29] proposed a region line prior based
on the relationship between the corresponding regions of
foggy images and clear images. Based on this novel prior,
the dehazing task was transformed into a two-dimensional
optimization function. This algorithm alleviated oversatura-
tion to some extent in the dehazed results. Liu et al. [24]
transformed the dehazing procedure into a task of improv-
ing image visibility and contrast. They performed contrast
and low-light image enhancement to obtain two intermediate
images and then fused the intermediate images to obtain the
corresponding dehazed results. Although prior-based algo-
rithms achieved good dehazed results, they sometimes led to
obvious artifacts and some issues when priors were not held
in realistic scenes.

Learning-basedmethods

Recently, deep learning-based algorithms have made great
progress in many fields [30–32], which can be roughly cat-
egorized into three groups based on the characteristics of
the datasets: supervised methods, semi-supervised methods,
and unsupervised dehazing methods. Supervised dehazing
methods mainly utilize paired hazy/clear images, transmis-
sion maps, and atmospheric light in the synthesized dataset
to train the neural network. Some algorithms first used neural
networks to estimate the corresponding parameters such as
the transmission map and atmospheric light, and then haze-
free images were recovered through atmospheric scattering
models. Li et al. [33] proposed the first deep learning-based
dehazing algorithm. To avoid the cumulative error of estimat-
ing the transmission map and atmospheric light parameters
separately, many dehazing algorithms transformed the atmo-
spheric scattering model, converted the parameters of the
transmission map and atmospheric light into an intermediate
variable, and then obtained the clear dehazing results with
the transformed model. To further reduce errors caused by
parameter estimation, more algorithms learned the mapping
of hazy images to clear images with improved network struc-
tures, loss functions and other aspects [14, 34–36]. Park et
al. [37] proposed the learning-based fusion dehazing net-
work to improve performance on outdoor hazy images. Due
to the domain discrepancy, the dehazing network trained
with synthetic datasets cannot perform well in real scenes.
Many semi-supervised dehazing algorithms [8, 9, 22, 38,
39] were proposed one after another. Li et al. [9] proposed
a semisupervised dehazing framework by exploring the dark
channel before constraining the real-world hazy images. Fur-
thermore, An et al. [38] proposed two subnets to estimate the
atmospheric light and transmission map in semisupervised
dehazing methods. To bridge the domain gap between the
synthetic and the real domains, Shao et al. [8] introduced
image translation modules and depth information into the
dehazing algorithm, which improved generalization in the
real world. Using several physical priors in a loss commit-
tee, Chen et al. [39] fine-tuned the pretrained dehazingmodel
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with three priors to improve generalization performance.
Recently, Wu et al. [22] proposed the novel codebook pri-
ors to improve the dehazing performance on real-world hazy
images. In addition, some unsupervised dehazing algorithms
[19, 40, 41] also achieved great performance on real-world
hazy images. Yang et al. [19] proposed a self-augmented
image dehazing algorithm by decomposing the transmission
map into depth and density in the CycleGAN framework
[40]. Li et al. [42] decomposed the single hazy image into
the atmospheric light layer, transmission map layer, and the
scene radiance layer, then the clear image was recovered in
a self-supervised manner. The loss based on the color atten-
uation prior was proposed to constrain the dehazed results.

Knowledge distillation

Knowledge distillation attempts to transfer knowledge from
a complicated teacher model to a light student model. As
one branch of transfer learning, knowledge distillation has
been widely used in many fields such as detection [43] and
style transfer [44]. Common approaches can be divided into
distillation on logits, the bounding box, the output, and fea-
ture maps. Wang et al. [43] analyzed the inconsistency of the
target results and proposed an adaptive sample assignment
to improve the quality of the pseudo-boxes. To improve the
performance of semi-supervised shadow detection, Chen et
al. [45] proposed a mean teacher model by exploring their
complementary information and unlabeled images. Tang et
al. [46] proposed a simple distillation framework with a data
ensemble strategy to generate plenty of soft labels as targets,
which significantly improved the performance of the student
in the semi-supervised objection. Motivated by contrastive
learning and mean-teacher self-training, Cao et al. [47] pro-
posed a contrastive framework to enhance beneficial learning
signals without requiring labels in the target domain. Deng
et al. [48] proposed a harmonious framework to improve
object detection by exploring the consistency of the local-
ization scores and the classification. Recently, Hong et al.
[49] proposed the first framework for knowledge distillation
on paired synthetic hazy images with a heterogeneous task
learning mechanism, an image reconstruction network was
treated as the teacher to assist intermediate feature learning
in training the student for synthetic image dehazing.

Unlike dehazing methods in synthetic paired datasets [37,
49], the proposed method mainly deals with the issue of
unpaired real-world hazy images. Furthermore, unlike the
single teacher in [49], the proposed method tries to explore
the advantages of dual teachers with the unsupervised fusion
strategy.

Method

Framework

As shown in Fig. 2, the overall framework of the proposed
dehazing method consists of two teachers, a light student
network and the unsupervised fusion network. The teachers
generate the initial results with the fixed parameters during
the training process. Two initial dehazed images are fused to
generate the final result with the GAN-based unsupervised
fusion network; then the student is trained to recover a hazy-
free image from its hazy counterpart under the supervision of
the final result. Only the student is used in the test practices.

The real-world hazy image X is fed to the student and
one teacher to obtain the dehazed results Y and Y2. Taking
into account the complex degradation in real scenes, the real
hazy image X is enhanced with the CPAHE [24] and the
Homo_filter, respectively. The enhanced images are further
fused according to the realness and adaptive similaritymap to
the real hazy image X , and the fused result Xen is then fed to
the other teacher network to generate the dehazed image Y1.
Tomake full use of the different dehazed results,Y1 andY2 are
further refined through the fusion network with unsupervised
adversarial training. The global discriminator DG and the
local discriminator DL try to discern the fused result Yen
with the enhanced image Zen .

Specifically, the unpaired clear image Z is further enhanced
to restore the details of the dark regions, which is helpful to
alleviate dim artifacts in single image dehazing. To avoid
structure distortion, the result of the fusion network is con-
strained by the intermediate image Y3, which is obtainedwith
adaptive similaritymaps according to the chrominance infor-
mation and the gradient modulus of the LMN color space
[50]. Finally, we propose a compact student network to learn
themapping function from the real-world hazy image X to the
corresponding haze-free imageY supervised byYen , which is
the output of the unsupervised fusion network. The dehazed
result Y is also constrained with the dark channel loss, which
can mitigate the haze residue in the dehazing process.

Fusion and enhancement

In the unsupervised fusion network, two preliminary dehaz-
ing results Y1 and Y2 are mixed with the adversarial learning
strategy. To avoid the structure distortion during the unsu-
pervised adversarial training, the intermediate image Y3 is
obtained with adaptive similarity maps according to the
chrominance information and gradient modulus of the LMN
color space [50].

123



Complex & Intelligent Systems

Fig. 2 The overall architecture
of the proposed joint
dual-teacher distillation and
unsupervised fusion framework.
Only the lightweight student is
used in the test

To obtain the chrominance information,wefirst calculated
the M and N channels from the RGB color space as follows.

M = 0.114 · B + 0.04 · G + 0.30 · R. (2)

N = 0.17 · B − 0.60 · G + 0.34 · R. (3)

Then, the similarity map according tho the the chromi-
nance information is computed as:

SC (y) = 2M1 (y) · M2 (y) + 130

M2
1 (y) + M2

2 (y) + 130
· 2N1 (y) · N2 (y) + 130

N 2
1 (y) + N 2

2 (y) + 130

(4)

where M1 and N1 stand for M and N channels of Y1, M2 and
N2 related to M and N channels of Y2.

As for the similarity related to the gradient information
can be calculated as follows:

SG (y) = 2G1 (y) · G2 (y) + 160

G2
1 (y) + G2

2 (y) + 160
(5)
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We can calculate the overall similarity maps between the
dehazed image and the original image as follows:

SCG (y) =
[
SC (y)

]0.4 · SG (y) (6)

The weight maps of Y1 and Y2 can be calculated with the
Softmax function, which defined as follows:

[
W1(y)
W2(y)

]
= so f t max

([
S1(y)
S2(y)

])
(7)

The image Y3 can be obtained by combining the prelim-
inary dehazed results Y1 and Y2 with their weight maps as
follows:

Y3 = W1 (y) · Y1 + W2 (y) · Y2 (8)

Y3 is used as an intermediate image to constrain the output
of the unsupervised fusion network.

Network structure

To improve the generalization on the real-world hazy image,
two synthetic-to-realistic dehazingnetworksRIDCP [22] and
ENID [23] are selected as teachers. The RIDCP encoder
consists of some residual layers and four down-sampling
layers followed by four residual transformer blocks. As for
the decoder, it has a symmetric structure with the encoder.
Specifically, the deformable convolution is introduced to
align different features. In addition, we adopt the multi-
scale boosted module dehazing network proposed in [23]
as the second teacher, which consists of an encoder mod-
ule, a boosted decoder module, and a dense feature fusion
module. Different from the original architecture proposed in
[13], the proposed encoder module contains dual learning
branches with different parameters to deal with the distribu-
tion discrepancy between the synthetic hazy dataset and the
realistic dataset. The Strengthen-Operate-Subtract strength-
ening strategy [13] is incorporated into the decoder to recover
haze-free images. To remedy the missing spatial information
caused by the down-sampling operation in U-Net, the dense
feature fusionmodule exploits features fromnonadjacent lev-
els with the back-projection technique.

To generate a more visually pleasing result, we adopt a U-
Net generator as the fusion network to fuseY1 andY2 with the
adversarial learning strategy [51]. The original clean image
Z is enhanced with CPAHE [24] to improve image quality
and overcome the dim artifact. The global discriminator and
the local discriminator try to discern whether the fused result
Yen is similar to the enhanced images Zen .

Unlike the teachers, a lightweight dehazing network with
an effective feature attention block is proposed as the stu-
dent. The student first employs one regular convolutional

layer and four down-sampling operations to quarter the input
hazy image in side length. Each down-sampling module
contains one 3*3 convolution layer with stride 1 and two
convolution layers with stride 2 following a ReLU per layer.
The down-sampled features are fed to one attention module
in the bottleneck layer, and then four upsampling modules
and one regular convolution layer are employed to restore
the haze-free image. Furthermore, instead of the common
skip connection with concatenation or addition, the adap-
tive mixup fusion strategy [52] is introduced in the student
to exchange information between the shallow features and
high-level features.

To enhance the feature extraction ability,we also introduce
the attentionmechanism in thebottleneck layer of the student.
As shown in Fig. 3, the featuremaps Fin in the low-resolution
space are groupedwith horizontal kernels andvertical kernels
inspired by coordinate attention [53]. To promote informa-
tion exchange between channels, the channels of the pooled
feature maps Fh and Fv are squeezed from C to C/r, then Fh
and Fv perform element-wise product operation to embed
position information. Finally, the channels are changed to
C with a Conv-Shuffle-Sigmoid block, and the feature map
Fout can be generated with the attention map to emphasize
the regions of interest.

Loss function

In the proposed framework, all the parameters of two teachers
are fixed. The GAN-based unsupervised fusion network and
the student are updated with different loss functions in the
training process.

Loss function for the fusion network. Inspired by the unsu-
pervised image-to-image translation, a U-Net is applied as
a generator to fuse initial dehazed images of two teachers
into the refined result with adversarial loss and structure-
preserving loss. The loss function for the GAN-based unsu-
pervised fusion network is defined as follows:

LF = Ladv + λvggLvgg (9)

Ladv = EYen∼Pf ake [(DG(Yen, Zen) − 1)2]
+EZen∼Preal [DG(Zen,Yen)

2]
+EYen−patch∼Pf ake [(DL(Yen−patch) − 1)2] (10)

where Ladv stands for the adversarial losses, Yen and Zen

relate to examples sampled from theoutput distribution Pf ake

and haze-free distributions Preal . Ladv is employed to make
the output results similar to the haze-free images.

In addition to the adversarial loss, the perceptual loss func-
tion Lvgg is also utilized to preserve the structure of the fused
result. The perceptual loss with the pre-trained VGG19 net-
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Fig. 3 The overall architecture
of the proposed joint fusion and
dual teachers knowledge
distillation framework. Only the
lightweight student is used in
test

work is defined as follows:

Lvgg = 1

WH

W∑
m=1

H∑
n=1

(ϕi, j (Yen) − ϕi, j (Y3))
2

+ 1

WH

W∑
m=1

H∑
n=1

(ϕi, j (Yen−patches)

−ϕi, j (Y3−patches))
2 (11)

where ϕi, j (·) represents the feature maps of the pre-trained
VGG19 network.

In addition, a global discriminator DG and a local dis-
criminator DL are also used to discern the outputs Yen and
Zen in the unsupervised adversarial training process. The loss
functions for discriminators are defined as follows:

LGlobal
D = EY∼Pf ake [DG(Yen, Zen)

2]
+EZen∼Preal [(DG(Zen,Y ) − 1)2] (12)

LLocal
D = EY∼Preal [(DL(Zen−patches) − 1)2]

+EY∼Pf ake [(DL(Yen−patches)
2] (13)

where Zen−patches and Yen−patches used in the training of
local discriminator stand for patches randomly sampled from
the Zen and Yen .

Through adversarial training, the output Yen of the fusion
network is similar to the high-quality image Zen . We then
adopt Yen as the corresponding haze-free image to train the
student with the input of the original hazy image X .

Loss function for the student. The full loss function Ls for
the student is formulated as:

LS = λpix L pix + λper L per + λdcpLdcp + λtvLtv (14)

where L pix stands for the reconstruction loss, L per relates to
the perceptual losswith theVGG19networks, Ldcp stands for
the dark channel loss, and the Ltv is the TV (total variation)
loss.

To recover the haze-free image, the mean absolute error is
adopted to ensure the result Y close to the refined result Yen .

The pixel loss is defined as:

L pix = 1

N

N∑
i−1

‖ Yen − Y‖2 (15)

where N stands for the number of hazy images, Y and Yen
represent the dehazing results of the student and the refined
result.

The perceptual loss is explored with the pre-trained
VGG19 network, which is defined as follows:

L per = 1

WH

W∑
m=1

H∑
n=1

(ϕi, j (Yen) − ϕi, j (Y ))2 (16)

where ϕi, j (Y ) and ϕi, j (Yen) stand for the feature maps of Y
and Yen in VGG19 network.

In addition to the pixel loss and the perceptual loss, the
unsupervised dark channel loss and the total variation losses
are also adopted to ensure that the recovered images have
the characteristics of the clean images. Dark channel prior is
widely used in the image dehazing task. Inspired by the dark
channel prior, the dark channel loss is defined as:

Ldcp = 1

N

N∑
i=1

||Dark (Y )|| = min
y∈Q(y)

⌈
min

c∈{r ,g,b} Y
c (y)

⌉

(17)

where y represents the coordinate of image patch Q, and
Y c(y) relates one color channel of the dehazed image Y .

To preserve the sharp structure of the dehazed result Y ,
the total variation loss Ltv is also utilized with an L1 regu-
larization gradient prior, which is expressed by:

Ltv = 1

N

N∑
i=1

(‖ ∇hY‖1+ ‖ ∇vY‖1) (18)

where ∇h represents the horizontal differential operation
matric, ∇v stands for the vertical differential operation
matric.
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Experiments

Datasets and implementation details

We choose the Unannotated Real Hazy Images (URHI) sub-
set from the Realistic Single Image Dehazing (RESIDE)
dataset [17] as the real-world hazy images in training the stu-
dent. URHI subset consists of 4807 real-world hazy images
without ground truth. All images are crawled from the Inter-
net with different haze density, covering complex scenarios
and including various degradation factors, such as poor
light condition. Furthermore, 3577 unpaired clear images
in RefinedDet [50] are adopted as the haze-free domain in
training the unsupervised GAN-based fusion network. RTTS
subset is adopted as the test dataset to evaluate the dehazing
performance of different dehazing methods. RTTS consists
of 4322 unpaired real-world hazy images, which are anno-
tated with 41,203 bounding boxes and five object categories.

All parameters of the teacher networks are fixed during
the training process. The GAN-based fusion network is first
trained 100 epochs with a learning rate of 1e-4. The learn-
ing rate is linearly decayed to 0 in the following 100 epochs.
The student network is trained 120 epochs with Adam opti-
mizer and a batch size of 32. The initial learning rate 1e-4
decays every 45 epochs with a rate of 0.75 until 5e-5. The
loss weights are set as λvgg = 1, λpix = 10, λper = 1,
λdcp = 1 and λtv = 0.0001. We carry out experiments with
the PyTorch framework on two GEFORCE RTX 3090.

Comparison with state-of-the-art methods

We compared the proposed method with eight state-of-
the-art dehazing methods quantitatively and qualitatively.
Among these methods, the traditional method DCP [7] pro-
posed the famous dark channel prior to recover the haze-free
images. the supervised method [13] made great dehazing
performance for the well-designed network structure. The
semi-supervised methods are SSID [9], DAD [8], RIDCP
[22] and ENID [23]. The zero-shot dehazing method YOLY
[42] only needs one hazy image in the training stage. The
unsupervised dehazing method D4 [19] tried to improve
the dehazing performance with the generative adversarial
network. Quantitative and qualitative experiments are con-
ducted on the real hazy images, including visual quality,
no-reference image quality evaluation, task-driven evalua-
tion, and model complexity.

VisualQuality.Weperformvisual quality comparison on the
widely used RTTS dataset, which crawled 4,322 real-world
hazy images from the Internet, covering diverse haze densi-
tieswith complex degradations in outdoor environments. The
dehazed results of the prior-based method DCP, the super-
vised method MSBDN; the semi-supervised methods SSID,

DAD, RIDCP and ENID, the unsupervised methods YOLY,
D4, and the proposed method are shown in Fig. 4. It can
be observed that the classical prior-based method DCP suf-
fers from obvious color distortion, such as the purple sky in
the first example. The main reason is that the dark channel
prior is not suitable in the sky area. Similarly, the YOLY also
suffers from the color distortion issue. Although MSBDN,
SSID, DAD, and D4 can deal with color distortion well, the
distant regions in the dehazed images seem a little differ-
ent from the original hazy images due to the dense fog, for
example, the distant building in the first example. Recently,
RIDCP and ENID improve the generalization on real-world
hazy images, but there are still obvious haze residues in the
dehazed results, such as the building in the first example and
the trees in the second example. Especially, all the former-
mentioned approaches cannot deal well with the sky area
with dense haze, the sky regions in the recovered images are
still hazy. In comparison, the proposed method can gener-
ate visually pleasing and clean results in terms of less haze
residue, sharper edges, and brighter details.

Furthermore, most existing approaches cannot overcome
dim artifacts in the dehazing process because of the duality
between image dehazing and low-light image enhancement.
The detailed information in the near region is lost in the
dehazed results, such as the roads in Fig. 5. Although RIDCP
and ENID can alleviate this problem to some extent, they
cannot recover the details in low light regions, such as the
trees in the second example of Fig. 5. Compared to existing
methods, the proposed dehazing algorithm can generate the
best perceptual haze-free images with high-quality details.

No-Reference Image Quality Assessment. Since there
are no ground truths for the real world hazy images, the
widely used fog-aware density assessor (FADE) index [54] is
adopted as the metric of non-reference image quality assess-
ment in the experiment. The lower value of the FADE index
indicates better dehazing performance. Quantitative compar-
isons of dehazed results on the RTTS dataset are illustrated in
Table 1. It can be seen that the proposed method achieves the
best performance 0.590 in terms of the FADE index. Com-
pared to the original value of 2.484, the proposed method
achieves the gains with 73.8%. Especially, it outperforms
the two teachers RIDCP and ENID approximately 37.5%
and 9.2%, respectively.

Task-Driven Evaluation. Hazy images always suffer from
blurred edges, reduced contrast, and limited visibility, which
may severely deteriorate the performance of high-level vision
tasks, such as object detection. Single imagedehazing is often
utilized as a pre-processing step to improve the detection
accuracy. We compared the mean Average Precision (mAP)
of different dehazing resultswith theYOLO[55] on theRTTS
dataset, which are annotated with five classes and bounding
boxes. All 4322 real-world hazy images are recovered before
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Fig. 4 Visual comparison on the
real-world hazy images

Fig. 5 Visual comparison on the
real-world hazy images in dim
scenes
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Table 1 Non-reference
Evaluations on the RTTS
Dataset

Haze MSBDN SSID DAD YOLY D4 RIDCP ENID Ours

FADE 2.484 1.343 0.867 1.130 1.035 1.358 0.944 0.650 0.590

Gain (%) – 45.1 65.1 54.5 58.3 45.3 62.0 73.8 76.3

Table 2 Object Detection
Result on the RTTS Dataset

Haze MSBDN SSID DAD YOLY D4 RIDCP ENID Ours

mAP (%) 63.32 65.16 56.98 65.02 55.12 64.59 64.67 65.97 65.23

Gain – +1.84 −6.34 +1.70 −8.10 +1.27 +1.35 +2.65 +1.91

Table 3 Parameters of different
methods. Lower value indicates
better results

MSBDN SSID DAD YOLY D4 RIDCP ENID Ours

Params (M) 31.0 9.23 54.59 32.0 10.7 29.5 31.4 6.5

the detection task. As shown in Table 2, the proposedmethod
comes second in themAP index, and improves the value from
63.32 to 65.23, which further demonstrates that the proposed
method can generate cleaner results and sharper structures.

The comparison on the parameters of the methods. In
addition, it also outperforms the two complex teachers with
a lightweight structure. As shown in Table 3, it can further
reduce the parameters from 29.5 M and 31.4 M to 6.5 M. In
total, the best dehazing performance and the least parameters
demonstrate the superiority of the proposed method.

Ablation study

Effectiveness of different components. To evaluate the
effectiveness of different components, a series of ablation
experiments are conducted as follows. (1) W/O ENID: the
teacher ENID is not adopted in the training process. (2) W/O
RIDCP: the teacher RIDCP is not utilized in the training
process. (3) W/O pre_en: the hazy images without enhance-
ment are directly fed to the RIDCP dehazing network. (4)
W / O GAN: The general adversarial network is not used to
fuse the results of the two teachers. (5) W/O DCP: the dark
channel loss is removed. (5) Ours. The dehazing results of
algorithms with different components are shown in Fig. 6. It
can be observed that the proposed method can generate the
most visually pleasing result compared to the other methods,
such as the tree area in the red box of the first example and the
sky region in the green box of the second example. In Fig. 6b,
c, dehazing methods without ENID or RIDCP may result in
some haze residue in distant areas. In Fig. 6d, f, dehazing
methods without the pre_en or DCP loss may cause lower
contrast of the restored images. In particular, if adversarial
training is removed in the second stage, the grass area and the
sky region in the green box in Fig. 6e cannot be well recov-
ered. Compared to other methods, the proposed method can

generate visually pleasing results, which demonstrates the
effectiveness of different components.

Impact and selection of hyperparameters λvgg and λdcp.
With the adversarial training strategy, an unsupervised fusion
network used as generator is proposed to make the fused
results similar to the unpaired clean images. In addition to
adversarial loss, vgg loss with weight λvgg is introduced with
the preliminary fused results Y3. The value of the hyperpa-
rameters λvgg and the fused results are shown in Fig. 7. It can
be observed that the outputs of the fusion network are almost
the same as Y3 when λvgg >= 2. The main reason is that
large values of the weight λvgg tend to result in the model
collapse in the adversarial training.

λdcp in existing algorithms is often set as a small value,
for example, 10−5 in SSID [9], 10−3 in PSD [9]. In the pro-
posedmethod, the λdcp is set to 1 in the training of the student
network. We retrain the student network by varing hyperpa-
rameters λdcp while fixing the others. The loss curves with
different λdcp are shown in Fig. 8. It can be observed that the
dark channel loss can converge well when λdcp = 1.

Effectiveness of different teachers. To verify the effec-
tiveness of the proposed framework, two other dehazing
networks PSD [22] and FFANet [34] are selected as new
teachers to replace RIDCP [22] and ENID [22]. The dehaz-
ing results of the algorithmswith different teachers are shown
in Fig. 9. It can be observed that the proposed method gener-
ates clean results in terms of less haze residue, for example,
in the distant trees in the first example and the building area in
the green box of the second example. In Fig. 9b, the dehazed
framework with PSD and FFANet as teachers suffers from
severe haze residues; the main reason is that FFANet trained
with the synthetic dataset cannot generalize well in the real
scenes due to the domain shift. Although the synthetic-to-
realistic dehazing method PSD improves the performance on
the real-world hazy images, it tends to cause color distortion
in some regions of the dehazed results, such as the regions
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Fig. 6 Visual comparison on the real-world hazy images with different components

Fig. 7 Impact of the
hyperparameter λvgg

Fig. 8 Selection of the hyperparameter λdcp

Fig. 9 Visual comparison with
different teachers
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in the red box of the second example. Compared to existing
methods, the proposed dehazing algorithm can generate the
best perceptual haze-free images with high-quality details.

Conclusion

In this paper, we propose a joint dual-teacher distillation and
unsupervised fusion framework for unpaired real-world hazy
images. An unsupervised fusion scheme for the dehazing
results of two teachers is proposed with the generative adver-
sarial network to assist the student in training. Specially, the
unpaired clean images are further enhanced to overcome the
dim artifacts that occurred in the dehazing task. We con-
duct comprehensive experiments to verify the superiority of
the proposed method in terms of no-reference image quality
assessment and the parameters. In the future, we will explore
the unsupervised domain adaptation and the depth map to
dealwith dense haze removal, especially in the distant region.
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