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Abstract
Inferring the 3D surface shape of a known template from 2D images captured by amonocular camera is a challenging problem.
Due to the severely underconstrained nature of the problem, inferring shape accurately becomes particularly challenging when
the template exhibits high curvature, resulting in the disappearance of feature points and significant differences between the
inferred and actual deformations. To address this problem, this paper proposes a concise and innovative approach that utilizes
a physical simulator incorporating the object’s material properties and deformation law. We utilize a view frustum space
constructed from the contours of a monocular camera image to effectively restrict the physically-based free motion of the
template. Additionally, we employ mesh denoising techniques to ensure the smoothness of the surface following deformation.
To evaluate our shape inference results,we utilize a ground truth 3Dpoint cloud generated frommultiple viewpoint images. The
results demonstrate the superior performance of our approach compared to othermethods in accurately inferring deformations,
particularly in scenarios where feature points are unobservable. This method carries significant practical implications across
diverse domains, including virtual reality, digital modeling, and medical surgery training.

Keywords Shape-from-Template · Computer Vision · Virtual Reality · Digital Modeling

Introduction

Monocular non-rigid 3D reconstruction from single 2D
images possesses significant applications in augmented real-
ity [1], robot vision [2], and computer-assisted surgery [3,
4]. However, solutions in this domain are yet to be fully
developed. This is largely attributable to the inherent dif-
ficulty in recovering the shape’s depth from a 2D image. One
well-studied method, known as Shape-from-Template (SfT)
[5], demonstrates promising outcomes in resolving the depth
of isometrically deformed objects. SfT utilizes a range of
priors and constraints, such as the object’s 3D rest shape,
texture map, and camera intrinsics, to infer the 3D shape of
deformable objects from a single input image.

The conventional SfT method is principally composed of
two main components: registration and 3D shape inference.
One approach involves assuming that the template experi-
ences solely isometric or conformal deformations [6, 7],

B Huamin Yang
yhm@cust.edu.cn

1 School of Computer Science and Technology, Changchun
University of Science and Technology, Changchun, China

which facilitates an analytical solution to SfT through the
resolution of the corresponding PDEs.

Deep learning, a subset of machine learning techniques
focusedon learningdata representations, has recently extended
its applications beyond computer vision and image process-
ing to encompass control and optimization. Wang et al. [8]
introduced a Q-learning based fault estimation (FE) and
fault tolerant control (FTC) scheme within an iterative learn-
ing control (ILC) framework. Song et al. [9] presented a
switching-like event-triggered strategy (SETS) to address
intermittent Denial-of-Service (DoS) attacks. As an opti-
mizable approach, learning-based SfT methods have been
introduced. Navami et al. [10] introduced φ-SfT, incorporat-
ing a physics-based rendering loss term to refine the dynamic
process of a template characterized by physical attributes.
David et al. [11] substituted the conventional physics-based
simulation in φ-SfT with neural surrogate models, drasti-
cally diminishing the computational time required for the
optimization process from several hours to only a few min-
utes per scene.

Subsequently, existing SfT methods are classified into
three distinct categories: shape inferencemethods, integrated
methods, and Deep Neural Network (DNN) based SfT meth-
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ods. Most shape inference methods feature a wide baseline
yet seldom run in real-time due to the absence of regis-
tration between the static template and the warped image.
In contrast, integrated methods, which require an initializa-
tion close to target deformation, cover both the registration
and shape inference parts. This characteristic makes them
suitable for short-baseline scenarios , yet it requires more
computational resources. Moreover, conventional SfT pri-
marily depends on the extraction and matching of feature
points. Consequently, significant deformation or bending of
the templatemay render shape inference susceptible to severe
distortion. Compared to other methods, learning-based SfT
methods exhibit a wide baseline, yet their real-time perfor-
mance is contingent upon the scale of the deep network
employed. Furthermore, Learning-based SfT methods are
object-specific, necessitating substantial training data and
adequate computational resources, thus limiting their appli-
cability as a general solution when the deformable object
varies. Recently, a model unknown matching network model
[12] has demonstrated significant potential in few-shot learn-
ing, targeting the resolution of issues related to sparse fault
samples and cross-domain between data sets in real industrial
situations.

This paper introduces an improved Shape-from-Template
(SfT) approach aimed at addressing particular shortcomings
of existing state-of-the-art methods, thereby significantly
enhancing the accuracy of monocular non-rigid 3D recon-
struction. We employ a conventional SfT method to tackle
the challenge of tracking the 3D shape of deforming objects.
Our approach takes a 640× 480 image, captured using stan-
dard consumer hardware, as input and produces an output
that represents the consistent 3D shape of the object depicted
in the image. In contrast to previous methods [6, 7, 13,
14], the non-convex SfT problem is not addressed through
initialization or refinement in this work. Based on actual
observations, a constrained physical simulator has been
incorporated. The simulator supplants geometric techniques
in traditional SfT workflows and rectifies errors arising from
iterative resolutions through non-physical position-based
dynamics methods, as employed in [14]. By integrating a
simulator characterized by parameters of tangible physical
significance, we not only enhance shape inference accu-
racy but also improve the convergence rate of numerical
solutions and scalability across various deformable objects.
We are not the first to incorporate physical priors into the
SfT problem. Works like φ-SfT [10] and Physics-guided
Shape-from-Template [11] optimize the SfT solution by
using differentiable rendering techniques to optimize phys-
ical parameters. In contrast, we introduce perspective space
constraints for 3D objects, derived from contour informa-
tion in the input image, to constrain the template’s range of
motion. An increased amount of constraint information on
the input [15] facilitates convergence rates and enhances the

precision of solutions to optimization problems. These con-
straints significantly reduce shape inference errors arising
when feature points become unobservable.

The main contributions of this study are summarized as
follows:

1. A novel approach is proposed to address SfT, charac-
terized by the integration of a physical simulator. This
approach enhances shape inference precision and accel-
erates numerical solution convergence by integrating
material properties into the deformable template and exe-
cuting dynamic simulations.

2. Perspective space constraints, derived from the con-
tours of a monocular camera image, are introduced to
restrict the template’s physics-based free motion. This
significantly reduce deformation errors attributable to the
absence of feature points during extensive bending.

Related work

This section provides a comprehensive review of meth-
ods employed in monocular non-rigid 3D reconstruction
of isometrically deforming objects. These methods differ
with respect to their input requirements, prior knowledge,
and deformation models. They are categorized into three
groups: shape inference methods, integrated methods, and
DNN-based SfT methods. For each category, the underlying
assumptions, key characteristics, and limitations associated
with the methods are described.

Shape inference methods are predicated on the assump-
tion that the registration between the template and the input
image is precomputed. The accuracy of this registration step
is crucial for the subsequent shape inference. These methods
frequently utilize keypoint matches and employ mismatch
removal techniques, leveraging the known templates and
textures present in the image. Bartoli et al. [16] were the
first to study the problem known as Shape-from-Template
and introduced a novel class of methods termed first-order
methods. Pizarro et al. [17] addressed the issue of outliers
and stability improvement by assuming local smoothness of
the surface to be detected. Chhatkuli et al. [18] solved SfT
by estimating depth gradients or surface normals and inte-
grating them to obtain the shape. Their method surpassed
previous uninitialized methods in terms of accuracy. Özgür
et al. [14] introduced Particle-SfT, a novel Shape-from-
Template (SfT) algorithm capable of handling both isometric
andnon-isometric deformations. Thismethod leverages posi-
tion based dynamics and sight-line constraints to estimate the
depth information of 3D objects. It has been demonstrated
to exhibit high accuracy and convergence. Casillas-Perez et
al. [6] established a theoretical framework for equiareal

123



Complex & Intelligent Systems

SfT and demonstrated the feasibility of reconstructing a
surface exactlywith amuchweaker prior than isometry. Salz-
mann et al. [19] demonstrated that reconstruction could be
accomplished by resolving a system of quadratic equations,
representing distance constraints between adjacent vertices
of a mesh. Moreover, Salzmann et al. subsequently estab-
lished that incorporating inequality constraints instead of
equality constraints in earlier methods not only results in
more accurate representations but also yields convex formu-
lations for reconstruction problems [20]. Famouri et al. [21]
utilized the estimation of affine transformations, employing
the nearest neighbors of keypoint pairs. They then estimated
the depth of each keypoint in the deformed image based on
its associated affine transformation. Aranda et al. [22] pro-
posed a template-based shape servoing scheme. The template
enables both the inference of the object’s shape using an
enhanced Shape-from-Template algorithm and the steering
of the object’s deformation through the robots’ movements.
Brunet et al. [23] addressed two significant limitations of
the current state-of-the-art methods. Firstly, they introduced
convex methods capable of handling noise in both the tem-
plate and image points. Second, they proposed a non-convex
method that incorporates "true" isometric constraints. Malti
et al. [24] introduced a stretching energy formulation that
incorporates the Poisson ratio parameter of the surface. This
formulation unifies both geometric and mechanical con-
straints into a single energy term. The deformation is then
addressed by optimizing this energy term.

Integrated methods encompass both registration and shape
inference. Ngo et al. [25] utilized corresponding feature
points from the reference and input images to reformu-
late the shape inference problem into an image recovery
problem. Collins et al. [26] introduced a real-time Shape-
from-Template (SfT) framework that aimed to address two
key sub-problems: robust registration and 3D shape infer-
ence. They proposed the Deformable Render-based Block
Matching (DRBM) method, designed to globally search for
matching pixels between template textures and input images.
The pixel matching relationship is subsequently transformed
into a spatial coordinate constraint problem, with shape
inference being achieved through the efficient solution of a
sparse linear system. However, our experiments revealed that
DRBMexhibits instability under varying lighting conditions.
This method was subsequently applied to 3D organ tracking
in laparoscopic videos [27]. Ostlund [28] introduced a novel
approach for parameterizing the vertex coordinates of amesh
as a linear combination of a subset of them. Casillas-Perez et
al. [7] proposed isowarp, marking a theoretical and practical
breakthrough in SfT that imposes 3D geometric constraints
on the warps, thereby outperforming the best existing recon-
struction methods by using the analytic direct depth solution.

DNN-based SfT methods typically consist of object detec-
tion and shape inference components. The object detection
module is commonly employed to extract the shape mask
of the template object from the input image. However,
numerous existing shape inference methods demonstrated
limited adaptability when dealing with non-rigid deforma-
tions. Fuentes et al. [29] proposed the first texture-generic
deep learning SfT method, which adapts to new texture
maps at runtime without the need for texture-specific fine
tuning. Subsequently, they integrated statistical learning
with physics-based reasoning [30], achieving commendable
generalization performance under conditions such as wide
baseline, occlusion, illumination variations, weak texture,
and blurring. Golyanik et al. [31] proposed HDM-Net, a net-
work trained with various non-rigid deformation structures.
HDM-Net proved effective in handling small and moder-
ate isometric deformations. However, it exhibited significant
errors when confronted with large deformations. Pumarola
et al. [32] proposed Geometry-Aware Network that is made
of three main branches: the 2D detection branch, the depth
branch, and the shape branch. Due to the allocation of dif-
ferent stages of SfT to different sub-networks in this model,
the 2D shape and texture features of the template can be
effectively decoupled,making the networkmore generalized.
Shimada et al. [33] proposed the Isometry-AwareMonocular
Generative Adversarial Network (IsMo-GAN). This method
fully utilizes 2D convolution to efficiently achieve 3D point
cloud deformation prediction, but there are still significant
errors in the reconstruction of complex deformation scenes.

Methods

We proposed a coarse-to-fine method for deformation infer-
ence when feature points become unavailable or disappear.
Themethod comprises two key components: registration and
inference. The pipeline of the proposed SfT method is illus-
trated in Fig. 1. During the registration phase, ROBUSfT is
employed to carry out preliminary feature point extraction
and mismatch removal [13]. In the deformation inference
section, a physical simulator was designed based on per-
spective space constraints derived from the contours of a
monocular camera image, enabling more accurate tracking
of real physical deformations compared to the position-based
dynamics (PBD)method [14, 34]. Furthermore, the complete
pipeline incorporated Bicubic B-Spline (BBS) image warps
[35] and bilateral mesh denoising [36]. Section“Background
and notation” begins with a brief review of the relevant tech-
nologies and symbolic representations utilized in themethod.
Section “Constrained physics simulator” comprehensively
presents the proposed physics-based simulator for deforma-
tion inferencewhen feature points becomeunobservable. The
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Fig. 1 Pipeline of the SfT method

system setup and implementation details are then described
in section“Implementation”.

Background and notation

Object segment We assume that the monocular camera
remains static and that the segmentation masks for both the
foreground object and the background of the captured image
are accessible. In practice, the Segment Anything Model
(SAM) [37] is utilized to segment the object from template
images captured by the camera. Particularly in scenarios
with a static background, the difference between the current
image and the background image can be leveraged to achieve
faster segmentation. In the proposed template deformation
inference method, continuous contour information proves
crucial. Consequently, fitting the collected discrete contour
data based on pixels becomes necessary. The observed image
captured by a perspective camera is denoted as I . The seg-
mentation mask image derived from I is denoted as Ib, with
pixel values set to one for pixels belonging to the template
and zero otherwise. The centroid (x̄, ȳ) of the contour region

is calculated as follows:

x̄ = M10

M00
, ȳ = M01

M00
, (1)

where

Mi j =
∑

x

∑

y

xi y j Ib(x, y). (2)

A polar coordinate system is established with the pixel coor-
dinates of the centroid as the origin. To convert the pixel
coordinates (x, y) to polar coordinates (ρ, θ), a transforma-
tion is employed:

(ρ, θ) = cartT oPolar(x − x̄, y − ȳ) (3)

Contour fitting To interpolate and smooth the polar coor-
dinate of the contour, the Moving Least Squares (MLS)
method, as proposed by Lancaster and Salkauskas [38],
is employed. The fundamental idea behind Moving Least
Squares involves performing weighted least squares fitting
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across the entire parameter domain [39]. For any given θ , the
objective is to minimize

min
∑

i

w(θ − θi )‖ f (θi ) − ρi‖2, (4)

where w denotes a weighted function defined through
Euclidean distance, and f represents a polynomial interpo-
lation function, which can be expressed as

f (θ) = b(θ)T c = b(θ) · c, (5)

where b(θ) = [b1(θ), . . . , bk(θ)]T is the polynomial basis
vector, and c = [c1, . . . , ck]T is the vector of unknown coef-
ficients. Once f (θ) is solved, the contour can be fitted by
computing the polar diameter ρ = f (θ) at any given θ angle.

Image warpA nx ×ny mesh of control points, denoted�i, j

with uniform spacing δ, is utilized to cover the template tex-
ture image Is whose domain is � = {(x, y) | 0 ≤ x <

X , 0 ≤ y < Y }. Subsequently, the feature point (x, y)T in
the image Is ismapped to point (x̂, ŷ)T = (x+�x, y+�y)T

in the image It , captured by a monocular camera under
the elastic deformation, and the offset (�x,�y)T can be
expressed as the 2-D tensor product of the familiar 1-D Bicu-
bic B-Spline

(�x,�y)T =
3∑

l=0

3∑

m=0

Bl(u)Bm(v)φi+l, j+m (6)

where i = �x/δ�−1, j = �y/δ�−1, u = x/δ−�x/δ�, v =
y/δ − �y/δ� , and Bl denotes the lth basis function of the
B-spline [40, 41]

B0(u) = (1 − u)3/6

B1(u) = (3u3 − 6u2 + 4)/6

B2(u) = (−3u3 + 3u2 + 3u + 1)/6

B3(u) = u3/6.

(7)

In contrast to thin-plate splines [42], B-splines provide
enhanced computational efficiency, particularly with a large
number of control points.

Constrained physics simulator

The 3D template is discretized into a mesh comprising m
vertices, aligning the vertices with the control points used
for image warp, and the meshed template is modeled as a
mechanical system, specifically a mass-spring system [43,
44]. In this system, the mass points correspond to the ver-
tices of the mesh, and the springs represent the connections
between the vertices. The position is defined as a function

of time, x = x(t), and velocity is subsequently defined
as the derivative of position with respect to time, i.e., v =
v(t) = ẋ(t). Utilizing Taylor’s series expansion to expand
x(tn) around tn+1 enables the derivation

x(tn) = x(tn+1) − h
∂x(tn+1)

∂tn+1
+ h2

2

∂2x(ξn)

∂ξ2n
(8)

where h = tn+1 − tn is the time step size. Subsequently,
by neglecting higher-order terms in Eq. (8), the following
equation is derived:

x(tn+1) = x(tn) + hẋ(tn+1) (9)

which is widely recognized as the implicit backward Euler
method [43] within the realm of numerical integration tech-
niques. Let xn ∈ R

3m and vn ∈ R
3m denote the system

configuration vector representing the positions and veloci-
ties of all mass points at time tn . Forces are assumed to be
conservative, i.e., f = −∇E , where f ∈ R

3m represents
the vector of internal and external forces acting on all mass
points, and E : R3m −→ R is a potential energy function. For
a mass point xi , connected to q springs, the energy and force
are represented as follows:

E =
q∑

e=1

(
1

2
k(‖xi − xe‖ − Le)

2
)

fi (x) = −∇i E =
q∑

e=1

(
−k(‖xi − xe‖ − Le)

xi − xe

‖xi − xe‖
)

(10)

where k is the spring coefficient, and Le represents the rest
length of the spring connecting two vertices xi and xe. The
system states that x1, x2, . . . , xn+1 can then be calculated
and discretized as follows:

xn+1 = x(tn) + hẋ(tn+1) = xn + hvn+1

vn+1 = v(tn) + hv̇(tn+1) = vn + hM−1 f (xn+1)
(11)

where M ∈ R
3m×3m is positive diagonal mass matrix. Sub-

sequently, velocities vn+1 are eliminated from Eq. (11):

xn+1 = xn + �tvn + �t2M−1 f (xn+1) (12)

To solve the nonlinear system in Eq. (12), it is converted
into an optimization problem, and the target function is con-
structed

F(x) = 1

2�t2
(x − xn − �tvn)

T M(x − xn − �tvn) + E(x),

(13)

123



Complex & Intelligent Systems

(a) Before registration (b) After registration

Fig. 2 Registration of grids and contours

Fig. 3 The diagram shows the process of creating perspective space
constraints from image contours

then solving Eq. (12) becomes equivalent to finding the
extreme point of F in Eq. (13). To ensure computational
efficiency, the fast mass-spring model [45] is employed as
the fundamental physical simulator. The construction of con-
straints for physical simulators primarily comprises three
steps.

Step 1: Register Grid and Contour. The initial step
involves registering the projection of the grid G along
the template’s edge in image space with contour C of
the image. Extracting precise feature points from the tex-
ture becomes challenging when the surface of the tracked
template undergoes substantial bending deformation. Con-
sequently, significant discrepancies may arise between the
inferred deformation results and the input reference image.
To address this, we employ BBS to transform the grid’s
projection into the contour range of the reference image.
To compute the transformation parameters, peripheral grid
points are utilized as the reference origin, and a ray is emit-
ted towards the centroid of the image. The intersection point
between the ray and the image contour serves as the essential
matching point for the transformation, as illustrated in Fig. 2.

Step 2: Perspective Space Constraints. Following the ini-
tial registration transformation of the template’s grid points
in step 1, their accuracy in deformation inference is impacted.
Dependingon the types of errors that occur, they are primarily
categorized into two distinct groups. The group located near
the image’s center, obtained through feature point deforma-
tion, exhibits higher accuracy. Conversely, the group near the

Fig. 4 The constraint position for each grid point

image’s edge, interpolated from the deformation displace-
ment field parameterized by BBS, yields relatively lower
accuracy. The grid points in these two groups exhibit dis-
tinct deformation accuracy characteristics. The grid’s edge
portion is relatively sparse, resulting in larger actual deforma-
tion errors. Conversely, the grid points located in the center
of the image are densely distributed, resulting in smaller
errors. In contrast to the previous methods, a novel physics
simulator is introduced, relying on perspective space con-
straints derived from projected contours, as illustrated in
Fig. 3. The perspective space constraints adapt dynamically
in real-time to accommodate the deformation of the tracked
surface. Deformed targets are identified and extracted from
the camera-captured images, subsequently achieving pixel-
level accuracy in contour extraction for these targets. The
previously mentioned Moving Least Squares method is uti-
lized to fit the discrete contour data. The fitting function is
expressed as

f i t_contour(θ) = mls(θ, ρ, θ), (14)

where (θ , ρ) = {(θi , ρi )|θi , ρi ∈ C}. To establish the con-
straint space, we initiate the process by starting from the
fitted contour and connecting each point on the contour to
the camera. Collectively, these rays form an irregular sur-
face space that delineates the desired constraint boundaries.
In practical scenarios, the deformation motion range for
real templates remains uncertain. This uncertainty makes
determining the exact constraint space range challenging,
preventing the pre-saving of effective points constituting the
boundary conditions.

To address this issue, real-time computations are per-
formed to determine each grid point’s constraint position,
as shown in Fig. 4. For any given point Q(X ,Y , Z) on the
grid, the corresponding pixel coordinates projected onto the
imaging plane are calculated as follows:

123



Complex & Intelligent Systems

(a) Before Denoising (b) After Denoising

Fig. 5 Bilateral mesh denoising

xscr = fx · X
Z

+ cx ,

yscr = fy · Y
Z

+ cy,
(15)

where fx and fy denote the camera’s focal lengths in the
horizontal and vertical directions, respectively, following cal-
ibration, and cx and cy represent the offsets of the projection
screen’s coordinate centers. Substituting Eq. (15) into Eq.
(3) yields the polar coordinates (ρscr , θscr ) of the point Q
and determines the constraint range of Q’s polar diameter:
ρcon = f i t_contour(θscr ). As the motion range of the mesh
is confined within the perspective constraint space, Dirichlet
boundary conditions are employed in the physical simulator
to ensure ρscr ≤ ρcon . The method can be conceptualized
as operating a physics-based simulator within a transparent,
smooth, and irregular container, with fixed constraints estab-
lished at specific positions. In brief, themethod is represented
as an optimization problem for a physical simulator utilizing
implicit time integration under perspective space constraints:

min F(x) = 1

2�t2
(x − xn − �tvn)

T

M(x − xn − �tvn) + E(x),

s.t . ρi
scr − f i t_contour(θ iscr ) ≤ 0,

i ∈ {1, 2, . . . , |G|}, (16)

where (ρi
scr , θ

i
scr ) = cartT oPolar(xQi

scr− x̄, yQi
scr− ȳ). Prac-

tical experience indicates that the iterative Limited-memory
BFGS (L-BFGS) [46] algorithm efficiently resolves Eq. (16)
with rapidity.

Step 3: Bilateral Mesh Denoising. The method relies sig-
nificantly on the extraction and matching of feature points,
rendering it susceptible to environmental factors and result-
ing in unstable positions of feature points on the image. The
shaking of feature points is considered a form of noise, which
subsequently influences the positions of template grid points
in three-dimensional space. To address this issue, grid fil-

Fig. 6 The flowchart of our method with the perspective space con-
straint

tering was adopted to eliminate the noise, achieving good
results, as illustrated in Fig. 5.

Implementation

We write the backbone of our scheme in C++ and use Eigen
for matrix and vector operations. The Delaunay method
[47] is used for triangulating the template, and OpenGL
is employed for rendering, user interaction, and 3D visu-
alization. Video acquisition, camera calibration, and image
processing are achieved through OpenCV. The code runs on
a Dell laptop with an Intel Xeon Silver 2.20 GHz CPU and
a Quadro RTX8000 GPU.The flowchart of the method is
shown in Fig. 6.

Experiments and results

Ourmethod is characterized by its training-free nature,which
facilitates the replacement of 3D tracking objects. To eval-
uate the accuracy and robustness of these methods across
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Fig. 7 Texture images covered
by feature points

Fig. 8 Qualitative comparisons of deformation effects on templates
with varying bending degrees using different methods. For each row,
the degree of bending on the template increases gradually from top to
bottom

different bending degrees and deformation modes with real
data, four texture images featuring distinct feature point dis-
tributions were meticulously selected, as illustrated in Fig. 7.
Images captured by a monocular RGB camera were utilized
as input for the experiments. We acquire high-resolution
images of the template’s deformation frommultiple perspec-
tives and employ these images to perform 3D reconstruction.
The reconstructedmodel is then employed as the ground truth
within the framework of our comparative experimentation.

Comparison with existingmethods

Our approach is comparedwith state-of-the-artmethods such
as ROUBUSfT [13], recognized for its robustness, and IsMo-
GAN [33], noted for its deep learning-based universality.
Considering IsMo-GAN’s claim of good generalization and
the absence of original texture images, we directly assessed
its reasoning ability in template deformation using the pre-
trained model provided by the authors.

The primary contribution of ourmethod lies in its capacity
to accurately infer the actual deformation of the tem-
plate under significant bending and deformation conditions.
To demonstrate the superiority of this method, four dis-

tinct bending states were selected, and the 3D surfaces
reconstructed by various methods were compared. This
visual comparison facilitates an intuitive recognition of this
method’s effectiveness. We evaluated the capacity of dif-
ferent methods to infer the deformation of templates with
varying degrees of bending, as shown in Fig. 8. At low lev-
els of bending, various methods are capable of accurately
inferring the deformation of the template, consistent with the
actual outcomes. As the degree of bending increases, how-
ever, local areas of the template may become invisible, caus-
ing relevant feature points to disappear. Consequently, the
reconstruction error of ROUBUSfT significantly increases,
particularly at the edge of the template, where accurate infer-
ence becomes impossible. Despite its claimed universality,
the IsMo-GAN method exhibits poor deformation inference
performance across various states, failing to demonstrate its
potential. In addition to its inability to infer significant defor-
mation states, the 3D shapes reconstructed by IsMo-GAN
contain significant noise, resulting in an unsmooth surface.
Our method demonstrated excellent universality, indicating
its effective applicability to diverse tracking targets. Exten-
sive experiments were conducted to evaluate the adaptability
of this method for inferring deformations on templates with
various texture features and different bending degrees. The
results of these experiments are presented in Fig. 9. It is
evident that this comprehensive approach effectively infers
deformations across different states. However, it is essential
to acknowledge that the accuracy of feature point matching
and contour edge extraction play a crucial role in thismethod.
Consequently, localized errors and variations may occur in
the process of local and edge detection.

We selected a stationary state of the template and captured
the shape inference results at four different time points, as
depicted in Fig. 10. The results obtainedwith theROUBUSfT
method exhibited noticeable shaking, whereas our method
demonstrated excellent stability.

To further quantify the error in deformation inference, the
inferred point cloud is designated as S = {si ∈ R

3}i and the
reconstructed ground truth point cloud as G = {g j ∈ R

3} j .
Given that the point cloudS is obtained through inference and
the point cloudG is reconstructed from images captured from
multiple perspectives, they are inherently defined in different
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Fig. 9 Shape inference of templates in real scenes. From top to bot-
tom, each row represents the same texture. From left to right, each pair
of columns forms a group, where the left column represents images

captured from a monocular camera, and the right column displays the
results of shape inference. The level of template curvature varies across
different groups

Fig. 10 Shape inference results
of stationary templates at
different time

R
O
U
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U
S
fT

O
U
R
S

(a) Input RGB Image (b) Ground-truth (c) ROUBUSfT (d) Ours

high

low

Fig. 11 We show quantitative results as colour-coded error maps. For a the given RGB image, b the ground-truth shape, c reconstructed shape by
ROUBUSfT, d our reconstructed shape

coordinate systems. For convenience, coordinate system cal-
ibration is not performed. Instead, the Iterative Closest Point
(ICP) [48] algorithm is employed to register and align the
two sets of point clouds. This approach mitigates disparities
arising from the differing coordinate systems and facilitates
a more accurate comparison between S and G. Specifically,
the inference error between point cloud S and point cloud G

is evaluated by the Euclidean distance:

ErrS IC P ,G = 1

|S IC P |
∑

s∈S IC P

ming∈G‖s − g‖22 (17)

where S IC P represents the registered point cloud of S and
G using the ICP algorithm.
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Fig. 12 We quantitatively compared the shape inference errors under
different textures

We conducted error analysis on two distinct deformation
states. In the case of minor deformations, it was observed
that almost all local feature points of the template could
be accurately captured. Figure11 (upper row) shows that
the standard deviation error for ROUBUSfT was 1.84 mm,
whereas the corresponding error for the proposed method
was 1.99 mm. Overall, both methods exhibited a high level
of consistency. Conversely, in scenarios with significant
deformations where local feature points are obscured, the
proposed method demonstrated marked superiority over the
ROUBUSfT method. As illustrated in the lower row of
Fig. 11, the proposed method achieves an error of 4.18mm
compared to the ground truth, whereas the ROUBUSfT
method exhibits an error of 7.60 mm. This shows the con-
siderable advantage of the proposed method in accurately
estimating deformations under such conditions.

The deformation error of the proposed method across var-
ious textures was assessed, as shown in Fig. 12. Compared
to the ROUBUSfT method, the proposed approach not only
exhibits a comparatively lower error but also remarkable sta-
bility. Table 1 presents the maximum and standard deviation
of shape inference errors for templates with various textures
in different states. In Texture 1 (T1), the error generated by
the grid points is the largest among the three cases, reaching
50.797mm, primarily due to the significant distance between
the target and the camera. Texture 3 (T3) exhibits a higher
relative error compared to Texture 2,mainly due to the inabil-
ity to detect feature points around the image. However, the
proposed method consistently outperforms other methods in
both maximum error and standard deviation across all cases.
Specifically, the proposedmethod achieves amaximum error
reduction of sixfold compared to theROUBUSfTmethod and
a threefold reduction in maximum standard deviation.

Table 1 Inference errors for templates with different textures

Type Method T 1 T 2 T 3

Max Ours 22.331 4.697 8.189

ROUBUSfT 50.797 26.907 22.056

SD Ours 9.726 2.268 2.80

ROUBUSfT 11.182 6.301 4.569

Bold highlights the better result in the comparative experiment

Fig. 13 The fivemarker points (A, D, E, F, G) are employed for tracking
in both the true spatial coordinates and our deformation inference

Evaluation and performance

An optical tracking device (NDI Polaris Vega), featuring an
inaccuracy of only 0.2 mm, was employed to determine the
true spatial coordinates (NDI coordinates) of the deformable
template and compare them to our deformation inference. For
convenience, fivemarker points (A, D, E, F,G) on the tem-
platewere selected, as shown in Fig. 13, and their coordinates
were recorded in both NDI coordinates and the deformation
inference (camera coordinates) for two different deforma-
tion states, as detailed in Table 2. The goal is to quantify the
deformation errors between the actual deformation in NDI
coordinates and the reconstructed results in camera coor-
dinates. There is no necessity to align the two coordinate
systems. We provide the 3D error metric

ε = 1

|R|
∑

(P,Q)∈R

‖P − Q‖, (18)

where R represents a set of point pairs with P in camera
coordinates and Q as its corresponding ground truth 3D
point in NDI coordinates. For the five markers specified,
the errors across two distinct deformation states were mea-
sured as ε1 = 5.96 mm and ε2 = 4.21 mm, respectively.
The segments AG, FG, and DE were selected and ren-
dered using Blender, as illustrated in Fig. 14. The computing
efficiency of this method has been impacted by the imple-
mentation of numerous enhanced strategies. Fifty iterations
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Table 2 The coordinates of the marker points are in two different deformation states, both in the NDI coordinate system and the camera coordinate
system

Point Deformation 1 Deformation 2

NDI Camera NDI Camera

A (123.66, 144.92, − 1229.05) (− 95.73, − 77.8, 19.837) (116.37, 117.44, − 1305.35) (− 90.028, − 76.312, − 10.184)

D (119.11, 240.87, − 1176.87) (3.6115, − 87.277, − 31.247) (103.33, 209.22, − 1340.66) (6.3932, − 89.089, − 3.3607)

E (131.81, 292.03, − 1206.81) (58.274, − 71.34, − 7.8084) (115.77, 259.30, − 1376.20) (56.374, − 72.288, 22.803)

F (246.17, 310.19, − 1242.77) (84.334, 51.942, 18.866) (234.28, 290.97, − 1376.56) (77.781, 49.95, 16.323)

G (229.00, 199.04, − 1189.53) (− 34.587, 29.411, − 21.539) (218.65, 180.14, − 1323.53) (− 32.088, 30.497, − 19.695)

were conducted on a 24× 32 meshed template, approximat-
ing the size of A4 paper, resulting in an average processing
time of 4 s per deformation inference. The recently intro-
duced method required approximately 3 s, constituting 75
percent of the total processing time. To further understand
the performance bottleneck of our method, we divided it into
four main components: image segmentation, contour fitting,
physics simulation, and bilateral mesh denoising. Physics
simulation encompasses the constrained physics simulator,
as outlined in section“Constrained physics simulator”, and
position-based dynamics, as shown in Fig. 6. Different mesh
sizes for the template were employed, ranging from 8 × 16
to 32 × 40, with seven incremental steps. For each dataset,
50 deformation inferences were conducted, and the average
execution time was calculated, as illustrated in Fig. 15. With
the increase in mesh size, there is a corresponding rise in the
overall processing time. Contour fitting and physics simula-
tion, key components of this method, exhibit a nearly linear
increase, accounting for only about 20 percent of the overall
processing time. Conversely, image segmentation and bilat-
eral mesh denoising, key components of the comprehensive
solution, constitute over 70 percent of the processing time,
highlighting a critical issue impacting the performance of
our approach. The deformation error for various mesh sizes
was also evaluated, as illustrated in Fig. 16. Upon reach-
ing a mesh size of 24 × 32, both the mean and median
deformation errors of the grid points reach their minimum
values. With the continued increase in mesh size, a higher
amount of computational resources is required. However,
the accuracy of the deformation inference remains relatively
unchanged. The determination of mesh size should be based
on the actual physical dimensions and texture characteristics
of the deformable template, rather than on the assumption
that larger sizes are inherently superior.

Discussion and future directions

We employ existing deep learning models to perform object
detection and segmentation on images captured by monocu-
lar cameras, significantly reducing the real-time operational

efficiency of the system. For a sparsely populated grid
measuring 8x16, this component accounts for nearly 50
percent of the total execution time. To improve runtime
efficiency, exploring alternatives like utilizing smaller and
more efficient image segmentation models or devising tar-
geted algorithms suited to specific application scenarios is
beneficial. Such approaches hold the potential to signifi-
cantly enhance overall performance. During the preliminary
refinement of feature point positions based on image con-
tours, a simple ray intersection method is employed due to
its computational efficiency and robustness. However, the
newly adjusted positions of the feature points exhibit sig-
nificant errors, which considerably impact the subsequent
deformation estimation. Dynamically adjusting the positions
of global feature points while correcting local features on the
edges can be considered. This approach aids in preventing
issues related to dense local features and sparse internal fea-
tures, potentially complicating the optimization process. By
modifying local and global features simultaneously, a more
balanced distribution of feature points can be achieved, thus
facilitating the optimization process. In the core stage of
deformation estimation, our method, based on perspective
space constraints, facilitates the shape inference of real tem-
plate deformations with notable speed and precision. The
edges of the template image captured by the camera are
extracted. These edges are subsequently transformed from
the pixel coordinate system to the world coordinate system.
This transformation process enables the determination of the
actual template’s motion range in three-dimensional space.
However, in regions lacking visibility and feature points, this
method tends to introduce errors. We believe that this is due
to the lack of constraints in the process of free deformation
and is also influenced by the iteration count of the physical
simulator, as convergence is not achieved. Grid size signif-
icantly influences the speed and accuracy of this method.
Generally, grid size determination should consider the tem-
plate’s physical dimensions and texture characteristics. With
the expansion of the template and the increase in feature
points, a larger grid becomes necessary. Having a suitably
dense grid that precisely represents the geometric shape of
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Fig. 14 Distance evaluation in different deformation states. Different
colors are used to represent the straight-line distances between various
marker points of interest. The red ones with brackets are the ground-
truth

the actual template and encompasses all necessary feature
points is crucial for deformation inference. The primary con-
tribution of this work is integrating a constrained physical
simulator into the SfT method. We have demonstrated the
impact of physics-based simulation on reconstructing 3D
surfaces. This method compensates effectively for the lim-

Fig. 15 The computational time of different components within one
deformation inference varies by mesh size

Fig. 16 Estimation of deformation inference errors for different mesh
sizes

itations of visual information, yielding more realistic and
precise reconstruction outcomes. It is noteworthy that differ-
ent simulators suit different material types, and simulation
resultsmayvary depending on thematerials’ physical proper-
ties. In thismethod, amass-springmodel is employed,which,
while simple and efficient, may exhibit slightly lower accu-
racy compared tomore sophisticated techniques such as finite
element analysis. A crucial parameter within themass-spring
model is the springs’ stiffness coefficient.Assigning different
stiffness coefficients to each spring in the system allows for a
better approximation of the simulated objects’ physical prop-
erties. Lloyd et al. [44] proposed a parameter identification
method that achieves accuracy comparable to finite ele-
ment methods within the spring-mass framework. However,
desirable results have been achieved in this implementation
without the extensive fine-tuning of these parameters, lead-
ing to the decision to forgo further exploration in this area.
In future work, it is essential for us to explore efficient and
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rapid object detection and segmentation methods tailored to
specific template shapes, thereby enhancing the overall oper-
ational efficiency of the system.At the deformation inference
stage, detecting a broader range of prior features fromvarious
perspectives is crucial to accurately determining the type and
extent of template deformations. This will facilitate the opti-
mization of deformation estimationmethods and improve the
accuracy of deformation estimation. Within the domain of
learning-based approaches, a variety of models have already
demonstrated significant potential. With an adequate volume
of data samples, thesemodels can provide initial estimates for
traditional methods, thus enhancing the convergence speed
of deformation estimation.

Conclusions

We have introduced an improved Shape fromTemplate (SfT)
method that effectively addresses the issue of shape infer-
ence errors arising from the invisibility of feature points in
cases of significant deformations, which traditional methods
struggle to handle. Utilizing images captured by a monoc-
ular RGB camera, this method extracts the contour of the
target template, serving as the basis for establishing perspec-
tive space constraints. Ultimately,a physics-based simulator
is employed to facilitate free motion and infer the 3D shape
from 2D images. To evaluate this method’s performance,
experiments were conducted on templates with varying
texture features, bending degrees, and deformation states.
Particularly, we focused on scenarios where feature points
were unobservable and quantified the experimental errors
accordingly. The results indicated that our method generally
outperforms the comparison method, with more noticeable
improvements observed in cases involving substantial curva-
ture. Our method effectively mitigates the bending inference
errors associated with feature point based SfT methods and
holds significant application value in the computer vision and
virtual reality domains.
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