
Complex & Intelligent Systems
https://doi.org/10.1007/s40747-024-01460-w

ORIG INAL ART ICLE

Surrogate-assisted sine Phasmatodea population evolution algorithm
applied to 3D coverage of mobile nodes

Shu-Chuan Chu1 · LuLu Liang1 · Jeng-Shyang Pan1,2 · LingPing Kong3 · Jia Zhao4

Received: 29 November 2023 / Accepted: 17 April 2024
© The Author(s) 2024

Abstract
Deploying static wireless sensor nodes is prone to network coverage gaps, resulting in poor network coverage. In this paper, an
attempt is made to improve the network coverage bymoving the locations of the nodes. A surrogate-assisted sine Phasmatodea
population evolution algorithm (SASPPE) is used to evaluate the network coverage. A 50 × 50 hill simulation environment
was tested for the number of nodes of 30 and 40 and radii of 3, 5 and 7, respectively. The results show that the SASPPE
algorithm has the highest coverage, which can be up to 23.624% higher than the PPE algorithm, and up to 5.196% higher than
the PPE algorithm, ceteris paribus. The SASPPE algorithmmixes the GSAMwith LSAMs, which balances the computational
cost of the algorithm and the algorithm’s ability to find optimal results. The use of hierarchical clustering enhances the stable
type of the LSAMs. In addition, LSAMs are easy to fall into local optimality when they are modeled with local data, and
the use of sine Phasmatodea population evolution algorithm (Sine-PPE) for searching in LSAMs alleviates the time for the
algorithm to fall into local optimality. On 30D, 50D, and 100D, the proposed algorithm was tested by 7 test functions. The
results show that the algorithm has significant advantages on most functions.

Keywords Phasmatodea population evolution · Surrogate-assisted · Radial basis function networks · Removable nodes

B Jeng-Shyang Pan
jengshyangpan@gmail.com

Shu-Chuan Chu
scchu0803@gmail.com

LuLu Liang
lianglulu0403@163.com

LingPing Kong
lingping_kong@yahoo.com

Jia Zhao
zhaojia925@163.com

1 College of Computer Science and Engineering, Shandong
University of Science and Technology, Qingdao 266590,
China

2 Department of Information Management, Chaoyang
University of Technology, Taichung, Taiwan

3 Faculty of Electrical Engineering and Computer Science,
VSB-Technical University of Ostrava, Ostrava, Czech
Republic

4 School of Information Engineering, Nanchang Institute of
Technology, Nanchang 330099, China

Introduction

Wireless sensor networks (WSNs) are task-orientednetworks
whose ultimate goal is to detect the monitored area to obtain
the required data [1, 2]. To ensure the accuracy and valid-
ity of the data, researchers have investigated the deployment
strategy [3, 4], energy efficiency [5, 6], and coverage of
the sensors [7, 8]. The deployment strategy of sensor nodes
will directly affect the performance of the network; energy
efficiency will directly determine the lifetime of the net-
work; coverage is the basis for accomplishing the task of
targetmonitoring and information acquisition,which directly
affects the energy consumption of sensors and network life-
time, and is also a hot spot and focus of current research
[9].

Network coverage can be classified in several ways
depending on the application of wireless sensors. Based on
how the nodes are deployed and based on whether the nodes
are inmotion are twocommonclassifications [8, 10].Accord-
ing to the deployment method of nodes, coverage can be
divided into two categories: deterministic coverage and ran-
dom coverage. Suppose the environment to be covered is
known or does not change much. In that case, the location

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-024-01460-w&domain=pdf
http://orcid.org/0000-0003-2117-0618
http://orcid.org/0000-0002-3128-9025

Complex & Intelligent Systems

of the nodes can be determined in advance, and this case is
suitable for deterministic coverage. If the environment to be
covered is harsh, and the environmental conditions cannot
be predicted in advance, only random deployment can be
used for coverage. Random deployment of nodes produces
random coverage effects, which may achieve optimal cover-
age, cause coverage redundancy, or make too many coverage
blind areas [11, 12]. Whether or not the nodes are in motion,
they can be divided into static and dynamic network cover-
age. Fixed networks are defined as networks in which the
nodes are not in motion [13]. Dynamic network coverage
means the nodes have some mobile capability to provide
better monitoring services to the area [14]. Regardless of
the coverage method, the goal is to maximize network cov-
erage. Efficient target coverage algorithms can improve the
performance of wireless sensors [15]. This paper uses the
coverage method of mobile nodes to increase the network.
Move the available sensor nodes to fill the void when a cov-
erage gap occurs [16]. There are various ways to move the
nodes, such as random, fixed, or adaptive. The advantage
of random movement is that the movement method is simple
and does not require planning themovement path. The disad-
vantage is that the stability of coverage cannot be guaranteed.
Fixed movement means that the movement path of the nodes
is scheduled in advance. This method can guarantee cover-
age to a certain extent. Adaptive movement automatically
adjusts the nodes’ direction based on the real-time status.
This approach ensures the maximum coverage of the net-
work but is more energy intensive. The choice of movement
method needs to be selected on a case-by-case basis, or a
combination of the above three methods can be adapted to
specific scenarios. Meta-heuristic algorithms are often con-
sidered effective measures to solve optimization problems
and practical algorithms to improve the coverage of wire-
less sensor networks [17–19]. In this paper, we focus on the
coverage of movable nodes based on the improved meta-
heuristic algorithm, and the following is an introduction to
the meta-heuristic algorithm.

Meta-heuristic algorithms emerged to solve practical
problems and are characterized by the ability to find approxi-
mate solutions to optimal solutions globally, with exploration
and exploitation at their core. Various meta-heuristic algo-
rithms have been proposed, for example, the gray wolf
optimizer (GWO) [20], the whale optimization algorithm
(WOA) [21], and the Phasmatodea population evolution
(PPE) [22–24]. In some aspects, they have advantages over
classical genetic algorithms (GA) [25], particle swarm opti-
mization (PSO) [26–28], differential evolution (DE) [29] and
other algorithms. Regardless of the type of meta-heuristic
algorithm, random variables are introduced in the iterative
process to prevent the algorithm from deviating from the
optimal value [30]. This is the most significant difference
between meta-heuristic algorithms and traditional methods.

However, no single algorithm can be applied to all practi-
cal problems. Researchers have therefore proposed various
improvements. For example, add restart policy [31], orthog-
onal learning strategy [32], transfer learning [33], or parallel
strategy [34], etc. Zhu [35] proposed a multigroup-based
Phasmatodea population evolution algorithm, which further
improved the overall performance of PPE. Similarly, Liang
[34] proposed a parallel Phasmatodea population evolution
algorithm (PPPE) with a communication strategy. Chaotic
models are often used to improve various algorithms, which
can generate chaotic numbers between 0 and 1, and have
been applied to applications. For example, Dynamic analy-
sis of chaotic digital maps via state-mapping networks [36]
and Exponential chaotic model for generating robust chaos
[37], proposed in 2019. Bird swarm algorithms with chaotic
mapping proposed in 2020 [38]. All the articles mentioned
above can prove that chaotic mapping has good results.

In addition, adding a surrogate model not only improves
the accuracy of the algorithm, but also solves the time-
consuming problem of the algorithm in computing the
expensive optimization problem. Compared to 2D coverage,
3D coverage is computationally expensive and is well suited
for the use of surrogatemodels. Todate,many existing regres-
sionmodels have been used as proxymodels, such asKriging
models [39], radial basis function networks [40], polyno-
mial regression [41], and artificial neural networks [42, 43].
However, all types of regressionmodels have limitations, and
no single regression model is suitable for all problems. For
example, the Kriging model is a typical interpolation estima-
tion method sensitive to numerical noise in the computation
process. The modeling process could be more computation-
ally heavy andmay result in construction failure for problems
with large sample sizes [39]. What makes RBFN unique
from other neural network models is the introduction of a
new variable, Euclidean distance, which transforms the fit-
ted prediction problem in a multidimensional design space
into a one-dimensional problem with itself as the indepen-
dent variable. It is shown that the RBFN model works very
well for problems with many design variables and a high
degree of nonlinearity [44, 45]. At the moment, there are
manyarticles usingRBFNas a surrogatemodel. For example,
Sun [46] proposed a surrogate-assisted cooperative parti-
cle swarm optimization algorithm (SACOSO) that uses two
surrogate models to search for the global optimum collab-
oratively. Experiments show that the algorithm can find the
best solution for problems of relatively high dimensional-
ity in a limited number of calculations,fully levering the
local approximation ability of RBFN. Wu [47] proposed
a new surrogate assisted evolutionary algorithm MASTO
based on adaptive technology. This algorithm fully utilizes
the learning and local approximation capabilities of RBFN
to dynamically establish the most promising RBF for each
target, thereby improving the reliability of alternative model

123

Complex & Intelligent Systems

Table 1 Introduction to various surrogate assisted algorithms

Algorithm Definition Model

SAPPE Surrogate assisted phasmatodea population evolution algorithm RBF

SAALO Surrogate assisted ant lion optimizer RBF

SA-COSO Surrogate assisted cooperative swarm optimization RBF, FES

RBFPSO RBF-assisted particle swarm optimization RBF

SHPSO Surrogate-assisted Hierarchical particle swarm optimization RBF

RFMOPSO Random forest multi-objective particle swarm optimization RF

SAMSO Surrogate assisted multiswarm optimization algorithm RBF

EASO Evolutionary sampling assisted optimization RBF

DSCPSO-EMM Dual-surrogate-assisted cooperative particle swarm optimization algorithm RBF, BP

FHSAPPSO Fuzzy Hierarchical surrogate assists probabilistic particle swarm optimization RBF

SAEA Surrogate-assisted reference vector guided evolutionary algorithm GP

HSAEA A study on hierarchical surrogate-assisted evolutionary algorithm PR, GP

predictions. Regis [48] proposed an algorithm for particle
swarm optimization using a surrogate model (RBFPSO),
which uses RBF to construct a surrogate model to identify
the most promising particle positions. In addition, the RBF-
PSO algorithm has shown outstanding performance in 36-D
groundwater bioremediation problems, 14-D watershed cal-
ibration problems, and ten mostly 30-D testing problems.
Liang [49] proposed a two-level substitution-assisted PPE
algorithm (SAPPE), which improves the PPE algorithm
using two surrogate models constructed by RBFN. The algo-
rithm was applied to the 3D coverage problem of wireless
sensors and achieved good results. RBFN has strong nonlin-
ear mapping ability and can handle very complex nonlinear
problems. The following is a summary of the above algo-
rithms and other similar algorithms, please refer to Table 1
for details.

This does not mean that only RBFN is effective. When
selecting a proxy model, it is necessary to consider factors
such as algorithm, characteristics of the problem to be solved,
data size, and computing resources comprehensively.Gu [50]
proposed a random forest surrogate-assisted adaptive multi-
objective particle swarm optimization (RFMOPSO). In this
algorithm, random forests are used to speed up the algo-
rithm’s search; new adaptive rules are used to update the
particle states. The experiments show that the algorithm has
some applications for combinatorial optimization problems.
On the one hand, Random Forest needs to build multiple
decision trees with longer training time, which is not as sim-
ple as RBFN to build the model. On the other hand, random
forest has high prediction accuracy and can handle data well
under adaptive conditions. Ji [51] proposed a dual-surrogate-
assisted cooperative particle swarm optimization algorithm
(DSCPSO-EMM) and searched for several optimal solutions
with significantly reduced individual evolutionary costs. To
verify the effect of the surrogatemodel on the performance of

the DSCPSO-EMM, two variants, DSCPSO-EMM-LS and
DSCPSO-EMM-BP, are proposed in this literature. The for-
mer surrogate models all take the form of RBFN-LS, while
the latter uses a single-layer surrogate-assisted model com-
bining RBFN-BP. The algorithm has significant advantages
over other algorithms of the same type in solving expen-
sive optimisation problems, but is structurally complex using
multiple surrogate models.

Based on the above considerations, it is good to use
surrogate assisted techniques to solve the computationally
expensive problem. Therefore, in this paper, we propose A
surrogate-assisted sine Phasmatodea population evolution
algorithm (SASPPE) to solve the expensive optimization
problem. We evaluate the proposed SASPPE algorithm on
multiple dimensions of 7 benchmark functions as well as a
real-world optimization problem. Comparative results show
that the proposed algorithm SASPPE is effective. The main
work of this paper is as follows.

1. This article proposes a new algorithm for solving the
three-dimensional coverage problem of wireless sensors.
At the same time, to increase network coverage, this arti-
cle adds a mobile mechanism to sensor nodes.

2. SASPPE adopts an alternation mechanism. LSAMs and
GSAMs are used alternately, which effectively balances
the computational cost and the algorithm’s optimization
seeking ability.

3. The use of hierarchical clustering method to divide the
solidLSAMsensures the balance of buildingLSAMdata.
In LSAMs, the use of the Sine-PPE algorithm to search
the solution space avoids the algorithm from falling into
local optimality to a certain extent.

123

Complex & Intelligent Systems

(a) 3D coverage example (b) The simulated 3D terrain

Fig. 1 3D coverage schematic

The rest of this paper is structured as follows, sec-
tion“Related work” introduces the relevant components
of this paper, section“The proposed algorithm” mainly
describes the proposed algorithm SASPPE, section“Exper-
iment” presents the experimental results of the algorithm,
section“3D coverage of removable nodes” is the application
of the algorithm to the 3D coverage of movable nodes, and
section“Conclusion and future work” is the summary and
outlook.

Related work

Wireless sensor networks

Sensor nodes are the cornerstone of WSNs, and their sens-
ing models significantly impact the detection and coverage
capabilities of the network [7, 8]. Currently, themain sensing
models of sensor nodes are binary and probabilistic sensing
models. The binary sensing model is an ideal sensing model
that ignores the attenuation of the signal during transmis-
sion, i.e., the ability to transmit the signal is constant [49].
The probabilistic sensingmodel takes into account the fading
of the nodes during the message of the signal, i.e., the abil-
ity to transmit the signal decreases with increasing distance.
This paper uses a binary sensing model, 0–1 sensing model,
or Boolean sensing model. It is covered as shown in Fig. 1a,
and all areas within this sphere can be detected. Assuming
that the point P(xp,yp,z p) does not fall exactly within the
sensing range of a sensor Si , the coverage value C of the
point P is recorded as 0, and vice versa as 1, as shown in
Eq. (1).

Where d(P, Si) denotes the Euclidean distance between
point P and sensor node Si , and r denotes the sensing radius
of sensor Si . The red line in Fig. 1a is r , and the green line
is d. To ensure maximum coverage, the nodes are movable
for coverage in this paper. The energy of each sensor node
is limited and cannot be moved indefinitely. It is assumed
that each node is full of energy, gradually consumed as the
nodes move. At the time when some sensor nodes run out
of electrical power, mobile nodes can be used to fill them
and ensure the connectivity of the network. In this paper, the
nodes move a constant distance each time, i.e., the energy
consumed is also constant.

C(P, Si) =
{
1, if d(P, Si) ≤ r

0, otherwise
, (1)

Radial basis function networks

RBFN, one of the methods for constructing surrogate-
assisted models, is often used to compute more costly
optimization problems [40, 46]. RBF neural network is a
three-layer neural network. The transformations from the
input layer to the hidden layer are nonlinear and are connected
by radial basis functions. The transformation from the hidden
layer to the output layer is linear and is connected byweights.
The basic principle of RBFN is to divide the input space into
N non-overlapping subspaces, each described by an inde-
pendent RBF. The value of the RBF function depends only
on the distance from the origin, which is generally adopted
as the Euclidean distance [45]. The RBF method combines
a series of exact interpolation methods, i.e., the surface must
be sampled through each measured value. The interpolation
function based on the radial basis function is shown inEq. (2).

123

Complex & Intelligent Systems

y̌ =
N∑
i=1

λiφ(x − xi) + p(x), (2)

where N is the number of RBF established and the number of
nodes in the hidden layer. λ = [λ1, λ2, λ3, . . . , λN]T is the
correlation weight. φ(·) is the kernel function, and ‖ · ‖ is the
Euclidean distance. There are various activation functions for
radial basis functions, such as Gaussian, polynomial, linear,
etc. The formula of the Gaussian function is shown in Eq. (3),
and the formula of the cubic surface function is shown in
Eq. (4).

This paper uses the least squares method to solve for
the unknown parameters. p is either a polynomial or a
constant. Suppose the number of polynomials of p is m,
then b = [b1, b2, b3, . . . , bm]T , �i j = φ(xi − x j), (i =
1, 2, 3, . . . , N), (j = 1, 2, 3, . . . , N), Pi j = p j (xi), (i =
1, 2, . . . , N), (j = 1, 2, . . . ,m), b and λ are solved in the
way shown in Eq. (5).

φ(r) = exp

(
− r2

2σ 2

)
, (3)

φ(r) = r3, (4)[
� P
PT 0

] [
λ

b

]
=

[
y
0

]
(5)

PPE algorithm

PPE differs from other algorithms in that each solution repre-
sents a population andhas twoproperties: number andgrowth
rate [22–24]. The solution is generated randomly at the begin-
ning of the evolutionary stage of the population. The PPE
algorithm selects the k nearest optimal solutions to avoid
losing solutions during evolution to guide the subsequent
population movement. The k is determined by the number
of solutions N . The population position update formula is
Eq. (6).

xt+1 = xt + ev, (6)

where ev represents the evolutionary trend of the popula-
tion, three types of updates are available for ev affected by
path dependence, nearest optimum, and competition, and the
update formula is shown in Eq. (7). Where m denotes the
population mutation; f (x) denotes the fitness value of the
current population i ; A represents the nearest optimal solu-
tion; B means an n-dimensional random variable generated
from a normal distribution, and st is determined by the upper
and lower bounds of the search space.

evt+1

=

⎧⎪⎨
⎪⎩

(1 − pt+1)A + pt+1(evt + m)), if path dependence

rand · A + st · B, if nearest optimum

evt+1 + f (x j)− f (xi)
f (x j)

(x j − xi), if competition

,

(7)

The update of population size is shown in Eq. (8), and a
denotes the population growth rate, which is set as a constant
1.1 in this paper. Population competition occurs when two
populations are close enough to each other. The competition
formula is shown in Eq. (9).

pt+1 = at+1pt (1 − pt), (8)

pi = pi + aipi (1 − pi − f (x j)

f (xi)
p j), i f d(xi , x j) < G,

(9)

The pseudo-code of the PPE is Algorithm 1.

Algorithm 1 PPE algorithm
Require: The dimension D, the upper boundUB and the lower bound

LB of the search space, the number of particle groups Np.
1: The value of k is calculated from Np.
2: Initialize particle position x, evolutionary trend ev.
3: while The termination conditions are met do
4: xt+1 = xt + evt

5: for i = 1: N do
6: if f (xt+1) ≤ f (xt) then
7: xt+1

i = xti
8: pt+1

i = at+1
i pti (1 − pti)

9: evt+1
i = (1 − pt+1

i)A + pt+1
i (evti + m))

10: else
11: if rand ≤ pt+1

i then
12: xt+1

i = xti
13: pt+1

i = at+1
i pti (1 − pti)

14: end if
15: evt+1

i = rand · A + st · B
16: end if
17: if dist(xi , x j) ≤ G then

18: pi = pi + aipi (1 − pi − f (x j)

f (xi)
p j)

19: evt+1 = evt+1 + f (x j)− f (xi)
f (x j)

(x j − xi)
20: end if
21: end for
22: end while
Ensure: Output: The optimal value G.

Chaotic model

In the optimization field, chaotic mappings can be used
instead of pseudo-random number generators that produce
random numbers in the range of 0–1 [52, 53]. The random
numbers generated by chaotic mappings have the charac-
teristic of being highly dependent on the initial values,

123

Complex & Intelligent Systems

i.e., two similar initial values will yield completely differ-
ent sequences of random numbers [36]. This is also the
nature of chaotic mappings, and such property will affect
the generation of optimal solutions of the algorithm. When
the algorithm generates multiple solutions, searching for the
global optimal solution is more accessible. Chaotic map-
ping can be used not only in the initialization phase of the
population but also in the selection, crossover, and muta-
tion operations on the population. This operation also affects
the whole evolution process of the algorithm, getting bet-
ter results than the original algorithm. Chaotic mappings
commonly used in meta-heuristic algorithms are logistic
mapping, piecewise mapping, singer mapping, sine map-
ping, etc. The sine mapping is single-peaked and has a value
domain of [− 1, 1]. Adding the sine mapping ensures that the
population is adjusted in a small range, so the sine mapping
is chosen in this paper. The original formula of sine mapping
is shown in Eq. (10), representing the chaotic parameters. In
this paper, the value of β is set to 4 and Z0 to 0.01.

Zt+1 = 4

β
sin(π Zt), 0 < β ≤ 4. (10)

Hierarchical clustering

Clustering is commonly used in the initial stage of data
exploration or data mining and is often used for data pre-
processing. Hierarchical clustering can be divided into two
opposite approaches: agglomerative hierarchical clustering
and divisive hierarchical clustering [54, 55]. Agglomerative
clustering treats each object as a cluster and merges these
clusters to form a larger cluster based on conditions. Divisive
clustering treats all objects as one cluster and then gradually
divides them into smaller and smaller clusters. The advan-
tage of hierarchical clustering is that it is easy to implement
similarity measures or distance measurements to draw a tree
diagram. Another advantage is that the number of clusters
can be specified in the clustering process to achieve a more
desirable clustering effect.

This paper chooses to use agglomerative clustering that
requires merging clusters. Generally speaking, the two clus-
ters with the smallest distance are effortlessly merged. The
definition methods of the distance between clusters deter-
mine different clustering results. The most commonly used
distance measurement methods include complete-linkage,
single-linkage, and ward-linkage [56]. The single-linkage
maybe combined due to the proximity of extremedata points.
The complete-linkage may not be able to be combined due to
the distance between their extremevalues. The single-linkage
may be grouped due to the proximity of different data classes;
complete-linkage may not be grouped due to the distance of
similar data. Therefore, ward-linkage is chosen in this paper,

and the calculation formula is shown in Eq. (11).

d(r , s) =
√

2nrns
(nr + ns)

‖x̄r − x̄s‖2, (11)

where ‖ · ‖2 denotes the Euclidean distance, x̄r denotes the
center of mass of r clusters, and nr denotes the number of
elements of r clusters. The number of clusters set in this paper
is 3.

The proposed algorithm

Like most meta-heuristics, the PPE algorithm has the dis-
advantages of slow convergence and low accuracy. The
PPE algorithm works well in 30 dimensions, and its effec-
tiveness in higher dimensions is unknown. However, the
efficacy of other meta-heuristics decreases exponentially as
the dimensionality increases. The PPE algorithm has the
same deficiency. Improve the problem, three solutions are
proposed in this paper to solve the problem collaboratively.
At first, to solve the problem of high computational cost, this
paper adds a surrogate-assistedmodel to reduce the computa-
tional cost of the algorithm. The surrogatemodels include the
global surrogate-assistedmodel andmultiple local surrogate-
assisted models. In this paper, the global surrogate-assisted
model is abbreviated as GSAM, and the local surrogate-
assisted model is abbreviated as LSAM. Second, multiple
LSAMs are divided using agglomerative hierarchical cluster-
ing to speed up the algorithm’s operations. Although adding
the surrogate models improves the accuracy of the algorithm
to some extent, it tends to make the algorithm premature.
Finally, this paper adds a chaotic mapping mechanism to
solve the algorithm’s premature problem. In summary, a
surrogate-assisted sine PPE algorithm is proposed in this
paper.

Local surrogate-assistedmodel

LSAMs are used before GSAM to quickly find the current
optimal solution and avoid premature algorithm maturity.
Before constructing the LSAM, the data samples are pre-
processed to improve the quality of the model. This paper
uses agglomerative hierarchical clustering to cluster the
data samples and the “ward” method to calculate the dis-
tance between two clusters. This method is simple to define
the distance without specifying the center of the cluster
in advance and generates non-spherical clusters. Multiple
LSAMs are generated using agglomerative hierarchical clus-
tering to ensure that the generated LSAMs are all in the best
condition. The LSAM uses cubic surface functions as kernel
functions and p takes the form of a polynomial. The local

123

Complex & Intelligent Systems

search space is explored using the Sine-PPE algorithm. Sine
mapping is used throughout the LSAM and influences the
generation of optimal solutions, improves the development
capability of LSAM, and prevents the algorithm from falling
into local optimum. After each LSAM generates the optimal
particles, the excellent particles around the optimal particles
are found using sine mapping and evaluated using the true
evaluation function.

The specific process of LSAM is as follows:

• It is divided into three clusters by hierarchical clustering,
and three LSAMs are constructed using the sample data
in the clusters.

• The optimal solution is found using Sine-PPE, and the
obtained optimal solution is added to the database (DB).
Subsequently, the optimal solution and sine mapping are
used to find the excellent particles around the optimal
solution.

• The suitable particles are added to the DB, and thematrix
DB is updated.

It is necessary to determine whether the end condition is
reached each time the current optimal solution is added. If
the state is reached, the whole algorithm is ended, and vice
versa; the algorithm continues to run. The DB used is the
same DB as the one used by the GSAM, and LSAM uses all
the data in the DB.

The pseudo-code of the LSAM is Algorithm 3.

Sine-PPE algorithm

As shown inSong’s literature [22], the overall performance of
PPE on 30 functions of CEC 2014 is better than GWO, GSA,
SA, SLPSO, BOA, and GA algorithms. To avoid premature
algorithm, sine chaotic mapping is added to the PPE. Chaotic
mappings can have an impact on the algorithm during the
iterative process, and this impact will affect the subsequent
iterative process. Adding chaotic mapping improves the pos-
sibility of the algorithm jumping out of the local optimum
and avoids premature maturity. The evolutionary part of the
PPE algorithm is modified using sine chaos mapping. The
revised sine mapping is shown in Eq. (12).

Zt = sin(π Zt−1) + cos(π Zt−1), (12)

Considering the evolutionary process, the population will
be influenced not only by the optimal solution and path

dependence but also by the parents. In this paper, xt
′
is

introduced as the influence of the previous generation on

the current iteration, and the formula for calculating xt
′
is

shown in Eq. (13).

xt
′ = (at Zt + 4cos(Zt))(x

t − xt−1), (13)

Because the evolutionary trend takes into account the
effects of path dependence, convergence to the nearest opti-
mum, and competition, the variable St is introduced in this
paper to balance the relationship between the evolutionary

trend ev and xt
′
. St is calculated as shown in Eq. (14). To

ensure that the solution generated by the algorithm is in the
search space, the value of St must be less than 1. In this paper,
the solution overflow is prevented by using modulo opera-
tion, i.e., a remainder of St to generate S∗

t . The population
evolution formula of the improved PPE algorithm is shown
in Eq. (15).

St = sin(u · π · rand1 · St−1)

+sin(u · π · rand2 · St−1), (14)

xt+1 = xt + St · ev + (1 − S∗
t)x

t
′
, (15)

The pseudo-code of the Sine-PPE is Algorithm 2.

Algorithm 2 Sine-PPE algorithm
Require: The dimension D, the upper boundUB and the lower bound

LB of the search space, the number of particle groups N .
1: Set the value of k.
2: Initialize particle position x, evolutionary trend ev, the variable St

and Z0.
3: while The termination conditions are met do
4: Zt = sin(π Zt−1) + cos(π Zt−1)

5: xt
′ = (ati Zt + 4cos(Zt))(xt − xt−1)

6: xt+1 = xt + St · ev + (1 − S∗
t)xt

′

7: Execute the “for” loop structure of Algorithm 1, which is lines
5–21.

8: end while
Ensure: The current optimal positions G and its fitness value f (G)

Global surrogate-assistedmodel

The primary use of the GSAM is to ensure the stability of
the model. The meta-heuristic algorithm is unstable and will
have different results in different computation instances in the
same problem, sometimes performing excellent and some-
times poorly. In case of poor performance, the GSAM is used
to adjust the search capability of the SASPPE algorithm to
ensure that the searched solutions do not deviate from the nor-
mal values. The RBF function is constructed using “newbe”
in Matlab, with the kernel function as a Gaussian and p as a
constant 0. But building GSAM needs to solve the following
two problems. One is that GSAM requires a relatively large
data sample. Another is that GSAM is to select a point on
the whole search space, and the accuracy of the data cannot
be guaranteed. To solve the above problems, the following

123

Complex & Intelligent Systems

Algorithm 3 Local surrogate-assisted sine-PPE
Require: database DB, maximum number of real evaluations MRE ,

and DB size Nd.
1: Use hierarchical clustering to divide the sample data to form Nc

sub-archives DBi .
2: for i = 1: Nc do
3: Constructing FUN1 instead of true fitness function f (x) to eval-

uate populations.
4: @FUN1 = RBFN (DBi , cubic);
5: GL1 = Algorithm 2.
6: The f (GL1) is obtained by evaluating GL1 using the true fitness

function f (x).
7: Select two optimal particles X1 and X2 from the DBi .
8: Two variables w1 and w2 are randomly selected from St .
9: GL2 = GL1 − w1(GL1 − X1) − w2(GL1 − X2)

10: The f (GL2) is obtained by evaluatingGL2 using the true fitness
function f (x).

11: f (GL) = min(f (GL1), f (GL2))

12: if f (GL) ≤ fmax (DBi) then
13: max(DBi) = GL ;
14: MRE = MRE + 2;
15: end if
16: DB = sort(DB ∪ DBi , 1);
17: DB = DB(1, Nd, :);
18: end for
Ensure: The current optimal positionsGL1,GL2 and their fitness value

f (GL1), f (GL2).

solutions are given in this paper. The PPE algorithm has the
number and growth property, which is more advantageous in
exploring the search space. In addition, the time complex-
ity of the algorithm could be higher, which is suitable for
the calculation of relatively large data samples. Therefore,
the search space is explored in GSAM using the PPE algo-
rithm. Besides, multiple LSAMs are constructed in this paper
to develop the current search space and exploit the optimal
values in the whole search space as much as possible.

To reduce the expenses and better find the optimal solu-
tion, the GSAM and the LSAM use the same database DB.
The size of the database is positively correlated with the
time to train the model; the more significant the database,
the longer the time. A reasonable database size must be set
for reasonable training model time. The complexity of the
dimensionality also needs to be considered when designing
the database size. Because as the dimensionality increases,
more samples are required to ensure the accuracy of the
model, then the time to train the model must increase. The
particle size of the algorithm is assumed to be Np. After sev-
eral experiments, the database size setting of Np and 2×Np
is the best solution. When the search space dimension is 30
and 50, the size of DB is set to Np. At this time, GSAM uses
all the data in the DB. When the dimension of the search
space is 100, the size of DB is set to 2 × Np. To reduce the
time of building the model, GSAM uses two-thirds of the
data in the DB. The initial values of the DB are generated
using the Latin hypercube sampling (LHS). Once the data is
updated, the DB must be sorted once to delete the inferior

particles and ensure that the number of particles in the DB is
Np and 2 × Np.

The pseudo-code of the GSAM is Algorithm 4.

Algorithm 4 Global surrogate-assisted PPE
Require: database DB, maximum number of real evaluations MRE ,

data size Ng required for GSAM, and DB size Nd.
1: DBg = DB(1, Ng, :)
2: Constructing FUN2 using all the data in the DBg instead of true

fitness function f(x) to evaluate populations.
3: @FUN2 = RBFN (DBg,Gaussian);
4: G = Algorithm 1.
5: The f (G) is obtained by evaluatingG using the true fitness function

f(x).
6: if f (G) ≤ fmax (DB) then
7: max(DB) = G;
8: MRE++;
9: end if
10: DB = sort(DB ∪ DBg, 1);
11: DB = DB(1, Nd, :);
Ensure: The current optimal position G and its fitness value f (G)

The entire algorithm (SASPPE)

The SASPPE algorithm integrates strategies such as surro-
gate, chaoticmapping, and hierarchical clustering to improve
the overall performance of the PPE algorithm. Adding a sur-
rogate mechanism saves time and cost for the algorithm.
Adding chaotic mapping enhances the randomness and vari-
ability of the algorithm and avoids premature maturation of
the algorithm. Adding hierarchical clustering facilitates clas-
sifying data and building amore reasonable surrogate model.
Figure 2 shows the overall framework of the algorithm; the
purple part is LSAM, and the green part is GSAM. The exe-
cution steps of the SASPPE algorithm are as follows. Where
f (x) represents the true fitness function, function FUN1
refers to the LSAM function constructed using RBF, and
FUN2 denotes the GSAM function made using RBFN.

1. nitialize the data using LHS, then evaluate the data using
f (x), and select the appropriate amount of data stored in
the DB.

2. LSAMs are first constructed in the following way. The
selected data are divided into multiple sub-archived DBi
using hierarchical clustering, andLSAMsare constructed
for each DBi . In eachLSAM, the function FUN1 is used
instead of f (x).

3. The Sine-PPE is executed to find the optimal particle in
the current space, and the end condition of the Sine-PPE
algorithm is executed 200 times, or the optimal value is
constant for 20 consecutive times. The evaluation func-
tion of the Sine-PPE algorithm is the FUN1, not the
f (x).

123

Complex & Intelligent Systems

Fig. 2 Flowchart of SASPPE

4. Evaluate the particle using the f (x). If the particle is
superior to the particle in the DB, replace the worst parti-
cle in the DB. Subsequently, update the DB. Conversely,
leave the status quo unchanged and perform the next step.

5. Sine mapping is used for the optimal particles selected
by Sine-PPE to discover the best particles around the
optimal particles, then 4 is executed.

6. Repeat 3–5 to ensure that the LSAM is executed once for
each build.

7. At this point, the GSAM build phase is entered. Enough
particles are selected from DB to form DBg , and a
GSAM is constructed using the particles in DBg . The
particles are evaluated using the FUN2 instead of the
f (x). Subsequently, the optimal value is searched over
the entire search space using the PPE algorithm. The
PPE uses FUN2 to evaluate the population, and the PPE
algorithm ends with the same conditions as the Sine-PPE
algorithm.

8. The evaluation process is the same as LSAM; refer to 4.

9. If the end condition is reached, the algorithm isfinished; if
not, the algorithm returns to 2 and executes the SASPPE.

The pseudo-code of the SASPPE is Algorithm 5.

Algorithm 5 Surrogate-assisted sine-PPE algorithm
Require: The function f (x), the dimension D and the upper bounds

UB and lower bounds LB of the search space. Number of particles
Np, number of hierarchical clusters K , and number of true evalua-
tions MREmax .

1: Set the DB size Nd.
2: The datas are generated using the Latin hypercube sampling and

evaluated using the function f (x).
3: Select Nd data to put into the DB.
4: MRE = MRE + Nd;
5: while Meet the termination conditions do
6: Algorithm 3;
7: Algorithm 4;
8: end while
Ensure: The current optimal position G and its fitness value f (G)

123

Complex & Intelligent Systems

Table 2 Test functions and their parameters

Name Type of function Global optimal

F(1)/Ackley Multimodal 0

F(2)/Griewank Multimodal with narrow valley 0

F(3)/Rosenbrock 0

F(4)/Ellipsoid Unimodal 0

F(5)/(Shifted rastrigin function) [57] Very complicated multimodal − 330

F(6)/(Shifted rotated rastrigin) [57] − 330

F(7)/(Rotated hybrid composition function) [57] − 120

Experiment

In order to verify the effectiveness of the proposed algorithm
SASPPE algorithm, this paper chooses to test the algorithm
with 7 test functions on 30D, 50D, and 100D.

Parameter description

Table 2 shows the test functions used for this experiment
and their parameters. F(5), F(6) and F(7) in Table 2 are
F(9), F(10) and F(16) in CEC2005 [57], respectively. The
algorithms that participated in the comparison were SAPPE,
PPE, RBFPSO, and SACOSO algorithms. All algorithms
demonstrate their performance on 30D, 50D, and 100D,
respectively. For a fair comparison, all algorithms were run
10 times independently on MATLAB 2020b, the number of
particles for all algorithms was set to 100, and the number of
real evaluations was 1000, which was also the condition for
the end of the whole algorithm. SAPPE, SASPPE and PPE
have the same parameters, please refer to PPE algorithm for
details of the parameters. The sample volumes generated by
SASPPE,SAPPE, RBFPSO and SACOSO using LHS are set
to 100 (for the 30D and 50D states) and 200 (for the 100D
state). The maximum iterations of the PPE and Sine-PPE
algorithms used in SAPPE and SASPPE are 200. However,
when the optimal value changes unchanged for 20 iterations,
the current search is ended, and the next search is performed.
The condition that the optimal value remains unchanged is
that the difference between the current and last evaluated
values is less than 1.00E−6.

Tables 3, 4, and 5 show the final results of all algorithms
on 30D, 50D, and 100D, respectively, and Figs. 3, 4, and 5
show the experimental comparison plots of all algorithms on
30D, 50D, and 100D.Where “Best” represents the best value
among all data, “Std.” represents the standard deviation of the
obtained data, and “Mean” represents the average of 10 runs.
Bolded font indicates that the value outperforms equivalent
types of data. Only themean values are bolded in this paper to
enhance the experimental persuasiveness. The “p” means the
result of theWilcoxon rank test at a 5% confidence level, “+”

indicates a significant differencewith theSASPPEalgorithm,
and “-” indicates no statistically significant advantage with
SASPPE.

Results

30D and 50D experiment results

From Tables 3 and 4, it is clear that SASPPE can achieve the
best on all function, whether it is the contingent “Best” or the
persuasive “Mean.” As shown in Table 3, the optimal value
of the SASPPE algorithm is closest to that of SAPPE on F(1),
F(3) and F(4) but closest to SACOSO and RBFPSO on the
other functions. The optimal value of SASPPE is close to the
ideal optimal value of 0 on F(2) and F(4), but the largest dif-
ference iswith the ideal value of−120onF(7).OnF(3), F(5),
and F(7), the optimal values of SASPPE are all 100 or even
200 smaller than the optimal values obtained from SAPPE.
Compared with “Std.”, the SASPPE algorithm is minimum
on F(1), F(2), F(3), F(4) and F(7); SACOSO is minimum on
F(5); SAPPE is minimum on F(6). It can be seen that the
SASPPE algorithm with the added surrogate model has the
best stability. As shown in Table 3, the SASPPE algorithm is
not significantly different from with RBFPSO only on F(5).
As shown in Table 4, the SASPPE algorithm does not differ
fromwith RBFPSO and SACOSO only on F(7). On 50D, the
SASPPEmean value is similar to 30D, and it still cannot win
on F(7). The value obtained by subtracting the mean value
of 50D from the mean value of 30D is defined as the “mean
difference”. The minimum “mean difference” is SASPPE on
all function. On F(1), the mean value of the PPE algorithm
on 50D is superior to that on 30D, and the SASPPE algo-
rithm has the largest “mean difference”. On f (2), only the
SAPPE algorithm’s “mean difference” less than 1, all other
algorithms are greater than 1 On F(3) and F(4), the “mean
difference” is smaller for SASPPE and is larger for the other
algorithms, even a hundred times that of SASPPE.The “mean
difference” of all functions on F(5) and F(6) is greater than
100. From the comparison of SASPPE,SAPPE andSACOSO
and PPE, RBFPSO, it can be seen that the addition of sur-

123

Complex & Intelligent Systems

Table 3 Table of experimental results for SASPPE, SAPPE, PPE, RBFPSO and SACOSO on F(1)–F(7) (30D)

F(x) Result Algorithm

SASPPE SAPPE SACOSO RBFPSO PPE

F(1) Mean 3.495526078 11.37248814 11.59342192 5.688499535 15.11612832

Best 2.564183526 9.565912046 9.720089526 4.464412136 14.8170328

Std 0.66145723 1.150136455 1.273984865 1.386538715 0.241443592

p + + + +

F(2) Mean 0.190447349 1.51649733 2.058770355 3.372291975 74.74007711

Best 0.090759209 1.09465208 1.312402714 2.260646666 66.21825556

Std 0.111155346 0.578627041 0.525284908 1.057300869 6.427753043

p + + + +

F(3) Mean 28.77810542 295.5495506 60.94190152 93.40133538 407.1258937

Best 27.04809394 165.6078974 35.35286441 32.01262967 357.5274613

Std 1.268688467 112.2856031 20.26145179 51.15019746 39.61284844

p + + + +

F(4) Mean 0.232769301 95.15189239 9.593160004 10.91116002 283.2476509

Best 0.019503099 24.62844044 5.345372731 3.931230087 260.7739141

Std 0.203343534 59.32376259 3.715983937 5.501803614 13.01531134

p + + + +

F(5) Mean − 175.8540334 − 37.9505387 − 23.79819711 − 145.3615498 38.55999165

Best − 275.2690174 − 118.7974381 − 50.39681654 − 212.0975493 24.53649519

Std 76.09037241 36.95909468 28.047353 63.79585548 12.01125887

p + + − +

F(6) Mean − 128.753451 − 0.680229669 36.0226557 − 43.55979841 280.5706386

Best − 185.9044089 − 57.62162386 − 26.68250829 − 100.247818 210.3075556

Std 44.20783831 31.313114 51.01355104 44.24715679 51.38921006

p + + + +

F(7) Mean 517.6558656 949.016479 732.7889183 537.5010761 1084.646434

Best 412.4021637 776.6725279 650.4101946 409.2779187 818.3790769

Std 79.49206449 129.6853859 55.61358267 88.28995299 119.2701856

p + + + +

rogate model has a better ability to find the optimal; from
the comparison of SASPPE and SACOSO and RBFPSO, it
can be seen that the choice of surrogate model affects the
stability of the algorithm, and the excellent surrogate model
can reduce the influence of the dimensionality on the algo-
rithm; from the comparison of SASPPE and SAPPE, it can
be seen that the addition of the chaotic model and the reason-
able clustering approach are conducive to the improvement
of the performance of surrogate model.

As can be seen from Figs. 3 and 4, the fitness func-
tion gradually converges as the number of true evaluations
increases. For a more intuitive demonstration of the conver-
gence performance of the algorithm, the fitness function is
taken logarithmically over F(1)–F(4). For the first 150 real
evaluations on all test functions, the SAPPE and SASPPE
algorithms are comparable in power, and their optimal values
are similar. However, as the number of evaluations increases,

the SASPPE algorithm gradually becomes more capable of
exploitation, and the convergence speed is much faster than
that of other algorithms. As can be seen from Fig. 3, the
SASPPE algorithm is highly exploitable on F(1), F(2), F(3),
F(4) and F(5). In particular, on F(1), the SASPPE algorithm
has the strongest development ability and the fastest con-
vergence speed, which is approximately linear descent. On
F(3), SASPPE converges faster in the first 600 evaluations
and tends to level off in the last 400 evaluations. However,
the SASPPE algorithm has beaten the other algorithms to
dominate at the 150 times evaluation. On F(6), the SASPPE
and SAPPE algorithms converge at equivalent rates, and
SASPPE, SAPPE and SACOSO start to level off after 300
times evaluation, and RBFPSO start to level off after 400
times evaluation. For the first 150 times On F(7), SASPPE
and RBFPSO converge at the same rate and both algorithms
have similar accuracy. Observing the minima of the seven

123

Complex & Intelligent Systems

Table 4 Table of experimental
results for SASPPE, SAPPE,
PPE, RBFPSO and SACOSO on
F(1)–F(7) (50D)

F(x) Result Algorithm

SASPPE SAPPE SACOSO RBFPSO PPE

F(1) Mean 8.136756987 11.54759197 13.7211638 11.67724597 14.79949636

Best 6.31072546 8.51439116 11.64830468 10.2865097 14.29194484

Std 1.433421276 1.228845944 1.26849451 1.208584052 0.289575483

p + + + +

F(2) Mean 0.908794101 2.165303283 11.58771051 45.45729197 119.5079959

Best 0.753096438 1.444559026 6.401010842 26.56627295 104.6702913

Std 0.074526596 0.884423297 4.159164723 19.52757593 7.223740252

p + + + +

F(3) Mean 51.12550687 491.0191017 160.9698412 345.3451634 674.4381343

Best 48.83888104 263.1311346 108.1424651 228.6849725 613.9892058

Std 2.534372038 209.0487382 55.05975278 77.98535235 51.28071258

p + + + +

F(4) Mean 0.937505614 273.3087799 96.49818992 270.6689957 804.7577376

Best 0.352205581 56.88392346 43.59496562 149.2887917 746.8562407

Std 0.332916428 158.3955588 40.53713783 81.46979935 32.63861387

p + + − +

F(5) Mean − 6.405052438 159.9170002 297.9124034 78.46398169 390.8806543

Best − 168.0282182 118.1537865 248.2339313 4.614425016 350.8829146

Std 107.8218163 33.11385837 54.80230389 58.48077352 33.24382459

p + + + +

F(6) Mean 156.8954833 312.1372693 518.081811 281.7386628 853.7998971

Best 87.14846476 223.6152599 440.5308302 153.9154277 755.7346373

Std 69.38952707 62.43818939 89.70486901 83.19332963 53.56049593

p + + + +

F(7) Mean 665.0302044 973.5573307 834.5379608 566.4987852 1222.955002

Best 576.0996301 875.7383486 659.2756053 470.9609286 1062.753565

Std 80.28213377 89.25147985 143.105016 48.14823989 93.01901489

p + − − +

graphs in Fig. 3, it can be seen that the SASPPE algorithm
wins with an absolute advantage on the F(1)–F(4) functions,
and is similar to RBFPSO on the last three functions. It wins
with a slight advantage on F(5) and F(6), and is similar to
RBFPSO on F(7).It is tentatively concluded that the SASPPE
algorithm has an advantage on single-peak, multiple-peak,
and some of the complex functions.

As can be seen from Fig. 4, the convergence performance
of theSASPPEalgorithmon50Dremains strong. heSASPPE
algorithm has much better convergence accuracy than the
other algorithms on F(1), F(3), and F(4), but the convergence
speed is not as fast as that of RBFPSO. As the number of
evaluations increases, the SAPPE algorithm cannot escape
the premature dilemma. In contrast, the SASPPE algorithm
can break through the current optimal value and continue to
converge until the end of the algorithm. On F(2) and F(5), the
SASPPE and SAPPE algorithm converges at a similar rate
and falls into a local optimum; however, after 400 evalua-

tions, the SASPPE algorithm jumps out of the local optimum
on F(2) and develops a new optimum. On F(6), the conver-
gence speed of the SASPPE algorithm and SAPPE algorithm
are similar, both tend to level off after 150 times, but the
convergence speed of SASPPE is still stronger than that of
SAPPE. On F(7), after 200 evaluations, RBFPSO is victo-
rious, and if only the first 200 evaluations are considered,
SASPPE can be victorious.

Overall, the SASPPE algorithm outperforms the other
algorithms on 30D and 50D, and from the above analysis,
it can be seen that the SASPPE algorithm will always win
in one way or another on F(1)–F(6), and can be defeated
by RBFPSO only on F(7). Combined with the graph and
table analysis, the SASPPE algorithm has a robust search
and exploitation ability to go beyond the local optimum to
find better results. Comparing the algorithms of SASPPE,
SAPPE, SACOSO andRBFPSOwith added surrogatemodel
and without added surrogate model, the algorithm with the

123

Complex & Intelligent Systems

Table 5 Table of experimental
results for SASPPE, PPE,
SAPPE, RBFPSO and SACOSO
on F(1)–F(7) (100D)

F(x) Result Algorithm

SASPPE SAPPE SACOSO RBFPSO PPE

F(1) Mean 9.442362995 11.57347181 15.64910137 17.94458103 14.56762335

Best 8.336888824 10.46181128 15.09038902 17.20787919 14.1472672

Std 0.890122 0.79709703 0.575625483 0.46529122 0.242770341

p + + + +

F(2) Mean 1.077061787 8.513216977 90.36093453 548.829582 224.9467053

Best 1.024010738 7.217047864 77.76201509 441.3434287 204.7090663

Std 0.032511431 0.966156631 10.51487776 87.91391828 12.16736

p + + + +

F(3) Mean 143.5768238 800.3801819 739.2665662 3420.067419 1340.917828

Best 110.901991 448.2791317 595.443892 2411.695801 1219.709836

Std 36.88060975 287.956134 83.65571453 751.9179497 76.59563541

p + + + +

F(4) Mean 30.29064781 855.768873 1288.20173 6720.074642 3059.168558

Best 16.86007898 152.9110936 899.5915251 4768.341461 2693.397759

Std 9.339881888 457.5665209 370.0078168 1310.513775 185.667625

p + + + +

F(5) Mean 749.1185524 1076.389719 1091.282224 816.499191 1238.616687

Best 552.2162366 914.6428098 993.9117639 632.0862516 1134.8732

Std 84.8901753 87.0913887 58.19489004 94.95449825 50.96456403

p + + − +

F(6) Mean 1110.363586 1445.188782 1728.9304 1770.394451 1947.751646

Best 998.7128332 1255.771899 1605.475128 1590.242232 1829.935291

Std 92.03230146 106.3165667 83.17541528 127.9197986 76.3228178

p + − + +

F(7) Mean 728.5847131 780.9697883 849.3243529 877.973152 1329.061813

Best 636.2621934 704.7497316 764.7152226 754.050824 1215.700809

Std 48.29671322 47.16623423 73.39628473 106.0217367 70.20123402

p + + +

added surrogate model has more advantages. Compared with
SASPPE and SAPPE, sine mapping and hierarchical cluster-
ing enhance the overall performance of the algorithm and
solve the problem that adding surrogate models can easily
fall into the local optimum.

100D experiment results

As can be seen from Table 5, SASPPE is not as dominant as
30D and 50D, especially on F(5) and F(6). Comparing the
mean values in Table 5, SASPPEwins on the F(1)–F(4), F(6)
and F(7) functions and is beaten by SAPPE on F(5)F(6). A
horizontal comparison of “Best” shows that SASPPE wins
on F(1)–F(5) and F(7), and SAPPE wins on F(6). Compar-
ing the “p” results in the table, we can see that RBFPSO is
not significantly different from SASPPE on F(5), SACOSO
is not significantly different from SASPPE on F(6), and all
other algorithms are significantly different from SASPPE.

On F(1), the mean result of the PPE algorithm is inversely
proportional to the dimensionality; the higher the dimension-
ality, the better the result, but it is not as good as SASPPE and
SAPPE. Compared with “Std.”, SASPPE is the smallest in
F(2), F(3), and F(4), and SAPPE gains an advantage in F(7);
PPE is the smallest in F(1) and F(5); SACOSO is the small-
est in F(6). It can be seen that the stability of the SASPPE
algorithm does not decrease as the dimensionality increases.

As shown in Fig. 5, SASPPE continues to converge on
F(1), F(5), and F(6), and continues to converge after sev-
eral smooth evaluations on F(2), F(3), F(4), and F(7). On
F(1), SAPPE achieves the optimal value in the early stage
of the algorithm. As the evaluation proceeds, the SASPPE
algorithm gradually catches up with the SAPPE algorithm
and achieves the final victory. On F(2), F(3), and F(4), the
SASPPE and SAPPE algorithms converge to the current
optimal value in the early stages of the algorithm.As the algo-
rithmproceeds, the SASPPEalgorithmcontinues to converge

123

Complex & Intelligent Systems

Fig. 3 Comparison of SASPPE,
SAPPE, PPE, RBFPSO and
SACOSO algorithms for
F(1)–F(7) (30D)

0 200 400 600 800 1000
Number of real evaluations(30D)

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

Tr
ue

 fi
tn

es
s

va
lu

e(
N

at
ur

al
 lo

ga
rit

hm
)

Ackley

SASPPE
SAPPE
PPE
RBFPSO
SACOSO

(a) F(1)

0 200 400 600 800 1000
Number of real evaluations(30D)

-2

-1

0

1

2

3

4

5

6

7

8

Tr
ue

 fi
tn

es
s

va
lu

e(
N

at
ur

al
 lo

ga
rit

hm
)

Griewank

SASPPE
SAPPE
PPE
RBFPSO
SACOSO

(b) F(2)

0 200 400 600 800 1000
Number of real evaluations(30D)

3

4

5

6

7

8

9

10

11

Tr
ue

 fi
tn

es
s

va
lu

e(
N

at
ur

al
 lo

ga
rit

hm
)

Rosenbrock

SASPPE
SAPPE
PPE
RBFPSO
SACOSO

(c) F(3)

0 200 400 600 800 1000
Number of real evaluations(30D)

-2

0

2

4

6

8

10

Tr
ue

 fi
tn

es
s

va
lu

e(
N

at
ur

al
 lo

ga
rit

hm
)

Ellipsoid

SASPPE
SAPPE
PPE
RBFPSO
SACOSO

(d) F(4)

0 200 400 600 800 1000
Number of real evaluations(30D)

-200

-100

0

100

200

300

400

500

600

700

800

Tr
ue

 fi
tn

es
s

va
lu

e

Shifted Rastrigin Function(CEC2005 F9)

SASPPE
SAPPE
PPE
RBFPSO
SACOSO

(e) F(5)

0 200 400 600 800 1000
Number of real evaluations(30D)

-500

0

500

1000

1500

2000

2500
Tr

ue
 fi

tn
es

s
va

lu
e

Shifted Rotate Rastrigin(CEC2005 F10)

SASPPE
SAPPE
PPE
RBFPSO
SACOSO

(f) F(6)

0 200 400 600 800 1000
Number of real evaluations(30D)

500

1000

1500

2000

2500

3000

Tr
ue

 fi
tn

es
s

va
lu

e

Rotated Hybrid Composition Function(CEC2005 F16)

SASPPE
SAPPE
PPE
RBFPSO
SACOSO

(g) F(7)

19

123

Complex & Intelligent Systems

Fig. 4 Comparison of SASPPE,
SAPPE, PPE, RBFPSO and
SACOSO algorithms for
F(1)–F(7) (50D)

0 200 400 600 800 1000
Number of real evaluations(50D)

2

2.2

2.4

2.6

2.8

3

3.2

Tr
ue

 fi
tn

es
s

va
lu

e(
N

at
ur

al
 lo

ga
rit

hm
)

Ackley

SASPPE
SAPPE
PPE
RBFPSO
SACOSO

(a) F(1)

0 200 400 600 800 1000
Number of real evaluations(50D)

-1

0

1

2

3

4

5

6

7

8

Tr
ue

 fi
tn

es
s

va
lu

e(
N

at
ur

al
 lo

ga
rit

hm
)

Griewank

SASPPE
SAPPE
PPE
RBFPSO
SACOSO

(b) F(2)

0 200 400 600 800 1000
Number of real evaluations(50D)

3

4

5

6

7

8

9

10

11

Tr
ue

 fi
tn

es
s

va
lu

e(
N

at
ur

al
 lo

ga
rit

hm
)

Rosenbrock

SASPPE
SAPPE
PPE
RBFPSO
SACOSO

(c) F(3)

0 200 400 600 800 1000
Number of real evaluations(50D)

-2

0

2

4

6

8

10

Tr
ue

 fi
tn

es
s

va
lu

e(
N

at
ur

al
 lo

ga
rit

hm
)

Ellipsoid

SASPPE
SAPPE
PPE
RBFPSO
SACOSO

(d) F(4)

0 200 400 600 800 1000
Number of real evaluations(50D)

-200

0

200

400

600

800

1000

1200

1400

Tr
ue

 fi
tn

es
s

va
lu

e

Shifted Rastrigin Function(CEC2005 F9)

SASPPE
SAPPE
PPE
RBFPSO
SACOSO

(e) F(5)

0 200 400 600 800 1000
Number of real evaluations(50D)

0

500

1000

1500

2000

2500

3000

3500
Tr

ue
 fi

tn
es

s
va

lu
e

Shifted Rotate Rastrigin(CEC2005 F10)

SASPPE
SAPPE
PPE
RBFPSO
SACOSO

(f) F(6)

0 200 400 600 800 1000
Number of real evaluations(50D)

500

1000

1500

2000

2500

3000

Tr
ue

 fi
tn

es
s

va
lu

e

Rotated Hybrid Composition Function(CEC2005 F16)

SASPPE
SAPPE
PPE
RBFPSO
SACOSO

(g) F(7)

21

123

Complex & Intelligent Systems

Fig. 5 Comparison of SASPPE,
SAPPE, PPE, RBFPSO and
SACOSO algorithms for
F(1)–F(7) (100D)

0 200 400 600 800 1000
Number of real evaluations(100D)

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

Tr
ue

 fi
tn

es
s

va
lu

e(
N

at
ur

al
 lo

ga
rit

hm
)

Ackley

SASPPE
SAPPE
PPE
RBFPSO
SACOSO

(a) F(1)

0 200 400 600 800 1000
Number of real evaluations(100D)

0

1

2

3

4

5

6

7

8

9

Tr
ue

 fi
tn

es
s

va
lu

e(
N

at
ur

al
 lo

ga
rit

hm
)

Griewank

SASPPE
SAPPE
PPE
RBFPSO
SACOSO

(b) F(2)

0 200 400 600 800 1000
Number of real evaluations(100D)

4

5

6

7

8

9

10

11

12

Tr
ue

 fi
tn

es
s

va
lu

e(
N

at
ur

al
 lo

ga
rit

hm
)

Rosenbrock

SASPPE
SAPPE
PPE
RBFPSO
SACOSO

(c) F(3)

0 200 400 600 800 1000
Number of real evaluations(100D)

3

4

5

6

7

8

9

10

11

Tr
ue

 fi
tn

es
s

va
lu

e(
N

at
ur

al
 lo

ga
rit

hm
)

Ellipsoid

SASPPE
SAPPE
PPE
RBFPSO
SACOSO

(d) F(4)

0 200 400 600 800 1000
Number of real evaluations(100D)

6.6

6.8

7

7.2

7.4

7.6

7.8

8

8.2

8.4

Tr
ue

 fi
tn

es
s

va
lu

e(
N

at
ur

al
 lo

ga
rit

hm
)

Shifted Rastrigin Function(CEC2005 F9)

SASPPE
SAPPE
PPE
RBFPSO
SACOSO

(e) F(5)

0 200 400 600 800 1000
Number of real evaluations(100D)

7

7.2

7.4

7.6

7.8

8

8.2

8.4

8.6

Tr
ue

 fi
tn

es
s

va
lu

e(
N

at
ur

al
 lo

ga
rit

hm
)

Shifted Rotate Rastrigin(CEC2005 F10)

SASPPE
SAPPE
PPE
RBFPSO
SACOSO

(f) F(6)

0 200 400 600 800 1000
Number of real evaluations(100D)

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

Tr
ue

 fi
tn

es
s

va
lu

e(
N

at
ur

al
 lo

ga
rit

hm
)

Rotated Hybrid Composition Function(CEC2005 F16)

SASPPE
SAPPE
PPE
RBFPSO
SACOSO

(g) F(7)

25

123

Complex & Intelligent Systems

after approximately 600, 550, and 450 evaluations, respec-
tively and successfully beats SAPPE. From Fig. 6e, it can
be guessed that by increasing the number of evaluations, the
SASPPE algorithm can catch up and catch up with SAPPE.
On F(5), the SAPPE algorithm wins but matures too early
and does not converge as well as the SASPPE algorithm.
On F(6), the convergence rate of the SASPPE algorithm
and the SAPPE algorithm gradually decreases and eventually
plateaus after 150 evaluations. On F(5) and F(6), SASPPE
converges to a better optimum than SAPPE, and SASPPE
always has a better optimum than SAPPE for the same num-
ber of true evaluations. On F(7), the strength of the SASPPE
algorithm and SAPPE algorithm are comparable, but the
SASPPE algorithm catches up with the SAPPE algorithm
at 600 evaluations by its characteristics.As the dimensions
increase, the SASPPE algorithm gradually loses its advan-
tage in the F(7) algorithm.

In conclusion,when the dimension is 100, the convergence
performance advantage does not decrease from30Dand50D.
OnF(1)–F(4), the SASPPEalgorithmalwayswinswith abso-
lute advantage, and on F(7), the advantage of the SASPPE
algorithm is gradually lost as the number of dimensions
increases. On F(5) and F(6), the advantage of SASPPE algo-
rithm is most obvious at 50D. However, SAPPE, SASPPE,
SACOSO and RBFPSO outperform the other algorithms by
enhancing exploration and exploitation through surrogate
models. Adding sinusoidal mapping enhances population
diversity, avoids premature maturation of the algorithms,
and increases their probability of winning. Comparing the
three dimensions, it can be seen that SASPPE has the high-
est optimal value and stability. It is not prone to fall into
local optimality in any dimension. The next best algorithm
is SAPPE. it can be seen that the application of the agent
model is reasonable and the sinusoidal mapping and hierar-
chical clustering are effective. No single algorithm is suitable
for all problems and the fact that the SASPPE algorithm con-
sistently prevails on most functions is enough to show that
the proposed algorithm SASPPE is feasible.

Stability analysis

Analysing Figs. 6, 7, and 8 shows that the SASPPE algorithm
is themost stable. Regardless of that dimension, the SASPPE
algorithm obtains absolute advantage on F(2)–F(4). On F(5),
the SASPPE algorithm is poorly stable on 30D and 50D,
but stable on 100D. On 30D, on F(1), the SASPPE algo-
rithm is stable and the worst value is better than the optimal
value of SAPPE andSACOSO,while theRBFPSOalgorithm
has deviating values and poor stability. With the increase of
dimension, all algorithms can get better stability on F(7),
and the advantage of SASPPE algorithm on F(6) gradu-
ally increases. However, the SASPPE algorithm is prone to
deviating values on the complex function on 50D, which is

prone to chance. On 100D, RBFPSO performs the worst and
SACOSO is stable although it does not obtain the optimum
value. Overall, the SASPPE algorithm has an advantage over
other algorithms in terms of stability.

Empirical analysis of the computational complexity

The computational complexity of the various algorithms
varies depending on the composition of the algorithms. The
computational complexity of the SASPPE algorithm consists
mainly of the actual evaluation time and the time required to
train the model. Table 6 shows the computational time of
this algorithm and the comparison algorithm on 30D, 50D
and 100D respectively. It is easy to see from the table that
the PPE algorithm is the most time efficient, this is because
PPE does not need to construct a model, only the actual
evaluation time. The SAPPE and SACOSO algorithms take
more time than the SASPPE algorithm due to the fact that
SAPPE and SACOSO do not use clustering and construct
larger, more time-consuming models. Comparing RBFPSO,
the SASPPE algorithm takes longer time, this is because the
SASPPE algorithm has more training time for multiple local
agent models than the RBFPSO algorithm. Comparing 100D
and 30D shows that the algorithm increases the computation
time due to the increase in dimensionality. The PPE algo-
rithm has an insignificant increase in time on F(1)–F(4) and
a significant increase in time on F(5)–F(7) complex functions
by a factor of almost 20, while the SASPPE algorithm has an
insignificant increase in time. Based on the above findings,
it is not difficult to conclude that when the problem evalua-
tion is relatively complex, most of the time consumed by the
algorithm will be taken up by the fitness evaluation. When
the problem size is relatively large, the actual evaluation is
more time-consuming. Therefore, the time spent on RBFN
model training prediction building is acceptable.

3D coverage of removable nodes

From the above experimental results, it is clear that the algo-
rithm SASPPE proposed in this paper is effective, but it has
yet to be tested in terms of practical applications. In this chap-
ter, SASPPE is applied to 3D coverage of movable nodes to
check the performance of the algorithm in practical applica-
tions.

Parameter settings

This paper uses a combination of random coverage and fixed
mobile nodes to meet the dual objectives of low cost and
high coverage efficiency. First, the sensor nodes are deployed
randomly. Then, the coverage of the current position of the
node is compared with the coverage of the place to bemoved.

123

Complex & Intelligent Systems

Fig. 6 Comparison of boxplots
of the five algorithms for
F(1)–F(7) (50D)

SAHPPE SAPPE SACOSO RBFPSO PPE
Algorithm

6

7

8

9

10

11

12

13

14

15

Fi
tn

es
s

va
lu

e

Ackley

(a) F(1)

SAHPPE SAPPE SACOSO RBFPSO PPE
Algorithm

0

20

40

60

80

100

120

Fi
tn

es
s

va
lu

e

Griewank

(b) F(2)

SAHPPE SAPPE SACOSO RBFPSO PPE
Algorithm

100

200

300

400

500

600

700

800

900

1000

Fi
tn

es
s

va
lu

e

Rosenbrock

(c) F(3)

SAHPPE SAPPE SACOSO RBFPSO PPE
Algorithm

0

100

200

300

400

500

600

700

800

900

Fi
tn

es
s

va
lu

e

Ellipsoid

(d) F(4)

SAHPPE SAPPE SACOSO RBFPSO PPE
Algorithm

-100

0

100

200

300

400

Fi
tn

es
s

va
lu

e

Shifted Rastrigin Function(CEC2005 F9)

(e) F(5)

SAHPPE SAPPE SACOSO RBFPSO PPE
Algorithm

100

200

300

400

500

600

700

800

900
Fi

tn
es

s
va

lu
e

Shifted Rotate Rastrigin(CEC2005 F10)

(f) F(6)

SAHPPE SAPPE SACOSO RBFPSO PPE
Algorithm

500

600

700

800

900

1000

1100

1200

1300

1400

Fi
tn

es
s

va
lu

e

Rotated Hybrid Composition Function(CEC2005 F16)

(g) F(7)

22

123

Complex & Intelligent Systems

Fig. 7 Comparison of boxplots
of the five algorithms for
F(1)–F(7) (30D)

SAHPPE SAPPE SACOSO RBFPSO PPE
Algorithm

2

4

6

8

10

12

14

16

Fi
tn

es
s

va
lu

e

Ackley

(a) F(1)

SAHPPE SAPPE SACOSO RBFPSO PPE
Algorithm

0

10

20

30

40

50

60

70

80

Fi
tn

es
s

va
lu

e

Griewank

(b) F(2)

SAHPPE SAPPE SACOSO RBFPSO PPE
Algorithm

50

100

150

200

250

300

350

400

450

Fi
tn

es
s

va
lu

e
Rosenbrock

(c) F(3)

SAHPPE SAPPE SACOSO RBFPSO PPE
Algorithm

0

50

100

150

200

250

300

Fi
tn

es
s

va
lu

e

Ellipsoid

(d) F(4)

SAHPPE SAPPE SACOSO RBFPSO PPE
Algorithm

-250

-200

-150

-100

-50

0

50

Fi
tn

es
s

va
lu

e

Shifted Rastrigin Function(CEC2005 F9)

(e) F(5)

SAHPPE SAPPE SACOSO RBFPSO PPE
Algorithm

-200

-100

0

100

200

300

400

Fi
tn

es
s

va
lu

e

Shifted Rotate Rastrigin(CEC2005 F10)

(f) F(6)

SAHPPE SAPPE SACOSO RBFPSO PPE
Algorithm

400

500

600

700

800

900

1000

1100

1200

Fi
tn

es
s

va
lu

e

Rotated Hybrid Composition Function(CEC2005 F16)

(g) F(7)

20

123

Complex & Intelligent Systems

Fig. 8 Comparison of boxplots
of the five algorithms for
F(1)–F(7) (100D)

SAHPPE SAPPE SACOSO RBFPSO PPE
8

10

12

14

16

18

Ackley

(a) F(1)

SAHPPE SAPPE SACOSO RBFPSO PPE

0

100

200

300

400

500

600

700
Griewank

(b) F(2)

SAHPPE SAPPE SACOSO RBFPSO PPE
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Rosenbrock

(c) F(3)

SAHPPE SAPPE SACOSO RBFPSO PPE

0

1000

2000

3000

4000

5000

6000

7000

8000

Ellipsoid

(d) F(4)

SAHPPE SAPPE SACOSO RBFPSO PPE

600

700

800

900

1000

1100

1200

1300

Shifted Rastrigin Function(CEC2005 F9)

(e) F(5)

SAHPPE SAPPE SACOSO RBFPSO PPE

1000

1200

1400

1600

1800

2000

Shifted Rotate Rastrigin(CEC2005 F10)

(f) F(6)

SAHPPE SAPPE SACOSO RBFPSO PPE
600

700

800

900

1000

1100

1200

1300

1400

Rotated Hybrid Composition Function(CEC2005 F16)

(g) F(7)

26

123

Complex & Intelligent Systems

Table 6 Average calculation time required for 1000 fitness evaluations of the compared algorithms in 30D, 50D and 100D problems

Dimension Algorithm F(1) F(2) F(3) F(4) F(5) F(6) F(7)

30 SASPPE 1.47E+01 2.23E+01 1.91E+01 2.09E+01 2.27E+01 2.63E+01 1.57E+01

SAPPE 5.58E+02 5.60E+02 5.64E+02 5.63E+02 5.70E+02 5.45E+02 5.76E+02

SACOSO 2.63E+02 1.06E+02 1.46E+02 7.12E+01 1.90E+02 2.09E+02 1.54E+02

RBFPSO 2.08E+00 1.66E+00 1.62E+00 1.61E+00 3.46E+00 3.11E+00 5.81E+00

PPE 9.70E−02 8.58E−02 8.32E−02 8.81E−02 3.85E+00 1.01E+00 3.71E+00

50 SASPPE 3.46E+01 2.45E+01 3.51E+01 3.08E+01 3.17E+01 3.59E+01 3.19E+01

SAPPE 5.85E+02 5.97E+02 5.74E+02 5.77E+02 5.75E+02 5.80E+02 5.97E+02

SACOSO 1.80E+02 6.25E+01 8.54E+01 6.59E+01 2.51E+02 2.35E+02 2.34E+02

RBFPSO 2.58E+00 2.07E+00 1.59E+00 1.55E+00 2.59E+00 2.83E+00 6.10E+00

PPE 8.40E−02 8.35E−02 8.41E−02 8.29E−02 3.80E+00 9.90E−01 3.77E+00

100 SASPPE 3.77E+01 3.81E+01 2.81E+01 3.32E+01 4.00E+01 7.24E+01 3.86E+01

SAPPE 5.61E+02 5.61E+02 5.63E+02 5.59E+02 5.62E+02 5.86E+02 5.62E+02

SACOSO 2.64E+02 7.72E+01 1.03E+02 7.49E+01 1.97E+02 1.87E+02 2.00E+02

RBFPSO 1.82E+00 1.53E+00 1.64E+00 1.65E+00 3.96E+00 1.18E+01 5.96E+01

PPE 9.09E−02 9.14E−02 8.66E−02 8.67E−02 5.49E+01 5.82E+00 5.47E+01

Table 7 3D coverage parameter
design for movable nodes

Algorithm Parameter design N R Rs

PPE Np = 100; Dim = N * 2;Iteration = 1000 30, 40 3, 5, 7 Rs = R/2; Rs = Rs + 1

PSO

PPSO

SASPPE

If the coverage of the position to be moved is smaller at this
time, the node is moved to that location. Conversely, it is not
moved. At last, the covered area is set to 1 to increase the
network coverage. The energy of each movable sensor node
is a constant value E . Each time it moves a distance d, the
energy consumed is E(d). The method to determine whether
the node should be moved is as follows.

1. Convert 3D actual scenes into 2D.
2. Define the search length Rs (R/2) to search in the four

directions of node P .
3. If it is found that the coverage increases by moving to a

location, move the node to that location, and conversely,
increase the search length Rs to Rs+1 and search again.

4. If the node is searched G times and still cannot be
searched, the move is abandoned.

The application scene used in this paper is a 50×50 hill, and
its simulation is shown in Fig. 1b. The values of the required
parameters in this chapter are shown below. All experiments
were run10 times independently and averaged to avoid exper-
imental chance.

Table 8 Coverage comparison table of SASPPE, PPE, PSO, PPSO

R N Algorithm

PPE PSO PPSO SASPPE

3 30 12.188 16.616 16.6 17.384

40 16.148 20.872 20.956 22.532

5 30 38.92 57.548 56.78 59.284

40 48.236 66.136 65.172 68.228

7 30 63.324 85.184 86.168 86.948

40 74.324 91.664 91.592 92.572

The result indicates the coverage of the algorithm under specific con-
ditions. For example, 12.188 indicates that the average coverage of the
PPE algorithm is 12.188% when the sensing radius is 3 and the number
of nodes is 30

Results

Table 8 shows the results of SASPPE, PPE, PSO, and PPSO
algorithms applied to the 3D coverage of removable nodes.
As can be seen in Table 8, the SASPPE has the strongest
coverage capability. When the sensor node sensing radius is
3, and the number of nodes is 30, its coverage is only 0.768
higher than PSO, and when the number of nodes increases
to 40, its coverage is 1.576 higher than PPSO. When the

123

Complex & Intelligent Systems

17.384

59.284

86.948

R=3 R=5 R=7
N = 30

0

10

20

30

40

50

60

70

80

90
C

ov
er

ag
e

ra
te

(%
)

SASPPE
PSO
PPSO
PPE

(a) N=30

22.532

68.228

92.572

R=3 R=5 R=7
N = 40

0

10

20

30

40

50

60

70

80

90

100

C
ov

er
ag

e
ra

te
(%

)

SASPPE
PSO
PPSO
PPE

(b) N=40

Fig. 9 Coverage comparison table of SASPPE, PPE, PSO, PPSO

sensing radius of the nodes is 5, the SASPPE algorithm has
the greatest advantage and the greatest difference from other
algorithms, especially when the number of nodes is 30. The
difference with the suboptimal coverage is 2.504. When the
sensing radius of the sensors is 5, it is recommended to use 30
sensor nodes when the cost of sensors is considered. When
the sensor node sensing radius is 7, the difference between
the SASPPE algorithm’s and PPSO and PSO is insignificant
due to too little uncovered area. To observe the coverage gap
of all algorithms more visually, a histogram of coverage is
provided in this paper. As shown in Fig. 9, SASPPE wins by
a narrow margin among all algorithms, the PPE algorithm
is the worst among all algorithms, and PPSO and PSO are
comparable in capability. Comparing the twographs in Fig. 9,
it can be found that when the radius is the same, the more
nodes, the greater the coverage.When the nodes are the same,
the larger the radius, the more extensive the coverage.

Conclusion and future work

This paper proposes a method to enhance network cover-
age using mobile sensor nodes. All nodes in the network are
mobile; however, to reduce energy consumption, nodes need
to determine whether they should move before they do so.
This not only reduces the energy consumption of the nodes
but also maximizes the lifetime of the sensor nodes. The
paper proposes a surrogate-assisted sine Phasmatodea pop-
ulation evolution algorithm to maximize network coverage.
TheGSAMsmoothoverall algorithm is used in this algorithm
to ensure the search capability of the algorithm. This paper
usesmultiple LSAMs to develop the region in depth at a local

scale, trying to find even better results. To better find the opti-
mal value, GSAM, and LSAM use the same database, saving
time and cost overhead. Using agglomerative hierarchical
clustering to divide multiple LSAMs ensures the robustness
of each LSAM. Sine mapping is added to LSAM to enhance
the randomness of the algorithm. The algorithm was tested
in 7 test functions in three dimensions and the results showed
the feasibility of the algorithm is the algorithm. The proposed
algorithm has the highest number of functions obtaining the
optimum value on 30D, 50D and 100D and only on 50D the
advantage is lost on F(7). The algorithm is applied to the 3D
coverage of mobile nodes, and the experimental results show
that the SASPPE has the highest coverage rate. The improved
algorithm is at least 5.196% higher than the original PPE
algorithm. However, this experiment leaves something to be
desired. It consumes some energy to determine whether a
nodemoves and themovement is fixed and can only bemoved
around it. The proposed algorithm SASPPE is only applied
to the 3D coverage of movable nodes, and its effectiveness
in other scenes is unknown. We hope the algorithm performs
more robustly and the nodes move more rationally.

Funding The work is supported in part by the Natural Science Foun-
dation of Shandong Province under Grant ZR2023MF109.

Data availability Data available on request from the authors.

Declarations

Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

123

Complex & Intelligent Systems

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. SunY, ZhangL, FengG et al (2019)Ant colony optimization. IEEE
Internet Things J 6(3):5791–5802

2. Jaiswal SK,DwivediAK (2023)A security and application ofwire-
less sensor network: a comprehensive study. In: 2023 International
conference on IoT, communication and automation technology
(ICICAT), pp 1–5

3. Boubrima A, Bechkit W, Rivano H (2017) Optimal WSN deploy-
ment models for air pollution monitoring. IEEE Internet Things J
16(5):2723–2735

4. Cao L, Yue Y, Cai Y, Zhang Y (2021) A novel coverage optimiza-
tion strategy for heterogeneous wireless sensor networks based on
connectivity and reliability. IEEE Access 9:18424–18442

5. Ayadi H, Zouinkhi A, Boussaid B et al (2016) Energy efficiency in
WSN: IEEE 802.15.4. In: 2016 17th International conference on
sciences and techniques of automatic control and computer engi-
neering (STA), Sousse, pp 766–771

6. Narayan Vipul, Daniel AK, Chaturvedi Pooja (2023) E-FEERP:
enhanced fuzzy based energy efficient routing protocol for wireless
sensor network. Wirel Pers Commun 131:371–398

7. Tripathi A, Gupta HP, Dutta T et al (2018) Coverage and connec-
tivity in WSNS: a survey, research issues and challenges. IEEE
Access 6:26971–26992

8. Amutha J, Sharma S, Nagar J (2020) WSN strategies based on
sensors, deployment, sensing models, coverage and energy effi-
ciency: review, approaches and open issues. Wirel Pers Commun
111:1089–1115

9. Elhabyan R, Shi W, St-Hilaire M (2019) Coverage protocols for
wireless sensor networks: review and future directions. J Commun
Netw 21(1):45–60

10. Yarinezhad R, Hashemi SN (2023) A sensor deployment approach
for target coverage problem inwireless sensor networks. J Ambient
Intell Humaniz Comput 14(5):5941–5956

11. WangL,WuW,Qi J, JiaZ (2018)Wireless sensor network coverage
optimization based on whale group algorithm. Comput Sci Inf Syst
15(3):569–583

12. Farsi M, Elhosseini MA, BadawyM et al (2019) Deployment tech-
niques in wireless sensor networks, coverage and connectivity: a
survey. IEEE Access 7:28940–28954

13. Sangaiah AK, Sadeghilalimi M, Hosseinabadi AAR, Zhang W
(2019) Energy consumption in point-coverage wireless sensor net-
works via bat algorithm. IEEE Access 7:180258–180269

14. ElhosenyM, TharwatA,YuanX,HassanienAE (2018)Optimizing
k-coverage of mobile WSNs. Expert Syst Appl 92:142–153

15. Chen M, Xu A, Wang X (2019) Wireless sensor network energy
efficient coverage method based on intelligent optimization algo-
rithm. Discrete Contin Dyn Syst S 124&5:887–900

16. Mohamed SM, Hamza HS, Saroit IA (2017) Coverage in mobile
wireless sensor networks (M-WSN): a survey. Comput Commun
110:133–150

17. Tang J, Liu G, Pan Q (2021) A review on representative swarm
intelligence algorithms for solving optimization problems: appli-
cations and trends. IEEE/CAA J Autom Sin 8(10):1627–1643

18. Tsai CW, Hong TP, Shiu GN (2016) Metaheuristics for the lifetime
of WSN: a review. IEEE Sens J 16(9):2812–2831

19. Kaur S, Mahajan R (2018) Hybrid meta-heuristic optimization
based energy efficient protocol for wireless sensor networks. Egypt
Inf J 16(3):145–150

20. Mirjalili S,Mirjalili SM, Lewis A (2014) Greywolf optimizer. Adv
Eng Softw 69:46–61

21. Mirjalili S, LewisA (2016) Thewhale optimization algorithm.Adv
Eng Softw 95:51–67

22. Song PC, Chu SC, Pan JS, Yang H (2020) Phasmatodea popula-
tion evolution algorithm and its application in length-changeable
incremental extreme learning machine. In: 2020 2nd International
conference on industrial artificial intelligence (IAI), Shenyang, pp
1–5

23. Wu TY, Li HN, Chu SC (2023) CPPE: an improved Phasmatodea
population evolution algorithm with chaotic maps. Mathematics
11(9):1977

24. Song PC, Chu SC, Pan JS, Yang H (2021) The Phasmatodea popu-
lation evolution algorithm and its application in 5G heterogeneous
network downlink power allocation problem. J Internet Technol
22(6):1199–1213

25. Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–73
26. Kennedy J, Eberhart R (1995) Particle swarmoptimization. In: Pro-

ceedings of ICNN’95-international conference on neural networks.
IEEE, pp 1942–1948

27. Kuo RJ, Li SS (2023) Applying particle swarm optimization
algorithm-based collaborative filtering recommender system con-
sidering rating and review. Appl Soft Comput 135:110038

28. Dereli S, Köker R (2021) Strengthening the PSO algorithm with a
new technique inspired by the golf game and solving the complex
engineering problem. Complex Intell Syst 7(3):1515–1526

29. PriceKV (2013)Differential evolution. Handbook of optimization:
from classical to modern approach. Springer, Berlin, pp 187–214

30. HousseinEH,HosneyME,OlivaDet al (2023)Anefficient discrete
rat swarm optimizer for global optimization and feature selection
in chemoinformatics. Knowl Based Syst 275:110697

31. Liang JH, Oh C, Mathew M et al (2018) Machine learning-based
restart policy for CDCL sat solvers. In: Theory and applications of
satisfiability testing–SAT 2018: 21st international conference, SAT
2018, Held as part of the federated logic conference, FloC 2018,
Oxford, UK, July 9–12, 2018, Proceedings 21, pp 94–110

32. MaL,ChengS, ShiY (2020)Enhancing learning efficiency of brain
stormoptimizationvia orthogonal learningdesign. IEEETransSyst
Man Cybern Syst 51(11):6723–6742

33. Lu J, Behbood V, Hao P et al (2015) Transfer learning using com-
putational intelligence: a survey. Knowl Based Syst 80:14–23

34. LiangLL,DuZG,ShiehCSet al (2022)AnewPPEalgorithmbased
on parallel communication strategy. In: Advances in intelligent
information hiding and multimedia signal processing: proceeding
of the IIH-MSP 2021 and FITAT 2021, Kaohsiung, pp 289–298

35. Zhu Y, Yan F, Pan JS et al (2022) Mutigroup-based Phasmatodea
population evolution algorithm with multistrategy for IoT electric
bus scheduling. In: Wireless communications and mobile comput-
ing 2022

36. Li C, Feng B, Li S et al (2019) Dynamic analysis of digital chaotic
maps via state-mapping networks. IEEE Trans Circ Syst I Regul
Pap 66(6):2322–2335

37. Hua Z, Zhou Y (2019) Exponential chaotic model for generating
robust chaos. IEEE Trans Syst Man Cybern Syst 51(6):3713–3724

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Complex & Intelligent Systems

38. Varol Altay E, Alatas B (2019) Bird swarm algorithmswith chaotic
mapping. Artif Intell Rev 53:1373–1414

39. Han ZH (2012) Hierarchical kriging model for variable-fidelity
surrogate modeling. AIAA J 50(9):1885–1896

40. Yu H, Tan Y, Zeng J et al (2018) Surrogate-assisted hierarchical
particle swarm optimization. Inf Sci 454:59–72

41. Cheng K, Lu Z, Ling C, Zhou S (2014) Surrogate-assisted
global sensitivity analysis: an overview. Struct Multidiscip Optim
61:1187–1213

42. Eason J, Cremaschi S (2014) Adaptive sequential sampling for
surrogatemodel generationwith artificial neural networks. Comput
Chem Eng 68:220–232

43. Tahkola M, Keränen J, Sedov D et al (2023) Surrogate modeling
of electrical machine torque using artificial neural networks. IEEE
Access 8:220027–220045

44. Pan JS, Zhang LG, Chu SC et al (2023) Surrogate-assisted hybrid
meta-heuristic algorithm with an add-point strategy for a wireless
sensor network. Entropy 25(2):317–2023

45. Razavi S, Tolson BA, Burn DH (2012) Review of surrogate mod-
eling in water resources. Water Resour Res 48(7):2012

46. Sun C, Jin Y, Cheng R et al (2017) Surrogate-assisted coopera-
tive swarm optimization of high-dimensional expensive problems.
IEEE Trans Evol Comput 21(4):644–660

47. WuM,WangL,Xu J et al (2022)Adaptive surrogate-assistedmulti-
objective evolutionary algorithm using an efficient infill technique.
Swarm Evol Comput 75:101170

48. Regis RG (2014) Particle swarm with radial basis function sur-
rogates for expensive black-box optimization. J Comput Sci
5(1):12–23

49. Liang LL, Chu SC, Du ZG, Pan JS (2023) Surrogate-assisted Phas-
matodea population evolution algorithm applied to wireless sensor
networks. Wirel Netw 29(2):673-675

50. Gu Q, Wang Q, Li X, Li X (2021) A surrogate-assisted
multi-objective particle swarm optimization of expensive con-
strained combinatorial optimization problems. Knowl Based Syst
223:107049

51. Ji X, Zhang Y, Gong D, Sun X (2021) Dual-surrogate-assisted
cooperative particle swarm optimization for expensive multimodal
problems. IEEE Trans Evol Comput 25(4):794–808

52. Altan A, Karasu S, Bekiros S (2019) Digital currency forecasting
with chaotic meta-heuristic bio-inspired signal processing tech-
niques. Chaos Solitons Fractals 126:325–336

53. Syama S, Ramprabhakar J, Anand R et al (2023) A hybrid extreme
learning machine model with Lévy flight chaotic whale optimiza-
tion algorithm for wind speed forecasting. Results Eng 19:10124

54. Ran XC, Xi Y, Lu YG et al (2023) Comprehensive survey on hier-
archical clustering algorithms and the recent developments. Artif
Intell Rev 56(8):8219–8264

55. BrzozowskiŁ, SiudemG,GagolewskiM(2023)Community detec-
tion in complex networks via node similarity, graph representation
learning, and hierarchical clustering. arXiv preprint 56(8):8219–
8264. arXiv:2303.12212

56. Dogan A, Birant D (2022) K-centroid link: a novel hierarchical
clustering linkage method. Appl Intell 52:1–24

57. Suganthan PN, HansenN, Liang JJ et al (2005) Problem definitions
and evaluation criteria for the CEC 2005 special session on real-
parameter optimization. KanGALRep 2005005(2005):2005–2005

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/2303.12212

	Surrogate-assisted sine Phasmatodea population evolution algorithm applied to 3D coverage of mobile nodes
	Abstract
	Introduction
	Related work
	Wireless sensor networks
	Radial basis function networks
	PPE algorithm
	Chaotic model
	Hierarchical clustering

	The proposed algorithm
	Local surrogate-assisted model
	Sine-PPE algorithm

	Global surrogate-assisted model
	The entire algorithm (SASPPE)

	Experiment
	Parameter description
	Results
	30D and 50D experiment results
	100D experiment results
	Stability analysis
	Empirical analysis of the computational complexity

	3D coverage of removable nodes
	Parameter settings
	Results

	Conclusion and future work
	References

