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Abstract
The camouflaged object segmentation model (COSM) has recently gained substantial attention due to its remarkable ability
to detect camouflaged objects. Nevertheless, deep vision models are widely acknowledged to be susceptible to adversarial
examples, which can mislead models, causing them to make incorrect predictions through imperceptible perturbations. The
vulnerability to adversarial attacks raises significant concerns when deploying COSM in security-sensitive applications.
Consequently, it is crucial to determine whether the foundational vision model COSM is also susceptible to such attacks.
To our knowledge, our work represents the first exploration of strategies for targeting COSM with adversarial examples
in the digital world. With the primary objective of reversing the predictions for both masked objects and backgrounds, we
explore the adversarial robustness of COSM in full white-box and black-box settings. In addition to the primary objective of
reversing the predictions for masked objects and backgrounds, our investigation reveals the potential to generate any desired
mask through adversarial attacks. The experimental results indicate that COSM demonstrates weak robustness, rendering it
vulnerable to adversarial example attacks. In the realm of COS, the projected gradient descent (PGD) attack method exhibits
superior attack capabilities compared to the fast gradient sign (FGSM) method in both white-box and black-box settings.
These findings reduce the security risks in the application of COSM and pave the way for multiple applications of COSM.

Keywords COSM · Adversarial robustness · White-box setting · Black-box setting

Introduction

The camouflaged object segmentation model (COSM) aims
to identify objects that exhibit various forms of camou-
flage. This field has a wide range of real-world applications,
including search-and-rescue operations, the discovery of rare
species, healthcare (such as automated diagnosis for colorec-
tal polyps [1] and lung lesions [2], medical image fusion [3]),
agriculture (including pest identification [4], fruit ripeness
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assessment [5] and biological disease diagnosis [6]), and con-
tent creation (such as recreational art [7]). Figure 1 depicts
different categories of camouflage objects [8], with items
(1)–(4) representing natural camouflage, and (5) and (6)
showcasing artificial camouflage. More specifically, (1) fea-
tures a terrestrial camouflage creature, (2) showcases an
aquatic camouflage creature, (3) illustrates a flying camou-
flage creature, and (4) portrays a reptile camouflage creature.
On the other hand, (5) displays camouflage soldiers, while
(6) exhibits a human body painting camouflage object.

In recent years, this field has seen remarkable advance-
ments, largely attributed to the availability of benchmark
datasets such as COD10K [9, 10], and NC4K [11], in tan-
dem with the rapid evolution of deep learning techniques.
From SINet [9] in 2020 to POPNet [27] in 2023, the accuracy
results for the COD10k test set are shown in Fig. 2, where the
E-measure [50] improved from0.864 to 0.897, the S-measure
[49] improved from 0.776 to 0.827, the weighted F-measure
[51] improved from 0.631 to 0.789, and the mean absolute
error (MAE) decreased from 0.043 to 0.031. Evidently, the
accuracy of the models has increased. However, research on
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Fig. 1 Camouflaged object segmentation task. The proposed camouflaged object detection task, where the goal is to detect objects that have a
similar pattern (e.g., edge, texture, or color) to the natural habitat [8]

Fig. 2 Accuracy statistics of the camouflaged object segmentationmod-
els

the security of COSM against adversarial example attacks
is still in its infancy. it remains unclear whether it can with-
stand adversarial attacks. This raises doubts about COSM
being used in safety critical applications (such as, intelligent
grid systems [12, 13] and autonomous driving systems [14])
since the networks could inexplicably classify a natural input
incorrectly although it is almost identical to examples it has
classified correctly before. Therefore, it is crucial to conduct
research on the robustness of COSM, reducing the security

risks associated with these models, and ultimately promoting
their widespread application.

In this paper, Ourwork is the first investigation into how to
launch adversarial attacks against COSM. We employ stan-
dard practices found in popular adversarial attack methods,
such as the fast gradient sign method (FGSM) attack [26]
and the projected gradient descent (PGD) attack [18]. COSM
distinguishes itself from traditional image recognition (seg-
mentation) models in two key aspects: (1) it produces masks
withoutmaking label predictions, and (2) the objects detected
by the model closely resemble the background.

For this purpose, we propose a framework named Attack-
COSM, which is designed to launch attacks on COSM
through the task of mask prediction for camouflaged tar-
gets. Specifically, our objective is to mislead COSM, causing
the model to reverse its predictions for masked objects and
backgrounds by increasing COSM loss. The experimental
results indicate that adversarial attacks can effectively reduce
the accuracy of COSM, implying that COSM is susceptible
to adversarial examples. We also conducted experiments to
evaluate the transfer attack performance of adversarial exam-
ples and found that adversarial examples generated using one
COSM system can be used to effectively attack other COSM
systems. In addition to the primary objective of reversing the
predictions for masked objects and backgrounds, we con-
sider the question of whether adversarial examples can be
used tomanipulate COSMand generate any desiredmask. To
achieve this, we structure the desired task in two settings: (1)
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by assigning a manually designed mask to a random position
and (2) by generating a mask from another image. In gen-
eral, we discover that it is feasible to consistently generate the
desired mask in most cases, underscoring the susceptibility
of COSM to adversarial attacks. Overall, the contributions
of this work are summarized as follows.

1. We conduct the first yet investigation on attackingCOSM
with adversarial examples. We present a framework for
attacking COSM with the objective of reversing its pre-
dictions for masked objects and backgrounds.

2. We uncover that COSM is susceptible to adversarial
attacks in a complete white-box setting. Furthermore, we
demonstrate that the adversary can target themodel with-
out prior knowledge of its parameters. In other words,
COSM can be partially compromised by adversarial
examples in a cross-model setup.

3. In addition to the primary objective of reversing its pre-
dictions for masked objects and backgrounds, through
further investigation, we successfully demonstrate that
COSM can bemanipulated to generate any desiredmask.
This further underscores the vulnerability of COSM.

The remainder of this work is structured as follows.
“Related work” section provides an overview of related
research, summarizing the advancements in COSM and dif-
ferent attack methodologies.

In “Framework forAttack-COSM” section,we present the
framework for Attack-COSM, formulating the objective as
reversing the predictions ofmasked objects and backgrounds.
In “Main results of Attack-COSM” section, We begin by
presenting the results of Attack-COSM in the white-box set-
ting. We then delve into an exploration of transfer-based
attacks on COSM. Finally, we investigate techniques for
manipulating COSM to generate masks according to specific
requirements. “Discussion” section discusses the relation-
ship between attacking label predictions and attacking mask
predictions, as well as the limitations of our work.

Related work

In this section, we separately outline the characteristics and
classifications of COSM and typical adversarial attack algo-
rithms.

COSM

Numerous projects and papers have explored the above men-
tioned topic from various perspectives, which can be broadly
categorized into two groups: single-task and multitask learn-
ing. (a) Single-task learning is themost commonly employed
paradigm in COS, focusing solely on the segmentation of

concealed targets. Within this paradigm, most recent works,
[9, 10, 19] concentrate on the development of attention
modules for identifying target regions. Multitask learning
introduces an auxiliary task to complement the segmenta-
tion task, enhancing the robustness of COS learning. These
multitask frameworks can be implemented through various
methods, including confidence estimation [20–23], local-
ization/ranking [11, 24], category prediction [25], learning
depth methods [26, 27], boundary methods [28–33], and tex-
ture [16, 34] cues of camouflaged objects.

Adversarial attacks

Deep neural networks, including CNNs [26, 35, 36] and
vision transformers (ViT) [37–40], are well recognized for
their vulnerability to adversarial examples. This susceptibil-
ity has spurred numerous studies aimed at examining model
robustness under various types of adversarial attacks. Adver-
sarial attack methods can be categorized into two settings:
the white-box setting [17, 41, 42], which allows full access
to the target model, and black-box attacks [43–48], which
primarily rely on the transferability of adversarial exam-
ples. Another way to classify attacks is as untargeted or
targeted. In the context of image recognition (classification),
an attack is deemed successful under the untargeted setting
if the predicted label differs from the ground-truth label. In
the more stringent targeted setting, the attack is considered a
failure unless the predicted label matches the predetermined
target label. The prior works mentioned have primarily con-
centrated on manipulating image-level label predictions for
image classification tasks. In contrast, our work considers
attacking COSM for the task of predicting the masks of cam-
ouflaged targets. Attacking COSM also sets itself apart from
attacking semantic segmentation models, as the generated
masks lack semantic labels. It remains uncertain whether
COSM can withstand adversarial attacks.

As shown in Table 1, we summarizes and analyzes the cur-
rent typical adversarial example generation methods based
on attack type, attack target, attack frequency, advantage,
limitation etc. Single-step denotes a single iteration, while
iteration represents multiple iterations. W stands for white-
box attack, B for black-box attack, T for targeted attack, and
NT for non-targeted attack.

Framework for Attack-COSM

Inspired by the image classification attack method, we ana-
lyze the difference between the image classification task and
the COS task, and finally get the attack flow of the COS task.
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Table 1 Summary of typical adversarial attack

Adversarial attack Attack
frequency

Attack type Attack
target

Advantage Limitation

FGSM [17] Single-step W NT High efficiency in generation and
transferability

Low success rate in white-box
attacks

PGD [18] Iteration W NT High success rate in white-box
attacks

Poor transferability

MI-FGSM [52] Iteration W NT Improved transferability of
iterative attacks

D-MI-FGSM [56] Iteration W T, NT It can be combined with other
attacks to increase the success
rates in both white-box and
black-box scenarios

Low computational efficiency

C&W [41] Iteration W T, NT 1. The resulting disturbance is
small

The generation time is longer

2. It can break a lot of defenses

3. It has portability

SBA [57] Iteration B T, NT 1. It can be used to attack other
machine learning models

It is rarely used in practice
because it is almost impossible
for an attacker to get detailed
information about the model

2. It can effectively avoid defense
methods that rely on gradient
masking

DeepFool [53] Iteration W NT Compared with FGSM, the
perturbation is smaller and the
calculation speed is improved

The generation time is five times
that of FGSM

OPA [58] Iteration B T, NT It has high classification error rate
under various models

It takes a long time to find
hackable pixels

AdvGAN [59] Iteration W T, NT The resulting adversarial example
is visually indistinguishable
from the clean image

It is relatively limited in
adversarial training settings and
may not generalize to broader
settings

UAP [54] Iteration W NT 1. It proves the existence of a
general disturbance

There is no guarantee that every
updated generic adversarial
disturbance will remain
adversarial to the data points
that occurred before the update

2. It has high portability

BPDA [55] Iteration W T, NT Defense methods that rely on
confusion gradients can be
effectively circumvented

Defense against confusion
gradients only

Preliminaries

Mask prediction

As illustrated in Fig. 1, we treat COSM as a class-
independent, pixel-wise segmentation task. Formally, let
I ∈ R

H×W×3 and C ∈ R
H×W×1 denote the input image and

output camouflage map, respectively. Given a large collec-
tion of such pairs {Ii, Ci}Ni�1, our task is to learn a mapping
function F� parameterized by weights � that can correctly
transfer the novel input to its corresponding camouflagemap.
For each pixel (position) ρo ∈ [1, H×W], the estimated score
cρo ∈ [0, 1][0, 1] reflects theCODmodels, prediction,where
a score of “1” indicates that it belongs to the camouflaged

objects and vice versa. Note that for each pixel (position)
ρo ∈ [1, H × W], the CODM has an intermediate predicted
value yρo

, which undergoes a sigmoid functions operation to
obtain cρo . Namely, when yρo

is a positive value, cρo takes
the value of 1, and vice versa.

Common attack methods

Before introducingAttack-COSM,we begin by revisiting the
commonly used attack methods in traditional classification
tasks. We define f (·, θ) as the target model to be attacked,
parameterized by θ. With (Xc, Yc) as data pairs from the
original dataset, the adversarial image Xadv is defined asXc +
δ∗, where δ∗ is optimized in Eq. 1. More specifically, the
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attack algorithm is designed to generate the optimal δ∗. The S
in the formula represents the range of the perturbation limits.
In the context of the classification task, Yc typically signifies
the class label, Jc is loss function, and the loss function is
often the cross-entropy function.

δ∗ � δ∈Smax Jc( f (Xc + δ; θ), Yc) (1)

The typical attack algorithms listed in Table 1 are used to
solve the above equation.

Attack-COSM

In typical adversarial attacks targeting image recognition
models, the objective is to manipulate the predicted labels
at the image level, thereby causing the model to produce
inaccurate predictions. From Fig. 3, it can be observed that
in adversarial attacks targeting COSM, the objective is to
manipulate predicted labels at the pixel level. Additionally,
due to the intrinsic similarity between camouflaged objects
and background, COSM introduces new detection modules.

Task definition

Since the generated masks from COSM lack semantic
labels, a direct approach to successfully attack COSM is to
reverse the predictions for masked objects and backgrounds.
In this work, we consider the reversal of predictions for
masked objects and backgrounds as the fundamental objec-
tive of adversarial attacks on COSM. As per “Preliminaries”
section, a pixel, denoted as ρo, is classified as masked when
the intermediate predicted value, denoted as yρo

, is positive.
Therefore, the task is deemed successful when the predicted
values yρo

become negative. Conversely, a pixel ρo is classi-
fied as background when the predicted value yρo

is negative,
and the task is considered successful when predicted values
yρo

turn positive.

Loss design

To reverse the predictions of masked objects and background
by attackingCOSM, the loss design is expected to be adjusted
to decrease the predicted values yρo

until they become neg-
ative in the masked region and increase the predicted values
yρo

in the background region until they become positive. As
shown in Eq. 2, we achieve the aforementioned objective
by directly elevating the loss value of COSM to diminish
the model’s prediction accuracy. The loss function Js used is
BCEWithLogitsLoss. For a dataset related to attacking COS,

we seek parameters δ to maximize the loss, i.e.,

δ∗ � δ∈Smax
N∑

1

Js(F�(Ii + δi ; �), Ci ) (2)

As can be seen from formula 3: Unlike traditional classi-
fication tasks, we aggregate the loss values for each pixel to
calculate the overall image loss. The loss for each picture is:

(3)

Js (F� (Ii + δi ; �) , Ci )

� −
∑

ρo∈�

(
Cρo
i ln

(
cρo

)
+

(
1 − Cρo

i

)
ln

(
1 − cρo

))

Here, � represents the spatial composition of all pixels
for each image, and Cρo

i represents the ground truth at pixel
position ρo for the ith image.

Attack details

The FGSM [17] and PGD [18] are two widely employed
methods for assessing model robustness, and they are chosen
for their simplicity and effectiveness. FGSM is a single-step
attack method based on the model gradient on the input
image. PGD is a multi-step attack method, and it is repre-
sented as PGD followed by the number of iterations, denoted
as PGD-N.

So,we employ the FGSMattack [17] andPGDattack [18],
a method commonly used for assessing model robustness in
prior studies. Following the established practices of attacking
vision models in a white-box scenario, the default maximum
perturbation magnitude is set to 8/255. We use step sizes of
8/255 for the FGSM attack and 2/255 for the PGD attack.
In cases where no specific attack method is mentioned, we
default to using the PGD-40 attack, where the "40" indicates
that the attack involves 40 iterations.

Attack process

Using the PGD attack algorithm as an example, the algo-
rithmic process for attacking a camouflage object detection
model is as follows (Table 2):

Main results of Attack-COSM

We first introduce the experimental setting in detail, and then
test the attack effect of the algorithm in white box and black
box settingwith reversemask target and background as attack
targets. Finally, we use our attack framework to realize the
expansion of the mask and the generation of the specified
shape mask.
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FGSM,PGD...
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Whole picture loss
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Fig. 3 COSM adversarial example generation process

Table 2 Flow table of ATTACK-COSM algorithm

Algorithm 1

Input: A COSM F� with loss function Js; a real example Ii
and ground-truth label Ci;

Input: Maximum allowable perturbation size ε; iterations T ;
step sizes α

Output: An adversarial example I∗i with ‖I∗i − Ii‖∞ ≤ ε

1: I∗i � Ii

2: for t � 0 to T − 1 do

3: Input I∗i to F� and obtain the gradient

∇Ii Js(F�

(
I∗i ; �

)
, Ci )

4: Update I∗i (t + 1) by applying the sign gradient as

I∗i (t + 1) � I∗i (t) + α · sign(∇Ii Js(F�

(
I∗i (t); �

)
, Ci )) (4)

5: end for

6: return I∗i � I∗i (T)

Experimental setup

The experiments were conducted on Intel(R) Xeon(R) Plat-
inum 8260 CPU@2.40 GHz × 96 and RTX 5000 platforms.

COSM

In the white-box setting, we used the FGSM [17] and
PGD [18] attack methods to carry out adversarial attacks
on the SINet model by generating adversarial examples.
Subsequently, we performed transferability tests (black-box
testing) on six representative COSM algorithms. These six
representative camouflaged object detection algorithms are
listed in Table 3.

Table 3 Introductionof the six representative camouflagedobject detec-
tion models

COSM Pub./year Backbone Representativeness

Single-task learning

C2FNet
[28]

IJCAI’21 Res2Net-50 Attention guidance

PFNet
[15]

CVPR’21 ResNet-50 Biomimetic
framework

Multitask learning

JCSOD
[29]

CVPR’21 ResNet-50 Conducting
confidence
estimation

LSRNet
[11]

CVPR’21 ResNet-50 Conducting
localization/ranking

BGNet
[33]

IJCAI’22 Res2Net-50 Conducting boundary

POPNet
[27]

arXiv’23 Res2Net-50 Conducting learning
depth

Dataset

We conducted evaluations on two benchmark datasets:
CAMO [25] and COD10K [9]. CAMO comprises 1250
camouflaged images spanning various categories, with 1000
images designated for training and 250 for testing. On the
other hand, COD10K is presently the largest benchmark
dataset, featuring 5066 camouflaged images sourced from
multiple photography websites. It includes 3040 images for
training and 2026 for testing, covering 5 superclasses and
69 subclasses. In line with prior research [9], we utilized
the combined training sets of CAMO and COD10K, totaling
4040 images, and the testing set of COD10K for our evalua-
tions.
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Evaluation metrics

In the experiment, we employed four well-established eval-
uation metrics.

Structure measure (Sα) [49] is used to measure the struc-
tural similarity between a non-binary prediction map Y and
a ground-truth mask C:

Sα � (1 − α)So(Y, C) + αSr (Y, C) (5)

where α balances the object-aware similarity So and region-
aware similarity Sr . we set α � 0.5.

MAE (mean absolute error,M) is a conventional pixel-wise
measure, which is defined as:

M � 1

W × H

W∑

x

H∑

y

|Y (x , y) − C(x , y)| (6)

where (x, y) are pixel coordinates in C.

Enhanced-alignment measure (Eφ) [50] is a recently pro-
posed binary foreground evaluation metric, which considers
both local and global similarity between two binary maps.
Its formulation is defined as follows:

Eφ � 1

W × H

W∑

x

H∑

y

ϕ[Y (x , y), C(x , y)] (7)

where ϕ is the enhanced-alignment matrix.
Weighted F-measure (Fω

β ) [51] can be defined as:

Fω
β � (1 + β2)

Pω · Rω

β2 · Pω + Rω
(8)

Pω represents weighted Precision, which measures exact-
ness, while Rω denotes weighted Recall, measuring com-
pleteness. β indicates the effectiveness of detection concern-
ing a user who assigns β times as much importance to Rω as
to Pω.

Main results under white-box settings

As part of the basic setup, we initially attacked COSM
with the objective of reversing the predictions for masked
objects and the background, as discussed in “Attack-COSM”
section. The attack is considered successful if the preci-
sion of Maskadv is significantly smaller than the precision
of Maskclean.

Qualitative results under white-box settings

For our white-box attack testing, we selected the first deep
learning-based COSM algorithm, the SINet model. We
present partial visualization results of adversarial images and
predicted masks in Fig. 4. The model is capable of producing
adversarial images with imperceptible perturbations follow-
ing the FGSM and PGD attacks (refer to Fig. 4b, c). While
COSM is capable of generating a high-quality Maskclean in
Fig. 4e, both the FGSM and PGD attacks are effective in
reversing the predictions for masked objects and the back-
ground, particularly the extensive white area of Maskpgd in
Fig. 4g. Figure 4 demonstrates that COSM is susceptible to
adversarial attacks, with the PGD attack outperforming the
FGSM attack in the context of the COS task. In the experi-
ment, we observed a phenomenon, as seen in Fig. 4g, where
the model effectively reverses the prediction of the back-
ground into foreground, but the model had poor results when
reversing the prediction of the foreground into the back-
ground. By examining the values of Maskclean , we found
that the output value yρo

for the foreground is approxi-
mately 20, while the output value yρo

for the background is
approximately − 5. Therefore, through iterative attacks, the
background can be predicted as foreground more quickly.

Quantitative results under white-box settings

We present the evaluation metric results following various
attacks in Table 4.With the proposed loss function, the detec-
tion accuracy of the SINet model has shown a significant
decrease after the PGD attack (e.g.,Eϕ drops from 0.817 to
0.279). Although the FGSM attack also results in a notice-
able decrease in detection accuracy compared to the original
model, the outcome under the FGSM attack is worse than
that under the PGD attack due to its weaker attack strength.
This indicates that it is difficult for the FGSM attack to cause
a significant change in the predicted yρo

and the label value
within a single attack step. This result is consistent with the
visualization in Fig. 4.

Main results under black-box settings

“Main results under white-box settings” section demon-
strates that COSM is vulnerable to adversarial attacks in a
full white-box setting. This naturally raises the question:
Is COSM resilient to transfer-based attacks? In the black-
box setting, the attacker does not have access to all the
necessary information when targeting a specific model. In
this section, we use the adversarial examples generated by
attacking the SINet model in “Main results under white-box
settings” section to attack the other six COSM algorithms
and assess the performance of transfer-based attacks.
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a b c d GT  e f g

Fig. 4 Attacking the SINet model to reverse the predictions of masked
objects and background, a represents the clean image, b, c show
adversarial images generated by FGSM and PGD attacks, respectively,

e–g represent masks predicted by COSM based on the images shown
in a–c, respectively

Table 4 Results of the change in
detection accuracy after
attacking the SINet model. Both
the FGSM and PGD-40 attacks
result in significantly lower
detection accuracy compared to
the setting with no attack, and
PGD-40 results in the lowest
detection accuracy

Attack method Detection accuracy

Sα Eϕ FWβ M

SINet

No attack 0.778 0.817 0.617 0.046

FGSM 0.709 0.771 0.522 0.067

PGD 0.282 0.279 0.145 0.565

Fig. 5 Masks predicted in the
cross-model transfer task

a b GT c d e

(1) BGNet

(2)C2FNet

(3)POPNet

(4)PFNet

(5)LSRNet

(6)JCSODNet
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Qualitative results under black-box settings

As shown in Fig. 5, even though xfgsm and xpgd are gener-
ated by attacking the SINet model, they can still successfully
attack other models. This can be observed by comparing
Maskfgsm and Maskpgd in Fig. 5d, e to Maskclean in Fig. 5c.
Comparing Maskpgd in Fig. 5e to Maskfgsm in Fig. 5d, we
found that in the COS task, PGD’s transfer attack perfor-
mance is better than that of FGSM.

Quantitative results under black-box settings

We present the evaluation metric results under black-box set-
tings in Table 5. After using the two categories of adversarial
examples, xfgsm and xpgd, generated in “Qualitative results
under white-box settings” section, to target six representative
camouflaged target models, the accuracy of the COSM algo-
rithms decreased. This indicates that adversarial examples
have transfer attack capabilities in the COS task. Once more,
in the black-box setting for COS, the PGD attack is more
effective than the FGSM attack (e.g., the last row, Eϕ drops
from 0.910 to 0.746 and 0.698 when the input is xfgsm and
xpgd, respectively). This result is consistent with the visual-
ization in Fig. 5.

Beyond reversing the predictions of masked objects
and background

In the above sections, our primary focus was on reversing
the predictions of masked objects and background. Here, we
consider a more intriguing scenario, which involves using
adversarial examples to generate any desired masks. Con-
ceptually, the goal is to create entirely newmasks rather than
simply reversing the predictions of masked objects and back-
ground, as discussed above.

Mask enlargement

After investigating themask reverse attack, it is natural to ask
whether it is possible to add new masks to a segmentation
map. In our preliminary investigation, we begin by attempt-
ing to enlarge the mask area without considering the shape
or size of the original mask. To enlarge masks through an
attack on COSM, the loss design should be aimed at increas-
ing the predicted values yρo

until they become positive. To
mitigate the randomness effect, the goal is to ensure that the
predicted values yρo

are significantly higher than zero, rather
than just slightly higher. To achieve this, the mean squared
error (MSE) losswith a positive threshold is a suitable choice.

We define H�(Ii; �) � y, where y represents the
output value yρo

for all pixels of each image and
Sigmoid(H�(Ii; �)) � F�(Ii; �). As shown in Eq. 9, the
predicted value H�(Ii + δ; �) is optimized to be close to a

positive threshold Pt after the attack. In the extreme case
where H�(Ii + δ; �) � Pt for all predicted values y, the
MSE loss reaches its minimum: zero.

δ∗ � min
δ∈S‖H�(Ii + δ; �) − Pt‖2 (9)

The parameter Pt is set to 20 in this experiment.We visual-
ize the result ofmask enlargement in Fig. 6. The experimental
results in Fig. 6 show that the mask of adversarial images
Mask pgd−160 is much larger than Maskclean , as seen in
Fig. 6g, c. This indicates that the adversarial attack is capable
of not only reversing the predictions of the mask and back-
ground but also enlarging them. This motivates us to explore
attacking COSM to generate any desired mask.

Generating any desired mask

Setting 1: Manually designed mask at a random position
In this setting, we explore whether an adversarial attack can
generate manually desired masks at random positions. To
maintain generality, we design masks in the form of geomet-
ric shapes, including circles and squares. Figure 7 illustrates
that this goal can be achieved by setting the mask target as
a circle and square at a random position when generating
xcirclepgd and xsquarepgd in Fig. 7a, b, respectively. Although the
input image expects a mask of a fish, as in Maskclean of
Fig. 7c, the desired circle or square masks can be obtained
in Maskcircleadv and Masksquareadv . Manually designing more
complex masks than circles or squares can be challenging.
Therefore, we further explore using the real object masks
generated by COSM as the target masks to attack COSM
(see Setting 2).

Setting 2: Amask generated on a different image We inves-
tigate this setting with two example images in Fig. 8. Taking
the first row of Fig. 8 as an example, a tuna mask in Fig. 8c is
predicted based on the clean images xclean in Fig. 8a.We take
the batfish mask in Fig. 8d from the second row as the mask
target and attack the xclean image of the tuna in Fig. 8a, and
the resulting adversarial image xadv of the tuna is shown in
Fig. 8b. Interestingly, a batfish mask, Maskadv , is predicted
in Fig. 8e based on xadv from the tuna image in Fig. 8b. A
similar observation can also be made in the second row of
Fig. 8, that is, predicting a tuna mask in Maskadv in Fig. 8e
based on xadv from the batfish image in Fig. 8b.
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Table 5 Results of the change in detection accuracy under black-box settings. Both the FGSM and PGD-40 attacks result in significantly lower
detection accuracy compared to the setting with no attack, and PGD-40 results in the lowest detection accuracy

Model No attack x f gsm xpgd

Sα Eϕ FWβ M Sα Eϕ FWβ M Sα Eϕ FWβ M

C2FNet 0.808 0.882 0.697 0.036 0.735 0.829 0.604 0.054 0.667 0.760 0.495 0.087

PFNet 0.801 0.877 0.685 0.038 0.728 0.813 0.577 0.058 0.440 0.500 0.216 0.326

JCSOD 0.817 0.893 0.716 0.033 0.741 0.824 0.604 0.057 0.420 0.480 0.221 0.372

LSRNet 0.811 0.871 0.690 0.036 0.718 0.770 0.534 0.068 0.360 0.493 0.198 0.459

BGNet 0.831 0.902 0.739 0.032 0.752 0.847 0.629 0.049 0.691 0.785 0.526 0.077

POPNet 0.851 0.910 0.771 0.027 0.704 0.746 0.539 0.077 0.656 0.698 0.467 0.099

a b c d e f

g

Fig. 6 Results of the mask enlargement attack. Maskclean in c and
Maskadv in d–g are generated on xclean and xpgd in a, b, respec-
tively. The results demonstrate that the mask predicted by COSM can

be enlarged through the adversarial attack.With the number of iterations
increasing from 40 to 160, the effectiveness of the attack improves

a b c d e f g

Fig. 7 Generating any desired masks (Setting 1). Maskcircleadv and Masksquare in e, g are generated from xcirclepgd and xsquarepgd in a, b, respectively.
With the adversarial attack, manually designed masks in d, f can be generated at random positions

Fig. 8 Generating any desired
masks (Setting 2)

a b c d e
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Discussion

Attack goals: label prediction versus mask
prediction

In contrast to existing works that mainly focus on attacking
the model to change label predictions, our work investigates
how to attack COSM to alter the mask predictions of cam-
ouflaged targets. Conceptually, our investigation to reverse
the predictions of masked and background and generate any
desired mask is conceptually similar to a targeted attack set-
ting.

Limitations

We propose an adversarial exmple attack framework tailored
for the COS task. Leveraging our framework, we conducted
numerous experimental setups. The results of these experi-
ments confirmed the susceptibility of COSM to adversarial
example attacks, thereby highlighting its weak robustness.
Some of the experimental results also point theway for future
research. For example, in the field of COS, PGD has better
attack capability than FGSM in both white box and black
box Settings. Subsequent research should aim to uncover its
internal mechanisms, laying the groundwork for the devel-
opment of more potent attack methods. In some challenging
scenarios, such as the mask enlargement task, success is only
partial when the number of iterations is less than 160. How-
ever, increasing the number of iterations requires more time.
To address this issue, future research could explore ways
to enhance attack performance by designing a more effec-
tive loss function. Furthermore, we have only explored the
robustness of COSM in the digital realm and have not inves-
tigated its robustness in the physical world, accounting for
factors such as lighting,weather, and sensor influences. In our
next steps, we will conduct further research in the domain of
physical adversarial attacks.

Conclusion

Our work represents the first investigation into attacking
COSM with adversarial examples. In the full white-box
setting, we discovered that COSM is vulnerable, as we suc-
cessfully reversed the predictions of masked objects and
background. We also experimented with cross-model trans-
ferability and found that the adversarial examples generated
by attacking the SINet model can successfully be used to
attack other models. In addition to the fundamental goal of
reversing the predictions of masked objects and background,
we aim to generate any desired mask, achieving an overall
satisfactory level of success. Our primary aim is not to dis-
cover the most potent method for attacking COSM. Instead,

we concentrate on the adaptation of common attack meth-
ods, transitioning from attacking label prediction to targeting
mask prediction, to assess the robustness of COSM against
adversarial examples. The discovery that COSM is suscep-
tible to adversarial examples underscores the importance of
investigating the security implications of deploying COSM
in safety–critical applications. In the future, we will con-
tinue to explore from the following aspects: (1) The attack
method in this paper does not consider the attack migra-
tion, and the black box attack capability will be studied; (2)
Deeply explore the impact of attack parameters on attack per-
formance; (3)Research on defense technology to improve the
robustness of the COSM; (4) Study the robustness of COSM
in the field of physical attack.
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