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Abstract
Sound event detection involves identifying sound categories in audio and determining when they start and end. However, in
real-life situations, sound events are usually not isolated. When one sound event occurs, there are often other related sound
events that take place as co-occurrences or successive occurrences. The timing relationship of sound events can reflect their
characteristics. Therefore, this paper proposes a sound event detectionmethod for traffic scenes based on a graph convolutional
network, which considers this timing relationship as a form of multimodal information. The proposed method involves using
the acoustic event windowmethod to obtain co-occurrences or successive occurrences of relationship information in the sound
signal while filtering out possible noise relationship information. This information is then represented as a graphical structure.
Next, the graph convolutional neural network is improved to balance relationship weights between neighbors and itself and
to avoid excessive smoothing. It is used to learn the relationship information in the graph structure. Finally, the convolutional
recurrent neural network is used to learn the acoustic feature information of sound events, and the relationship information
of sound events is obtained by multi-modal fusion to enhance the performance of sound event detection. The experimental
results show that using multi-modal information with the proposed method can effectively improve the performance of the
model and enhance the perception ability of smart cars in their surrounding environment while driving.
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Introduction

The development of intelligent vehicles has significantly
enhanced the existing transportation modes, resulting in
improved transportation efficiency, safety, and convenience.
The main objective of intelligent vehicles is to equip them
with efficient and accurate autonomous perception capabili-
ties that provide reliable external environmental information
to the moving vehicle and help it understand all kinds of
events occurring during the drive. These capabilities are cru-
cial for the autonomous decision-making and autonomous
driving of intelligent vehicles. However, the current percep-
tion technology of intelligent vehicles primarily relies on
visual image recognition technology, overlooking the signif-
icance of sound as an important information source. Sound
can provide effective information and has the advantage of
being unaffected by light intensity and occlusion. Audio
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monitoring equipment is also low in cost, small in size, quick
to install, not easily damaged, and simple to maintain. There-
fore, identifying and detecting events in road traffic through
sound signals holds great significance.

Sound event detection is predominantly based on deep
learning technology. In the beginning, researchers tested
traditional network structures such as CNN [1] and RNN
[2] to confirm their effectiveness. Later, Cakir et al. [3]
introduced the Convolutional Recurrent Neural Network
(CRNN) for sound event detection. This model combines
the strengths of both CNN and RNN by capturing local
and temporal information, respectively. Due to its supe-
rior performance, it has become the most commonly used
model architecture for sound event detection. Since then,
scholars have made numerous improvements to the algo-
rithm model and achieved successful results. For example,
Lu et al. [4] replaced the RNN portion of the CRNN
structure with a bidirectional GRU to take advantage of
contextual information. Xia et al. [5] enhanced significant
channel and time–frequency information by modeling the
interdependence between the time–frequency domain and
multiple channels. Watcharasupat et al. [6] combined the
cross-entropy loss function with Dice loss to minimize the
interference of negative samples and enhance the robustness
of the model. Wang et al. [7] explored deterministic infor-
mation in frame-by-frame prediction and the basic principle
of frames. They designed a frame-based loss to improve the
model’s detection accuracy. Feroze et al. [8] reduced the error
rate of a single category by usingPLP features instead ofMel-
frequency and loudness cepstral coefficients. Adavanne et al.
[9] obtained lower error rates than single-channel features by
extracting dual-channel features in binaural audio.

It’s worth noting that most of the studies conducted on
sound event detection have only considered the acoustic fea-
tures of the sound. As a result, the models lack the prior
knowledge and experience that humans possess when it
comes to identifying different sound events, which is essen-
tial to improving the performance of task-oriented feature
spaces [10]. This means that the models can only analyze
independent acoustic features, which can be influenced by
multiple sound events, especially when they overlap. The
human auditory system is highly efficient, and our brains
make use of previously learned knowledge and experience to
process different sounds.While current researchhas achieved
close to or even better than human accuracy in detecting sin-
gle sound events, there are still gaps in identifying complex
and diverse polyphonic sound events, such as those found in
driving environments. One of the main reasons is the lack of
prior knowledge about the multimodal information of sound
events.

In recent years, researchers have been focusing on acquir-
ing and using multimodal information on sound events, and
significant progress has been made. Tonami et al. [11] used

multi-task learning, combining sound event detection and
acoustic scene detection methods, to analyze sound events
and acoustic scenes jointly, which improved the detection
performance of both. However, the addition of acoustic scene
detection tasks increased the final model parameters, mak-
ing it cumbersome to deploy and apply to intelligent vehicles.
Komatsu et al. [12] proposed a sound event detection method
based on the probability chain rule. It performs binary detec-
tion on each event one by one and effectively improves the
detection performance. However, its performance depends
on the sequence of sound event classes set in advance, and
it is not stable enough in complex and changeable driving
environments.

To extract sound event relationship information from real
sound data sets, we can mine the statistical relationship
of label information in the scene. This statistical informa-
tion is obtained from a large number of data points and
is more realistic and robust than other multi-modal infor-
mation obtained from artificial settings. According to this
idea, papers [13–15] have conducted related research. They
extracted the co-occurrence relationship of sound events
from label information and used a graph neural network for
learning to apply it to the task of sound event classification.
However, these studies mainly focus on the co-occurrence
relationship of sound events and fail to extract the rela-
tionship between sound events more comprehensively, and
to some extent, the graph sparsity problem occurs, which
reduces the efficiency of information transmission. For this,
shallowgraph neural networksmay not capture enough graph
structure information, and too-deep networks may lead to
excessive smoothing, which makes the model easy to over-
fit. It increases the complexity and may introduce feature
noise, which affects the performance of the model [16]. At
the same time, the current research mainly focuses on sound
event classification, and insufficient attention is paid to the
task of sound event detection.

Our proposed approach, called sound event window, uses
a relation extraction method to extract the temporal rela-
tion information of sound events in audio datasets. This
includes co-occurrence relations and successive occurrence
relations. To simulate human knowledge in this respect, we
use a graph convolutional network to learn the relationship
between events. This is then multimodally fused with the
acoustic feature information extracted by the convolutional
recurrent neural network to improve the model’s detection
ability.

The paper presents three main contributions:

1. A sound event window is proposed to improve the extrac-
tion of sound event relationships. This makes it possible
to obtain information on the relationship between sound
events that co-occurrence and successive occurrence,
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leading to a more comprehensive understanding of event
relationships.

2. A more comprehensive event relationship is used to con-
struct the graph, which addresses the issue of too sparse
graph structure when using a co-occurrence relationship
to construct the graph.

3. The graph neural network is introduced in the sound
event detection task, where relationship information
between events is obtained through multimodal fusion.
Comprehensive comparative experiments and ablation
experiments are conducted, and a variety of evaluation
indicators are used to measure the model’s performance.

Related work

Graph neural networks have gained attention due to their
exceptional performance in recent years. Researchers have
started exploring the use of graph neural networks in multi-
label image recognition and sound event classification.Wang
et al. [13] developed amodel that represents a graph using sta-
tistical event co-occurrence relationships in audio. They then
combined the node representation acquired through GCN
with the acoustic representation obtained through CNN. Sun
et al. [14] learned sound event co-occurrence information
through two GCNs, resulting in improved sound event clas-
sification performance. The use of graph neural networks
to learn relationship information has proven to be effective
in enhancing the performance of sound event classification
tasks.

In their study on sound event relationships, Imoto et al.
[15] used the frequency of two sound events occurring
together to create an edge graph. While this method does
consider the co-occurrence of sound events to a certain
extent, it fails to consider the conditional probability of one
event occurring when another event has already occurred.
Chen [17] first addressed this problem in multi-label image
recognition by counting label co-occurrence and using con-
ditional probability to calculate the likelihood of one label
co-occurring with another. Building on this method, Wang
et al. [13] and Sun et al. [14] calculated the conditional proba-
bilities of different sound events co-occurring. However, Sun
et al. and Chen [17] used binary classification to create edges
based on a threshold of 1, which can lead to over-smoothing
during the training of graph neural networks. Furthermore,
previous studies [13–15] only considered the co-occurrence
of sound events without taking into account the importance
of successive occurrences and causal relationships between
related sound events. Counting only co-occurrence relation-
ships to construct graphs also leads to graphs with many
nodes and low connection density, which can result in low
information transmission efficiency.

In comparison to other methods, the sound event window
method proposed in this paper extracts more comprehen-
sive information on the relationship between sound events by
co-occurrence and successive occurrence. This enables the
constructed graph structure to have more accurate informa-
tion and effectively resolves the problem of graph sparsity
and excessive smoothing that exists in the co-occurrence
method. Moreover, unlike multi-label image recognition
and sound event classification tasks, sound event detection
requires the determination of the start and end time of each
sound event in the audio. By extracting the event successive
occurrence relationship in audio, the model can obtain more
temporal information, which helps it determine the start and
end time of the event.

Proposedmethod

The introduction of a graph neural network to the task of
sound event detection was inspired by previous research
on sound event classification. Sound event detection, unlike
sound event classification, requires the additional detection
of the start and end events for each sound event. To address
this requirement, a sound event window method is pro-
posed in this paper, aiming to capture a more comprehensive
understanding of the temporal dynamics of sound events.
Additionally, a G-CRNN model is designed to effectively
integrate acoustic features and event relations, leveraging
the power of multimodal information to enhance the per-
formance of sound event detection.

Overall architecture

In this section, we present an architecture for sound
event detection that combines graph convolutional net-
works (GCN) and convolutional recurrent neural networks
(CRNN). The GCN component is used for learning the rela-
tionship between different sound events, while the CRNN
component is used for learning the acoustic features of sound
events. The two sets of features are then fused to enable sound
event detection.

Below, we provide a detailed overview of the G-CRNN
architecture. As shown in Fig. 1, the system consists of two
main modules: the event relation learning module and the
acoustic feature learning module. We describe each module
in turn.

The G-CRNN model consists of two main modules and a
classification network. The first module is the acoustic fea-
ture learning module, which uses a CRNN to extract acoustic
features and timing information from sound events. The sec-
ond module, the event relation learning module, builds a
graphical structure based on data labels and uses a two-layer
GCN to learn the relation information between sound events.
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Fig. 1 The overall architecture of G-CRNN

The two modules provide multi-modal information that is
fused and fed into the sound event classification network for
final sound event detection.

Acoustic feature learningmodule

In this paper, to simultaneously capture the spectral and tem-
poral information of sound events in audio, a convolutional
recurrent neural network (CRNN) is selected as the acous-
tic feature learning module. The CRNN structure combines
the advantages of convolutional neural networks (CNN) in
capturing local features with the ability of recurrent neural
networks (RNN) to process time series information, which
effectively extracts the acoustic features required by sound
events. In the process of building the acoustic feature learning
module, this paper refers to the previous research results on
sound event detection and classification tasks [1–15], based
on which the model of this paper is constructed. Figure 1
shows the structure of the acoustic feature learning module
in detail.

The input of the model is the audio file and the corre-
sponding audio label in the dataset. The audio is input to the
model and preprocessed to extract features. The 512-point
fast Fourier transform (FFT) is used to extract the spec-
trogram from each channel of the two-channel audio on a
Hamming window with 512 sampling points and 50% over-
lap. And extract the phase and amplitude of the spectrogram

(using only the positive frequencies from the extracted fea-
tures, not the zeroth position). The final feature vector is
composed of 512 frames of feature sequence, having dimen-
sions of 512 × 256 × 4, with 4 representing the amplitude
and phase components of two channels.

After preprocessing, the feature sequence is sent to a two-
dimensional CNNconsisting of three layers. EachCNN layer
comprises 64 filters of 3× 3× 4 dimensional receptive field.
To keep the length of the feature sequence unchanged, the
step size and fill are set to 1. After each CNN layer, the
output is normalized using batch normalization and activated
using theReLU function. Then, the dimensionality is reduced
usingMax pooling along the frequency axis, which is 8,8,2 in
frequency after each of the threeCNN layers. By using a filter
kernel that spans all channels, the CNN can learn relevant
features in both time and frequency dimensions within the
channel. The output of the last CNN layer is 512 × 2 × 64.

After the convolutional neural network (CNN) generates
a feature sequence, it is reshaped into a 512 × 128 sequence
and passed to the bidirectional gated recurrent unit (GRU)
layer. The GRU layer has 128 nodes in each layer, and the
tanh function is used for activation. The GRU layer learns the
temporal context information of sound events. The final out-
put sequence has the same dimensions as the input sequence.

The bidirectional GRU produces a sequence of features
that are then passed through two TimeDistributed layers.
These layers share weights and biases at each time step,
which reduces the number ofmodel parameterswhile helping
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Fig. 2 Sound event window

the model process each sequence element more effectively.
The first TimeDistributed layer consists of 128 nodes, while
the second layer has N nodes. The value of N is determined
by the number of categories of sound events in the corre-
sponding dataset, both using linear activation functions. The
final output sequence for acoustic features is 512 × N.

Event relationship learningmodule

Construction of the graph structure

To gain a more comprehensive understanding of sound event
relationships, this paper proposes using a sound event win-
dow method to obtain information on both co-occurrence
and successive occurrence sound events. The definition of
co-occurrence and successive occurrence of sound events is
as follows:

1. Co-occurrence: this refers to the traditional co-
occurrence relationship, where different types of sound
events overlap in duration.

2. Successive occurrence: additionally, the proposed sound
event window method captures relation information for
multiple non-overlapping sound eventswithin aT-second
sound event window. This is illustrated in Fig. 2.

The two boxes in Fig. 2 represent two sound event win-
dows of length T, which are used to judge the presence of
sound events within T seconds and their successive occur-
rence relationships. In this paper, a 60-s sound event window
is used to determine and extract the relationship between
sound events. Figure 2a ignores the correlation between
people talking and people walking because they do not co-
occurrence. However, people talking and people walking are
correlated, which is successfully captured in Fig. 2b using
the sound event window.

To begin, this paper utilizes the labels from the training
data set to identify the sound event class and its start and end

Fig. 3 Examples of partial graphs built using event relationships

times in each audio. Each sound event category is represented
as Li, while the two events happening as co-occurrences and
successive occurrences in a sound event window are denoted
as Lij. Here, i and j refer to the sound event category num-
bers, with different values representing different sound event
categories, and i and j cannot be equal. Afterward, the count
of each sound event category is recorded as Xi, which rep-
resents the number of occurrences of event Li. Additionally,
the number of co-occurrences and successive occurrences of
two events, i.e., the number of Lij, is recorded as Xij.

The probability of event Lj co-occurrence and successive
occurrence with event Li is calculated as Pij based on several
various events Xi and two events Xij.

Pi j = P(L j |Li ) = Xi j
/
Xi (1)

It’s worth noting that Pij and Pji are not necessarily the
same, and they have different meanings. For instance, if Li
represents the sound of a violent collision from a car accident
and Lj is the sound of a moving car, the probability of Lj
happening as a co-occurrence of Li is very high. However,
the probability of Li happening when Lj is present is very
low. Therefore, Pij and Pji are not equal, and they represent
different meanings.

When calculating the probability of various sound events,
there may be some cases where the training data is different
from the inference data. This can lead to small probability
relations becoming noise data during model validation and
testing. To prevent this from negatively affecting the general-
ization of the graph, a filtering threshold α is used to remove
the noisy relations with very low probability and reset their
weights to 0. These thresholds are set between 0 and 1.

Pi j =
{
Pi j , Pi j ≥ α

0, Pi j < α
(2)

Figure 3 illustrates the graph structure built by considering
different types of sound events as nodes and the calculated
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Fig. 4 Event relation adjacency matrix for the TUT Sound Events 2016
Residential area dataset

probabilities Pij as the weights of the directed edges con-
necting these nodes. Each node in the graph represents a
class of sound events, and an edge between nodes represents
a relationship between two sound events. The weights of the
edges are calculated using the method described above. The
graph is computed from the data labels of one of the cross-
validation datasets of the TUT Sound Events 2017-Street
dataset (partially simplified for plotting purposes) and repre-
sents partial relationship information about sound events in
street view. The constructed graph structure is depicted as the
N×N event correlation matrix in Fig. 1. In this matrix, rows
and columns represent sound event nodes, while the values
assigned to each corresponding pair of nodes represent the
weights of the directed edges between them.

The graph structures of all cross-validation sets from the
TUT Sound Events 2016 residential area and TUT Sound
Events 2017 street datasets were integrated into adjacency
matrices, which are presented in Figs. 4 and 5 in this paper.

An analysis of Fig. 4 reveals that when a collision sound
is detected, there is a higher probability of co-occurrence or
successive occurrence detecting a car driving sound, while
when a car driving sound is detected, the probability of co-
occurrence or successive occurrence detecting a collision
sound is relatively low (below the filtering threshold α, thus
these edges are represented by a weight of 0 in the figure).
This phenomenonalignswith common sense; that is, in traffic
scenarios, when a collision sound occurs, it is often associ-
ated with a car, whereas the probability of a car colliding
while driving normally is low.

Fig. 5 Event relation adjacency matrix for the TUT Sound Events 2017
street dataset

Similarly, Fig. 5 also demonstrates a similar relationship:
when detecting the sound of a car brakes squeaking, the co-
occurrence or successive occurrence of a car driving sound
has a higher probability, whereas after detecting a car driv-
ing sound, the co-occurrence or successive occurrence of the
sound of a car brakes squeaking is relatively low (also below
the filtering threshold α, thus these edges are represented by
aweight of 0 in the figure). This also aligns with our common
sense; that is, the occurrence of the sound of a car braking is
usually accompanied by the occurrence of the sound of a car
driving, whereas a car does not frequently brake while driv-
ing normally, leading to the sound of car brakes squeaking
occurring frequently.

These observations suggest that by analyzing the co-
occurrence and successive occurrence between sound events,
useful graphical structures reflecting the actual relationships
between sound events can be constructed, thus providing
valuable prior knowledge for sound event detection tasks.

Graph convolutional neural network with weight ratio

In a graph neural network (GNN), the graph is a topological
structure consisting of multiple nodes and edges that connect
them. This structure is typically represented as G = (V, E),
where G represents the graph, V is the set of nodes (which
typically represent entities), and E is the set of edges (which
represent the relationships between the nodes).

Graph neural networks (GNNS) are based on the homo-
geneity assumption that connectednodes tend to share similar
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properties, which provides additional information for aggre-
gating features. This relational induction bias is a key factor
that enables GNNS to outperform traditional neural net-
works (NNS) in many tasks [18]. In this paper, we employ
graph convolutional neural networks (GCN), a GNN-based
architecture that learns the final representation of nodes
by aggregating information from neighboring nodes, thus
demonstrating high efficiency when processing graph data.
By combining graph signal processing and convolutional
neural networks,GCNcan simultaneously learn the attributes
of nodes and the structure of the graph, and this method per-
forms well in a variety of tasks, surpassing traditional neural
network-based methods [19]. The propagation of a general
multi-layer GCN between layers follows the following for-
mula:

H (l+1) = h(D̃− 1
2 ÃD̃− 1

2 H (l)W (l)) (3)

Ã = A + IN (4)

D̃ =
∑

j

Ãi j (5)

In the context of graph convolutional networks (GCN), the
adjacency matrix of a graph is represented by A. IN denotes
the self-connection added to each node in the graph.N stands
for the total number of nodes in the graph. After each node
has added the self-connection relationship, we represent the
updated adjacency matrix as Ã, and the degree matrix as D̃.
The input of the GCN network in the l layer is denoted by
H(l), and the parameters to be trained are represented byW (l).
The activation function used in this paper is ReLU.

Oversmoothing is a common challenge in the training of
multi-layer graph neural networks. It causes the nodes to
become less discriminative, making them difficult to distin-
guish [20]. To address this issue, this paper proposes the
use of the neighbor-to-self ratio parameter β to adjust the
weight ratio of neighbor nodes and the targeted node. This
adjustment helps to reduce the influence of excessive smooth-
ing on the discriminability of node features and ensures that
the network can capture enough relationship information to
maintain the identity information of nodes and enhance the
discriminability of nodes.

Ã′ =

⎧
⎪⎨

⎪⎩

βAi j

/
∑N

j=1
i �= j

Ai j , i f i �= j

1 − β, i f i = j

(6)

The variable Ã′ represents the adjacency matrix that has
been adjusted to account for weights. The weight ratio
between a node and its neighbors is determined by the value
of β, which falls within the range of 0 to 1. A larger value of

Brakes

squeaking
Car

Large

vehicle

People

walking

People

speaking
Children

Brakes

squeaking
0.00 0.57 0.45 0.65 0.42 0.00

Car 0.00 0.00 0.38 0.00 0.51 0.00

Large

vehicle
0.34 0.57 0.00 0.72 0.00 0.00

People

walking
0.00 0.00 0.00 0.00 0.00 0.00

People

speaking
0.00 0.53 0.00 0.64 0.00 0.00

Children 0.00 0.00 0.00 0.00 0.39 0.00

Fig. 6 Example of the adjacency matrix before adjusting the weights

β signifies that more weight is given to the neighbors, while
a smaller value of β indicates that more weight is given to
the node itself.

To specify the weight adjustment process, the graph struc-
ture data in Fig. 3 is taken as an example, which is first
transformed into the adjacency matrix before adjusting the
weights, as shown in Fig. 6. Then Formula (1) is applied to
adjust the weights in the adjacency matrix, where the weight
adjustment coefficient β is set to 0.3. The adjusted adjacency
matrix shown in Fig. 7 is obtained.

Through weight adjustment, the weight ratio between the
node and its neighbor nodes is balanced, and the degree
information of the node is considered, which is the num-
ber of connections of the node in the graph structure. This
adjustment not only enables the network to more accurately
represent the intrinsic attributes of each sound event but also
to more clearly express the relationship between events. It
effectively reduces the excessive smoothing phenomenon
that may occur in the process of feature learning, thereby
improving the discriminability of node features. This turns
the relationship matrix into a full-rank matrix. The larger
the rank of the aggregation matrix, the more diversified its
linear combination is. The full-rank aggregation matrix can
enhance the representation ability of GNN to the greatest
extent [21]. The model can more effectively identify and
understand the complex interactions between sound events,
thereby improving the overall detection performance.

The formula for the GCN changes after the weight ratio
parameter is introduced.

H (l+1) = h(D̃− 1
2 Ã′D̃− 1

2 H (l)W (l)) (7)
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Brakes

squeaking
Car

Large

vehicle

People

walking

People

speaking
Children

Brakes

squeaking
0.70 0.08 0.06 0.09 0.06 0.00

Car 0.00 0.70 0.13 0.00 0.17 0.00

Large

vehicle
0.06 0.10 0.70 0.13 0.00 0.00

People

walking
0.00 0.00 0.00 0.70 0.00 0.00

People

speaking
0.00 0.14 0.00 0.16 0.70 0.00

Children 0 0 0 0 0.3 0.7

Fig. 7 Example of the adjacency matrix after adjusting the weights

To better represent the sound event and its relationship
with related events, the graph neural network has been
improved. This is achieved by using the neighbor-to-self ratio
parameter β to balance the weight ratio between neighbor
nodes and their nodes. This allows the network to fully utilize
the characteristics and advantages of relationship informa-
tion learning and processing.

In Fig. 1, the input node of the first GCN layer is denoted
by H(0) ∈ RN×d . This represents the object word vector
embedding of the label, where N is the number of sound
event classes in the dataset and d is the dimension of the
word embedding. The last layer learns the nodeH(2) ∈RN×D,
which serves as the output of the event relation learningmod-
ule. Here,D is equal to the dimension of the acoustic features
output by the acoustic feature learningmodule. The final fea-
ture sequence of the output event relation is N × 512 and is
trained using the cross-entropy loss function.

To enable the merging of acoustic features with other
modes, the feature sequence is converted to a size of 512×N
and saved to the document. This sequence can be obtained by
training just once, andwhenmulti-modal fusion is performed
with acoustic features, the event relation feature sequence
in the document can be directly accessed. This effectively
reduces the training cost of the model.

Multimodal fusion and classification network

To improve the detection of sound events, this paper uti-
lizes the Hadamard product to fuse the feature sequence of
sound event relationship information and the acoustic feature
sequence of sound events. The event relationship learning

module outputs the former, while the acoustic feature learn-
ing module provides the latter. The fused feature sequence is
512×N, as shown in Fig. 5. This enables the model to effec-
tively obtain and utilize the relationship information between
sound events, resulting in improved detection performance.

The fused feature sequence is fed into the sound event
classification network, and the final output of the model is
obtained. The network uses a sigmoid function to simul-
taneously activate all sound event categories to generate a
prediction score between 0 and 1 for each type of sound event
under each frame. These prediction scores form a frame-level
prediction sequence matrix. If the score of a certain class
exceeds 0.5, it is considered that this kind of sound event
has been detected in this frame. By integrating the detection
results of each frame, the start and end times of each kind of
sound event can be determined. The network is trained using
the cross-entropy loss function.

Experiment preparation

Experimental environment

The experimental equipment utilized in this research is
arranged as follows: The computer operating system entails
Windows 10, the CPU model employed is Intel Xeon Silver
4216, and the GPU model employed is NVIDIA Geforce
RTX 3090. The implementation is carried out using the
Python programming language, and the development frame-
work is TensorFlow 2.4.0. For network training in both the
event relations learning module and the acoustic feature
learning module, the Adam optimizer was employed. The
learning rate for the event relation learning module was set
at 0.01 and the dropout rate is 0.5, while the learning rate for
the acoustic feature learning module was set at 0.001 with-
out using dropout. The maximum number of training rounds
for both modules was 50 epochs. In particular, an early stop-
ping strategy is introduced for the acoustic feature learning
module to evaluate the overall model error by calculating
the difference between the ER metric and the F1 score. We
stopped the training once the overall model error did not
decrease for 25 consecutive training epochs.

Experimental data set

This papermakes use of theTUTSoundEvents 2016 [22] and
TUT Sound Events 2017 [23] datasets, which comprise gen-
uine recordings of everyday life scenes. Specifically, these
recordings capture scenes from different residential living
areas and street environments. The recordings were con-
ducted using a two-channel device with a sampling rate of
44.1 kHz and a resolution of 24 bits. Statistical informa-
tion regarding the frequency of various types of sound events
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Fig. 8 Statistics of the number of
instances of various types of
sound events in the dataset
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Table 1 Comparison of overall
model performance under TUT
Sound Events 2016-Residential
area dataset

Model F1 score (%) ↑ ER metric (%) ↓ Precision (%) ↑ Recall (%) ↑

CRNN 41.42 ± 5.23 89.99 ± 1.64 49.25 ± 0.93 36.45 ± 8.31

G-CRNN(C) 48.48 ± 3.73 84.40 ± 0.92 53.93 ± 3.89 45.37 ± 8.84

G-CRNN(CS) 51.35 ± 2.42 83.65 ± 0.71 51.41 ± 0.69 51.61 ± 5.36

↑ indicates that higher is better for this index; ↓ indicates that lower is better for this index; ± is followed by
standard deviation

Table 2 Comparison of overall
model performance under TUT
Sound Events 2017-Street dataset

Model F1 score (%) ↑ ER metric (%) ↓ Precision (%) ↑ Recall (%) ↑

Chen et al. [1] 30.90 85.80 – –

Zhou et al. [2] 39.10 85.30 – –

Cakir et al. [3] 42.66 80.84 – –

Lu et al. [4] 39.60 82.50 – –

Adavanne et al. [9] 41.70 79.14 – –

Mesaros et al. [22] 42.80 93.00 – –

Venkatesh et al.[25] – 75.00 – –

CRNN 45.62 ± 1.31 88.91 ± 6.50 45.36 ± 3.58 46.21 ± 2.28

G-CRNN(C) 46.71 ± 1.93 82.26 ± 2.47 47.44 ± 1.75 46.19 ± 3.64

G-CRNN(CS) 48.62 ± 0.74 79.60 ± 2.90 50.37 ± 2.56 47.12 ± 1.23

↑ indicates that higher is better for this index; ↓ indicates that lower is better for this index; ± is followed by
standard deviation; and – indicates that this index is not provided in this literature

within these two datasets is presented in Fig. 8. These two
scenarios primarily revolve around vehicle driving, align-
ing with the requisite scenarios for assessing the sound
event detection capabilities of intelligent vehicles. The devel-
opment dataset was employed for training and validation
purposes,while the corresponding evaluation datasetwas uti-
lized for testing and assessing the model’s performance.

There are three main reasons for selecting the aforemen-
tioned datasets:

1. These two scenarios represent the primarydriving scenes,
aligning with the scene requirements for testing the per-
formance of intelligent vehicle sound event detection.

2. Both datasets are derived from real recordings and con-
tain inherent correlations between sound events in the
real world. However, due to cost and other reasons, other
common sound event datasets are mostly synthetic audio
and lack this correlation. This hinders the ability to verify
the effectiveness of introducingmulti-modal information
and fails to fully demonstrate the detection performance
in real-life scenarios.

3. These two datasets consist ofmultiple segments of longer
audio recordings, each containing multiple types of
sound events. This allows for the exploration of potential
relationships between events. In contrast, other com-
monly available sound event datasets often consist of
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Table 3 Detection performance
for each sound event in both
datasets

Model CRNN G-CRNN(C) G-CRNN(CS)

Sound events F1 score ER metric F1 score ER metric F1 score ER metric

(Object) banging 0.00 100.00 0.00 100.00 0.00 100.00

Bird singing 39.68 106.90 51.56 102.81 57.25 106.90

Brakes squeaking 43.27 83.43 36.21 81.93 28.34 84.64

Car 63.73 92.76 64.47 88.53 65.80 82.98

Children 0.52 101.14 0.00 100.00 0.90 102.28

Large vehicle 16.30 117.71 28.93 126.29 11.78 117.43

People speaking 1.69 123.94 0.74 103.44 0.98 108.84

People walking 17.04 109.65 16.26 101.42 18.22 101.60

Wind blowing 4.72 97.87 11.18 96.28 19.12 92.50

↑ indicates that higher is better for this index; ↓ indicates that lower is better for this index

Fig. 9 Visualization of Sound event detection results for the TUT Sound Events 2016 residential area dataset

short audio clipswith isolated single-sound events,which
do not reflect the interrelation between events or simulate
the detection requirements in real-life scenarios effec-
tively.

1. TUT Sound Events 2016-Residential area dataset
The dataset consists of real recordings from different res-

idential area scenarios, and the development dataset consists
of 12 recordings totaling 42 min, officially divided into four
sets of training and validation sets for cross-validation. The
evaluation dataset consists of five recordings totaling 17 min
and 49 s, which are used to test themodel’s performance. The
dataset consists of seven independent sound event classes,
and the specific event categories and number of instances are
shown in Fig. 8.

2. TUT Sound Events 2017-Street dataset

The dataset consists of real recordings fromdifferent street
scenes, and the development dataset consists of 24 recordings
totaling 1 h, 32 min, and 8 s, officially divided into four
sets of training and validation sets for cross-validation. The
evaluation dataset consists of eight recordings totaling 29min
and 9 s, which are used to evaluate the model’s performance.
The dataset consists of six independent sound event classes,
and the specific event categories and number of instances are
shown in Fig. 8.

Evaluationmetrics

The evaluation metrics employed in this paper encompass
the F1 score, ER measure [24], precision, and recall. These
metrics are computed on non-overlapping 1-s segments. To
determine the final detection performance of the model on
each dataset, the mean and standard deviation of the results
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Fig. 10 Visualization of Sound event detection results for the TUT Sound Events 2017 street dataset

from all cross-validation sets are calculated. A brief descrip-
tion of the various evaluation metrics used in this paper is
given.

The F1 score is calculated as follows:

F1 = 2 × precision × recall

precision + recall
(8)

The precision and recall are calculated as follows:

precision = T P

T P + FP
(9)

recall = T P

T P + FN
(10)

The ER metric is calculated as follows:

ER =
∑K

k=1 S(k) + ∑K
k=1 D(k) + ∑K

k=1 I (k)∑K
k=1 N (k)

(11)

Here, k represents each 1-s segment, while N(k) repre-
sents the total count of active sound event categories present
in the labeled data. The variable S(k) denotes the number of
instances where an event is detected, yet the assigned cat-
egory is incorrect. Any additional false positives and false
negatives are accounted for as insertion I(k) and deletion
D(k) errors, respectively.

Results and analysis

Overall performance experiment of themodel

In this section of the experiment, the study conducted experi-
ments on two separate datasets, comparing the CRNNmodel

(with the event relation learningmodule removedwhile keep-
ing other aspects consistent) against the G-CRNN (C)model,
which solely utilizes co-occurrence relations, and the G-
CRNN (CS) model, which incorporates both co-occurrence
and successive occurrence relations. Additionally, the per-
formance of the proposed models was compared with other
methods proposed by researchers in previous studies. The
threemodels presented in this studywere trainedusing identi-
cal hyperparameter settings, with both the filtering threshold
α and the neighbor-to-self ratio parameter β set to 0.3.
The overall performance comparison of the models on both
datasets is presented in Tables 1 and 2. The best values are
highlighted in bold.

From Tables 1 and 2, it can be observed that incorporating
the event relation module has led to an overall improve-
ment in the performance of the models on both datasets.
Specifically, the G-CRNN(C) model, which only utilizes
co-occurrence relations, has shown an increase of 7.06%
and 1.09% in F1 score, a decrease of 5.59% and 6.65%
in ER metric, an increase of 4.68% and 2.08% in preci-
sion, and an increase of 8.92% and a decrease of 0.02% in
recall on the two datasets, respectively. This demonstrates the
effectiveness of leveraging event relation learning to capture
multimodal information for enhancing sound event detection
performance.

Furthermore, the G-CRNN (CS) model, which incorpo-
rates both co-occurrence and successive occurrence relations,
has shown additional improvements over the G-CRNN (C)
model. It achieved an increase of 2.87% and 1.91% in F1
score, a decrease of 0.75% and 2.66% in ER metric, a
decrease of 2.52% and an increase of 2.93% in precision,
and an increase of 6.24% and 0.93% in recall on the two
datasets, respectively. These results indicate that capturing
the successive occurrence relationships of sound events is
beneficial for sound event detection tasks.
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Fig. 11 Effect of filtering threshold on model performance

Simultaneously, the incorporation of the event relation-
ship module enhances the stability of the detection model
across multiple cross-validation sets. The standard deviation
of G-CRNN (C) and G-CRNN (CS) decreases on the two
datasets, with G-CRNN (CS) exhibiting a relatively lower
overall standard deviation. This compellingly demonstrates
that the integration of multi-modal sound event information
contributes to the stability of model performance, while the
inclusion of successive occurrence sound event relationships
yields superior outcomes. The enhanced stability guarantees
the algorithm’s application performance and reasoning capa-
bilities.

Compared to other approaches, the model demonstrates
improved detection performance after incorporating multi-
modal information, validating the effectiveness of the pro-
posed method.

In comparison with other methods, the YOHOmodel pro-
posed by Venkatesh et al. [25], which is similar to YOLO,

Fig. 12 Influence of adjacent self-scaling parameters on model perfor-
mance

achieved superior ER performance compared to the method
presented in this paper, with a decrease of 4.10% in the ER
metric. However, the YOHO model did not report other per-
formance metrics and had a much larger model parameter
count of 3,900,000, which is far greater than the 490,182
parameters in this paper. This high parameter count makes
it challenging for deployment and application in intelligent
vehicles. This paper demonstrates that by obtaining event
relationships, the model’s detection performance can be
effectively improved even with a significantly lower param-
eter count, thus compensating for the disparity caused by the
model’s parameter count.
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Performance experiments of each class of sound
event detection

The experiment in this section focuses on comparing the
detection performance of CRNN, G-CRNN (C), and G-
CRNN (CS) on individual sound event classes using two
datasets. These models align with the ones described in
ExperimentA. The detection capabilities of themodels for all
sound events in the two datasets are summarized in Table 3.
The mean values of the same sound event type across the two
datasets are combined, and the best performance value in the
detection comparison is highlighted in bold.

Table 3 exhibits the impact of integrating the event rela-
tionmodule on the sound event detection performance across
the two datasets. The findings demonstrate the effectiveness
of leveraging multimodal information for this task. Notably,
within the context of intelligent driving, significant improve-
ments were observed for key sound event categories such
as "car," "people speaking," and "people walking." The pro-
posed G-CRNN (C) and G-CRNN (CS) models exhibited
substantial reductions inERmetrics,with "Car" experiencing
a decrease of 4.23%and 9.78%, respectively. Similarly, "peo-
ple speaking" showed a reduction of 20.50% and 15.10%,
while "people walking" exhibited a decrease of 8.23% and
8.05%, respectively. ER measures for other event categories
also displayed a decrease, thus affirming the effectiveness of
acquiring multimodal information in effectively mitigating
false detection rates.

The primary factor contributing to the lack of improve-
ment in the detection performance of certain sound events,
such as "(object)banging," is their rarity within the driving
environment. The limited size of the dataset used in this
study results in a small number of occurrences (only 15)
and a total duration of less than 15 s for this specific event.
Consequently, the graph structure constructed for this event
exhibits a scarcity of edges pointing to its corresponding
node, resulting in low weights and an insufficient acquisition
of relationship information. Additionally, the limited number
of samples prevents the model from capturing an adequate
amount of acoustic feature information, thereby hindering
the accurate detection of this sound event even after feature
fusion. This issue can be effectively addressed by obtaining
a larger audio dataset with a sufficient number of samples.

To visually show the detection results of sound events,
we make a visualization in Figs. 9 and 10, annotating the
prediction results of sound events. These results show that
the introduction of sound event relations can significantly
improve the accuracy of sound event detection compared
with the baselinemethod, CRNN. In particular, the G-CRNN
(CS) model not only has a higher detection performance and
higher detection rate but also a lower false detection rate,
which fully proves the positive impact of obtaining more

comprehensive information about sound event relations on
detection performance.

Experiment with the influence of hyperparameter
values onmodel performance

In this experimental phase, we investigate the impact of
hyperparameter selection on model performance by con-
ducting experiments on G-CRNN (CS) on two datasets. The
filtering threshold α and the neighbor-to-self ratio parameter
β are fine-tuned within the range of 0 to 1, with increments
of 0.1. The results of these experiments on the two datasets
are presented in Figs. 11 and 12.

Figure 11 illustrates that themodel achieves the highest F1
score and the lowest ER measure when the filtering thresh-
old α is set to 0.3. This threshold effectively filters out noise
data while preserving essential relationship information. If
α is set too small, the model becomes disturbed by a signifi-
cant amount of noise data, resulting in a decline in accuracy.
Conversely, if α is set too large, a substantial amount of rela-
tionship information between sound events is filtered out,
leading to insufficient event relationship information and a
decline in model performance.

As depicted in Fig. 12, the model achieves the highest F1
score and the lowest ER metric when β is set to 0.3. This
balance allows for the acquisition of sufficient relationship
informationwhile still preserving an adequate amount of self-
information.

When β is too small, the importance of neighboring infor-
mation is disregarded, resulting in an inability to capture the
necessary relationship information between sound events.
Conversely, when β is too large, the node’s information
is overshadowed, leading to an excessive smoothing phe-
nomenon.

The experimental findings reveal that even when β is set
to a large value, the model’s performance does not deteri-
orate significantly. This observation suggests that the graph
structure created in this study, which employs the calculated
conditional probability value as the edge weight, effectively
captures diverse information by assigning varying weights
to each edge during the aggregation of neighboring node
information. In comparison to the binary correlation matrix
utilized in previous works [14] and [17], the adoption of the
calculated conditional probability value as the edge weight
in the graph structure partly mitigates the issue of over-
smoothing.

Experimental effect of sound event window size
onmodel performance

In this experiment, we conduct comparative experiments on
two different datasets to evaluate the performance of the G-
CRNN (CS) model under three different sizes of sound event
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Table 4 Model detection ability
for different sound event window
sizes in the both datasets

Dataset Window
size

F1 score (%) ↑ ER metric (%) ↓ Precision (%) ↑ Recall (%) ↑

Residential
area

– 48.48 ± 3.73 84.40 ± 0.92 53.93 ± 3.89 45.37 ± 8.84

30 s 50.74 ± 4.54 84.44 ± 3.38 51.18 ± 0.95 51.25 ± 9.40

60 s 51.35 ± 2.42 83.65 ± 0.71 51.41 ± 0.69 51.61 ± 5.36

90 s 49.85 ± 5.34 87.86 ± 3.22 49.97 ± 4.46 50.95 ± 10.1

Street – 46.71 ± 1.93 82.26 ± 2.47 47.44 ± 1.75 46.19 ± 3.64

30 s 48.07 ± 1.33 83.17 ± 1.73 47.55 ± 1.41 48.77 ± 3.12

60 s 48.62 ± 0.74 79.60 ± 2.90 50.37 ± 2.56 47.12 ± 1.23

90 s 46.87 ± 1.49 83.57 ± 3.53 47.96 ± 2.28 45.95 ± 2.27

↑ indicates that higher is better for this index; ↓ indicates that lower is better for this index; ± is followed by
standard deviation; and – indicates G-CRNN(C) without a sound event window

windows, which are 30 s, 60 s, and 90 s, respectively. Table
4 shows the performance comparison of the models on the
two datasets under different window sizes. The final detec-
tion performance of the model is determined by calculating
the mean and standard deviation of the results of all cross-
validation sets for both datasets, and the optimal performance
is marked in bold font.

In Table 4, the proposed sound event window size has
a relatively obvious impact on the model’s performance. In
summary, the model performs best when the window size
is set to 60 s, and there is little difference in model perfor-
mance when the window size is set to 30 s. However, when
the window size increases to 90 s, the model’s performance
significantly degrades. This suggests that when the window
is too large (90 s), the model may introduce too much noisy
relation data, which may interfere with the model’s learning
of beneficial sound event relations, leading to performance
degradation. On the contrary, when the window is too small
(30 s), although the noise relationship data is greatly reduced,
some useful sound event relationship information may be
ignored, so the model is insufficient in obtaining compre-
hensive sound event relationship information, resulting in a
slight decrease in performance. When the window size is
moderate (60 s), the model can effectively balance the acqui-
sition of beneficial sound event relationship information and
the introduction of noise relationship. By setting the filter-
ing threshold α, themodel can effectively removemost of the
noise relationship data while retaining beneficial sound event
relationship information, thereby improving its performance.
A more detailed experimental study of window sizes will be
conducted in the future to determine the optimal sound event
window size.

Compared with the G-CRNN(C) model using only co-
occurrence relationships, the G-CRNN(CS) model with
a sound event window improves performance when the
window size is between 30 and 60 s, and even the worst-
performing model with a window size of 90 s achieves

comparable performance as G-CRNN(C). This shows that
the introduction of a sound event window significantly
improves the comprehensiveness of sound event relationship
information obtained by the model, thus effectively improv-
ing the detection performance of the model. Especially, the
recall rate is almost significantly improved after the introduc-
tion of the sound event window method, which proves that
the introduction of the sound event succession occurrence
relationship can effectively enhance the detection ability of
the model.

Model parameters and real-time experiments

To examine the influence of the proposed multi-modal infor-
mation acquisition method on model parameter count, the
number ofmodel parameters for CRNN andG-CRNN is pro-
vided. The event relation learning module (GCN) consists of
133, 120 parameters, while both the acoustic feature learn-
ingmodule (CRNN) andG-CRNNhave 490, 182 parameters
each.

The training and testing process of G-CRNN involves
training the event relation learning module once in advance
to obtain the event relation feature sequence, which is then
saved for future use. There is no need to further train the
event relation module, so the actual number of parameters in
G-CRNN remains the same as in CRNN. It only involves per-
forming a Hadamard product calculation during multimodal
fusion.

To evaluate the real-time processing ability of the model
and the impact of themultimodal fusionmethod on the detec-
tion time, the index FPS (frames per second) is used in this
study. FPS can measure the processing speed of the model
in real applications, which is particularly important for real-
time deployment. FPS is calculated as follows:

FPS = f rameCount

elapsedT ime
(12)
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Table 5 Real-time detection capability of different models in both
datasets

Dataset Residential area Street

Model FPS (f/s) ↑ FPS (f/s) ↑

CRNN 2363.16 ± 18.82 2690.86 ± 10.21

G-CRNN(C) 2364.16 ± 16.98 2687.67 ± 11.03

G-CRNN(CS) 2363.29 ± 13.03 2688.85 ± 11.42

↑ indicates that higher is better for this index;± is followed by standard
deviation

This paper conducts comparative experiments on two
datasets to evaluate the real-time processing performance
of CRNN, G-CRNN (C), and G-CRNN (CS), respectively.
Table 5 shows the comparison of the real-time processing
capabilities of different models on the two datasets. We eval-
uate the real-time performance of each model five times and
calculate the mean and standard deviation, and the optimal
performance is marked in bold font.

As shown in Table 5, the proposed sound event detection
model has a high FPS and a low standard deviation, which
proves that the model performs well and stably in real-time
performance and can meet the real-time deployment require-
ments in traffic scenarios. It is worth noting that although
the multimodal fusion operation is added to the model, it
has little impact on the real-time performance of the model.
This is because the feature sequence of sound event relations
can be learned and saved in advance by the event relation
learning module, and only one additional Hadamard product
calculation is needed in the multimodal fusion stage, so the
processing time will not be significantly increased.

Conclusions

Sound serves as a valuable source of information for perceiv-
ing the surrounding environment. By analyzing the charac-
teristics of sound signals and the interrelation between sound
events, the ability to detect sound events in complex driving
environments is enhanced. This study proposes a graph neu-
ral network-based method for sound event detection in traffic
scenes, aiming to capture multi-modal information. Detec-
tion performance is significantly improved by effectively
integrating the multi-modal information and acoustic fea-
tures of sound events. Experimental results demonstrate that
introducing multi-modal information through the graph neu-
ral network leads to improved performance across allmetrics.
Specifically, the successive occurrence relationship informa-
tion of sound events obtained through the sound event win-
dow approach further enhances the performance of themodel
based on co-occurrence relationships. This highlights the
benefits of incorporating multi-modal information, enabling

the model to leverage valuable prior knowledge and enhance
its performance effectively. Additionally, the proposed sound
event window method extracts both co-occurrence and suc-
cessive occurrence relationships, addressing the issue of
sparse graph structures caused by limited correlation infor-
mation when relying solely on co-occurrence relationships.
This method improves the efficiency of node information
transmission and learning while providing a more compre-
hensive representation of relationship information, thereby
further enhancing the model’s performance. So, this sound
event detection method can enhance the vehicle’s environ-
mental perception capability through the analysis of sound
signals, thereby further advancing the level of intelligence in
autonomous vehicles.

When applying the proposed sound event detection system
to real traffic scenarios, it may encounter the challenges of
environmental noise interference, overlapping sound events,
data acquisition and annotation, and real-time requirements.
These factors need further investigation and optimization to
improve the robustness and real-time performance of the sys-
tem. Future researchworkwill be devoted to deepening event
relationship learning by conducting more detailed experi-
ments, analyzing the performance of different sizes of sound
eventwindows, and adding attentionmechanisms for specific
rare events to improve detection accuracy. At the same time,
wewill optimize the graph network and research and develop
more advanced graph network structures to extract and repre-
sent the relationship information between sound events more
effectively.
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