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Abstract

To counterbalance the abilities of global exploration and local exploitation of algorithm and enhance its comprehensive
performance, a multi-objective particle swarm optimization with a competitive hybrid learning strategy (CHLMOPSO) is
put forward. With regards to this, the paper first puts forward a derivative treatment strategy of personal best to promote
the optimization ability of particles. Next, an adaptive flight parameter adjustment strategy is designed in accordance with
the evolutionary state of particles to equilibrate the exploitation and exploration abilities of the algorithm. Additionally, a
competitive hybrid learning strategy is presented. According to the outcomes of the competition, various particles decide on
various updating strategies. Finally, an optimal angle distance strategy is proposed to maintain archive effectively. CHLMOPSO
is compared with other algorithms through simulation experiments on 22 benchmark problems. The results demonstrate that
CHLMOPSO has satisfactory performance.

Keywords Multi-objective particle swarm optimization - Derivative treatment strategy - Hybrid learning - Optimal angle

distance

Introduction

In numerous instances of engineering practice and scientific
research, multi-objective optimization problems (MOPs) [1]
are prevalent. Their objectives often conflict with each other,
and optimization of these objectives must be done simultane-
ously. As a consequence, what is usually obtained in MOPs
is a group of solutions that are relatively superior among the
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objectives, known as Pareto optimal solutions [2]. Obtaining
a group of solutions that converge to the true Pareto front
(PF) [3] as much as feasible and are uniformly distributed on
it is the most critical purpose of solving MOPs.

Due to the universality and group-based search character-
istics of multi-objective evolutionary algorithms (MOEAs),
which can generate multiple solutions in parallel. As a
result, MOEAs have been greatly developed, and a signif-
icant number of MOEAs have been successfully applied to
solve MOPs, for instance, firefly algorithm (FA) [4], genetic
algorithm (GA) [5], ant colony optimization (ACO) [6], dif-
ferential evolution (DE) [7], and particle swarm optimization
(PSO) [8]. Among them, PSO was inspired by the foraging
behavior of birds. It has the advantages of fast convergence,
a simple mechanism, and so on. After some studies, it was
found that PSO has good potential to be extended to solve
MOPs.

Since the presentation of multi-objective particle swarm
optimization (MOPSO) [9] in 2002, many researchers have
improved it. MOPSOs can be approximately subdivided
into three categories according to different strategies. The
first category is MOPSOs based on Pareto dominance rela-
tionship. The representative MOPSOs include the speed-
constrained MOPSO (SMPSO) [10], the MOPSO based on
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global margin ranking (MOPSO/GMR) [11], and the vortex
MOPSO (MOVPSO) [12]. The second category is indicator-
based MOPSOs. The representative MOPSOs include the
MOPSO based on virtual Pareto front (MOPSO/vPF) [13],
the MOPSO based on R2 indicator (ANMPSO) [14], and
the MOPSO based on hypervolume (MOPSOhv) [15]. The
third category is decomposition-based MOPSOs. The repre-
sentative MOPSOs include the MOPSO based on decompo-
sition (AMOPSO) [16], the decomposition-based MOPSO
(MPSO/D) [17], the MOPSO based on multiple search
strategies (MMOPSO) [18], and the external archive-guided
MOPSO (AgMOPSO) [19].

Although the above algorithms improved MOPSO from
different perspectives to solve MOPs, there are still two prob-
lems that need to be further solved in an expansion of PSO to
settle MOPs. How to select appropriate personal best (pbest)
and global best (gbest) is the first issue that needs to be
solved. Because different pbest and gbest will pilot parti-
cles to approximate the true PF in different directions, which
influences the search ability of algorithm in the evolutionary
process. Selecting appropriate pbest and gbest can efficiently
find optimal solutions with good properties. How to effec-
tively maintain the external archive is the second issue that
needs to be solved. Since the role of archive is to reserve
non-dominated solutions, it provides good candidate solu-
tions for the selection of gbest. Therefore, it is inevitably
crucial to maintain the external archive effectively in order
to reduce the computational complexity of the algorithm as
well as to ensure that the non-dominated solutions in the
external archive remain well-distributed.

For the past few years, numerous researchers have inten-
sively investigated the above two problems and put forward
many improved MOPSOs. For example, the new selection
strategies of pbest and gbest were proposed in the litera-
ture [13, 20-22]. Li et al. [13] proposed a newly defined
virtual generational distance indicator to select appropriate
gbest, and designed an adaptive selection strategy of pbest
based on different evolutionary states to promote the search
efficiency of the algorithm and adaptively strengthen the
exploitation and exploration abilities of particles. Wu et al.
[20] designed a new selection strategy of gbest according
to different evolutionary states monitored by ESE, which
adaptively selected global best solutions to enhance the equi-
librium between exploration and exploitation. Han et al. [21]
chose an appropriate gbest adaptively by introducing the
solution distribution entropy, thus improving the search per-
formance in terms of convergence speed and convergence
accuracy. Sharma et al. [22] chose the solution with the min-
imum penalty boundary intersection as gbest of the particle,
which improves the performance of algorithm in terms of
diversity and convergence. In addition, many researchers
[23-25] effectively maintained external archive. Han et al.
[23] used the gradient method to maintain the external archive
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and used the gradient information to solve the MOPs, which
can obtain good Pareto sets, achieve smaller test errors at a
faster rate, and improve the speed of convergence and local
exploitation during the evolutionary process. Cui et al. [24]
designed the diversity archive and the convergence archive
by introducing the two-archive strategy into MOPSO and
updated them in different ways to achieve a balance between
convergence and diversity. Li et al. [25] updated the exter-
nal archive by using a method based on dominant difference
to improve the discriminability of particles that are difficult
to obtain in high-dimensional space, and the experimental
results also show that the method has better performance
in terms of convergence and diversity and low complexity.
From the above-mentioned literature, it is evident that the
performance of algorithms depends greatly on the choice of
the two best solutions and archive maintenance.

On the basis of the above review and analysis, a multi-
objective particle swarm optimization with a competitive
hybrid learning strategy (CHLMOPSO) is put forward for
the sake of advancing algorithm robustness and achieving
harmonious equilibrium between the convergence and diver-
sity in dealing with MOPs. The distinctive contributions of
CHLMOPSO that have been put forward are as follows:

(1) CHLMOPSO proposes a new update strategy of pbest.
For further enhancement of the optimization ability of the
particles, the derivative treatment of the stagnant particles
without better pbest is carried out, which is more helpful to
find better pbest.

(2) An adaptive strategy is devised to adjust the flight
parameters in accordance with the evolutionary state of the
particles, which is adjusted by using their ability to find
their personal best solutions. This strategy can equilibrate
the exploitation and exploration abilities of algorithm.

(3) A competitive hybrid learning strategy is proposed.
This strategy mainly combines the advantages of MOPSO
and competitive swarm optimizer (CSO) [26], determines the
winners and losers through multiple methods of competition,
and then updates them by using the updating strategies of
MOPSO and CSO, respectively.

(4) An optimal angle distance strategy is proposed to
maintain the archive effectively. The optimal angle distance
considers the convergence distance of solutions and their
minimum angle with other solutions at the same time, so
as to increase the convergence speed of algorithm.

The arrangement of the remainder of this paper is as fol-
lows. Sections "Preliminaries and Background" and "The
Proposed CHLMOPSO" describe the related work and the
details of CHLMOPSO, respectively. Sections "Experimen-
tal Settings" and "Comparison of Experimental Results"
present the experimental portion, in which CHLMOPSO
is compared with the comparison algorithms on three suits
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of benchmark problems to assess the effectiveness of algo-
rithms. In the end, the conclusions of CHLMOPSO are
provided in section "Conclusion".

Preliminaries and background

MOPs
In a general case, a MOP [27, 28] can be expressed as:

min F(x) = (fi(x), o), -+, fu(e)’ 0
s.t. x =(x1,x2,---,xp)€X

where F(x) represents the objective vector of M-dimension,
fi (x) represents the objective function of the i-th dimension,

M is the number of objectives, and x is a D-dimensional

decision vector in the decision space X C RP.

The Pareto dominance relationship could be utilized to
evaluate the quality of solutions in MOPs for the reason that
the objectives of MOPs are in conflict with each other. That
is, a solution x, dominates the other solution xg, denoted
as xg < xg,ifand only if Vu € {1, 2, --- , m} : f,(xy) <
fu(x,g)AEIv ef{l,2,---,m}: filxqg) < fv(xﬁ).Asolution
in MOPs is generally referred to as a Pareto optimal solution
if it is not dominated by any other solution. The set of all
Pareto optimal solutions in the decision space is known as
Pareto optimal set (PS), and its image in the objective space
is termed as Pareto front (PF).

MOPSO

Each particle i in MOPSO [9] encompasses a velocity vec-
tor v; = (vi,l, Vi, v,',D) and a position vector x; =
(xi,1, Xi,2, -+, Xi,p), where i = 1,2, ---, N, N denotes
population size, and D is the dimension of decision space.
Subsequently, throughout the ¢ 4 1-th iteration, the velocity
of the i-th particle is updated as follows:

vt = wvl , + e (pbl y — xl g) + cara(gbl g — )

@

1,2, -,
and gbl =

where ¢ is the number of iterations, d =
D, pb; = (pbf,l, pbl 5 -, pbf,D)

(gbf, 1 8bi o
i-th particle, respectively, w stands for inertia weight, ¢; and
¢y denote learning factors, and r; and rp represent two ran-
dom numbers uniformly generated in [0,1]. Then, its position
is updated as follows:

, gbf’ D) represent pbest and gbest of the

t+1 _ ot t+1
Xid =XiqTVy 3

The proposed CHLMOPSO

The present paper puts forward a competitive hybrid learning
MOPSO to increase the holistic performance of algorithm.
The algorithm is primarily made up of four components, and
its main framework is shown in Fig. 1. First and foremost,
the derivative treatment strategy is carried out on the stag-
nant particles without better pbest, which is more helpful to
find better pbest. In the next place, for the sake of balancing
the abilities of exploration and exploitation of algorithm, the
flight parameters are adjusted adaptively in accordance with
the evolutionary state of particles. Additionally, the winners
and losers are determined through multiple competitions, and
the hybrid learning strategies of MOPSO and CSO are used to
guide them to fly. Finally, the optimal angle distance strategy
is set forward to maintain the archive efficiently. The follow-
ing sections go into great depth on the essential components
of CHLMOPSO.

The derivative treatment strategy of stagnant
particles

Most present MOPSOs choose their pbest by the Pareto dom-
inance relationship between the existing pbest and the newly
discovered solution, while ignoring the evolutionary state of
population. Additionally, when the existing pbest and the
newly discovered solution do not dominate each other, ran-
domly selecting one of them may cause the particles to fall
into the oscillation search process, thus affecting the search
efficiency of population.

Here, a derivative treatment strategy is put forward for the
sake of ameliorating the issues mentioned above. The algo-
rithm initially determines if there is a dominance relationship
between the newly discovered candidate pbest (marked as
pbestyey) and the existing pbest (denoted as pbest,;;) when
the particle discovers a new candidate pbest. If pbest,e,
dominates pbest,;q, it means that the pbest of the current gen-
eration of the particle is better than the pbest of the previous
generation, thus indicating that the particle is learning and
evolving without stagnation, then pbest,,,, is determined to
be the pbest of the current generation of the particle. Oth-
erwise, if pbest,;; dominates pbest,., or the two do not
dominate each other, which means that the pbest of the parti-
cle has not been updated to get new information, that is, there
is a stagnation phenomenon, which we call the stagnant parti-
cle, and pbest,;; of the particle will be derived. This strategy
helps the stagnant particles to find new possible candidate
pbest. The particular description of the derivative process of
pbest of the stagnant particles is presented hereunder.

Procedure 1: Adaptively determine the derivative number
of new candidate pbest for the stagnant particles during each
iteration, where the number of derivatives is constrained by
the upper and lower limits of derivatives. Additionally, the
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Fig.1 The framework of CHLMOPSO

number of candidate pbest here is adaptively reduced with
the number of iterations. This is to derive a more appropri-
ate number of candidate pbest and improve the optimization
ability of particles. Inspired by [29], at the 7-th iteration, the
derivative number of pbest,; of each stagnant particle is
determined by Eq. (4):

Procedure 2: After determining the number of candidate
pbest to be derived, new candidate personal best solutions
canpbest = {canpbestl, canpbesty, - -, canpbestp(,)}
are generated by deriving the pbest,;; of the stagnant par-
ticles. These are the concrete steps:

o wp—1p) x (1=2x (t/T)’ +1p/ p—1p)), 0=1=(T/2) “
p(t) = 2
wp —1p) x (2% (T =0/ T)’ +1p/ @p~1p)), (T/2) <1 =T
where p(t) is the quantity of candidate pbest that each stag-
nant particle created for the ¢-th iteration, T stands for the canpbest; j(t) = pbestoa; ; (1) — Ax () (ubj —1bj)  (5)

number of maximum iteration, 1 < Ip < up < 5, up is
the maximum amount of derivatives, and /p is the minimum
amount of derivatives.
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the pseudo-code of the derivative treatment strategy of stag-
nant particles.

Algorithm 1: The derivative treatment strategy of the stagnant particles

Input: pbestou, pbestuew, up, Ip, 7, ,
Output: The updated pbest.

1:if pbestiew < pbestys then
2: pbest = pbestiew;

and 7;.

3: else
4: Calculate the number p(t) of derivative candidate pbest of stagnant particle by Eq. (4);
5: for i=1to p() do
6: Compute the derivative additional distance Ax(t) by Eq. (6) and Eq. (7);
7: Generate new candidate canpbest; for personal best by Eq. (5);
8: if canpbest; < pbestos then
9: Reserve canpbest;;
10: else
11: Remove canpbest;;
12: end if
13: end for
14: if isempty(canpbest) do
15: pbest = pbestoiq;
16: else
17: The reserved individuals are sorted by Pareto dominance relationship and the better
one is selected as the pbest of the stagnant particle;
18: end if
19: end if
Xy =ry Xubj,xy=r; x1bj, @)

where canpbest;_ ;(t) is the j-th dimension of the i-th deriva-
tive candidate pbest, ub; and Ib; represent the upper limit
and lower limit, respectively. Ax (¢) represents the additional
distance derived, x, represents the maximum additional dis-
tance derived, which is determined by the product of the
user-defined upper limit ratio 7, and ub;, x; represents the
minimum additional distance derived, which is determined
by the product of the user-defined lower limitratio 7; and /b,
and r is the absolute value of a Gaussian random number with
a mean of 0 and a variance of 1/9. Similar to the literature
[29], the parameters r,, and r; in this paper are selected in the
ranges (0.02, 0.7) and [0, 0.02], respectively.

Procedure 3: Firstly, the derivative particles are com-
pared with the pbest,;; by Pareto dominance. If there is a
dominance relationship, the algorithm will determine who
becomes pbest of the stagnant particle. If there is no dom-
inance relationship, the algorithm randomly selects one of
them as the pbest of the stagnant particles. Algorithm 1 gives

Adaptive strategy for parameters adjustment

The three flight parameters w, c¢1, and ¢ are critical in
MOPSO. The majority of experiments [21, 23, 24] have
demonstrated that the larger w and ¢y, and the smaller ¢
can stimulate better global exploration, while the smaller
o and ¢y, and the larger c¢; are conducive to better local
exploitation. As a consequence, for the purpose of equili-
brating the exploration and exploitation abilities, an adaptive
flight parameter adjustment strategy is designed through the
evolutionary state of each particle.

Procedure 1: Through the above analysis, the evolution-
ary state of each particle is first evaluated with respect to the
dominance relationship between the current pbest and the
previous pbest, thereby designing an adaptive flight param-
eter strategy.

disboS! (1) + disPo (1) )
disPPS! (1) + disi ()

Api(t) =

@ Springer
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where Ap;(t) is the adaptive parameter of the i-th particle,
disE2! (1) and disﬁl;f *"(¢) stand for the maximum and min-
imum distance between all particles and pbest, respectively,
and dis;(t) signifies the distance between the i-th particle
and its corresponding pbest.

Procedure 2: Based on the above considerations, accord-
ing to the adaptive parameters of each particle, the adaptive

flight parameters proposed in this paper are expressed as:

wo X (1 + Ap;i(t)), if pbesti(t —1) > pbest;(t)
wo, if pbesti(t —1) <> pbest;(t)
)]
ci, X (1 —Ap;()), if pbest;(t —1) < pbest;(t)
c1,i(t) = {

wo X (1 — Api(t)), if pbesti(t — 1) < pbest;(t)
wi (1) = {

c1, X (1 +Ap;i(t)), if pbest;(t —1) > pbest;(t)

Cl,» if pbesti(t — 1) <> pbest;(t)

(10)
¢, X (1 = Ap;(t)), if pbesti(t —1) > pbest;(t)
€2,i(t) = § 2, x (1 + Api(r)), if pbesti(t — 1) < pbest;(r)
€2,, if pbesti(t — 1) <> pbest;(t)

(11)

The competitive hybrid learning strategy

In most meta-heuristic algorithms, it is fundamental to effec-
tively promote convergence and diversity. In the standard
MOPSO [9], every particle in the population learns in the
same way, so the learning mode of particles is too single,
which affects the exploration ability and the diversity. There-
fore, inspired by the way of improving population diversity in
CSO [26], this part puts forward a competitive hybrid learn-
ing strategy to update the particles. Algorithm 2 displays the
corresponding pseudo-code.

Algorithm 2: The competitive hybrid learning strategy

Input: The population P, the population size N, @, ¢, and ¢,.

Output: The updated particles.
1: for i=1 to floor(N/2) do

% The floor function is integer in the direction of negative infinity.

2:  Randomly select two particles X, and X, from population P;

3 if X, <X, then

4 X, =X, X, =X,;

5:  elseif x, <X, then

6: X, =X, X, =X;

7 else

8 if £, >FE, then

9: X, =X, X =X,;
10: else

11: X, =X, X=X
12: end if

13:  end if

% Compare the dominance relationship between the two particles.
% X,, is winner and X, is loser.

%Compare the evolutionary ability of the two particles.

14: Remove X; and X, from the old population, add Xx,, and X, to the new population;

15: end for
16: Update the winners by Eq. (2) and Eq. (3);

17: Update the losers by Eq. (13) and Eq. (14);

18: return particles.

where w, = 0.4, c¢1, = 2, ¢, = 2. During the search
process, the proposed adaptive flight parameter adjustment
strategy can find the appropriate flight parameters for each
particle. This is beneficial to accelerate convergence speed
of the algorithm approaching the true PF and balance global
exploration and local exploitation abilities of the algorithm.

@ Springer

Procedure 1: The pairwise competition mechanism in
typical CSO only compares the fitness values of two par-
ticles, so the method of comparison is relatively simple.
Therefore, in this section, a multi-competition method is pro-
posed to determine the winners and losers. Firstly, the basic
principle of Pareto dominance is introduced into the com-
petition mechanism to judge whether there is dominance
relationship between two randomly selected particles. The
non-dominated particle wins and the dominated particle loses
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if there is a dominance relationship. Otherwise, an evolu-
tionary ability comparison is used to distinguish the winner
and loser. The particle with strong evolutionary ability is the
winner, and the particle with weak evolutionary ability is the
loser. The evolutionary ability here stands for the ability of
particles to discover their own personal best. The evolution-
ary ability of the i-th particle is described as:

M
g0 = | 3 (20 - e - ) (12)
m=1

where flp ff”(t) and flp ff”(t — 1) denote the m-th fitness
value of the personal best solutions of the i-th particle, and
M is the number of objectives.

Procedure 2: After the above competition, the hybrid
learning strategy is proposed to update the winners and losers.
The winners and losers are updated in different ways, and the
MOPSO method and CSO method update the winners and
losers, respectively, thus increasing convergence and diver-
sity. By combining the updating strategies in MOPSO and
CSO, the algorithm has attained favorable equilibrium in con-
vergence and diversity. Therefore, the winners are updated
by (2) and (3). Accordingly, the losers are updated to:

o1 = r3ul + (NS - x!) (13)
Xt = xf o)t (14)

where r3 and r4 represent two random numbers uniformly
generated in [0,1], and N S] is a sample of learning randomly
selected by the losers from the archive.

The archive maintenance of optimal angle distance

In most existing MOPSOs, as the number of iterations of the
algorithm increases, so does the number of non-dominated
solutions. Due to the limited size of the archive, an adequate
strategy is needed for the effective maintenance of archive.
Therefore, in CHLMOPSO, a strategy combining the adap-
tive grid and the optimal angle distance (OAD) is proposed
to maintain the external archive . As shown in Algorithm 3,

when the number of non-dominated solutions in the archive
is larger than predefined archive size, the solutions with high
density in the adaptive grid are deleted by using the OAD
strategy, so that the number of stored solutions does not
exceed the predefined archive size, so as to improve con-
vergence speed of the algorithm in the evolution process.
Procedure 1: The optimal angle distance considers both
the convergence distance (ConD) of solutions and their min-
imum angle to other solutions with high density. First of
all, the convergence distance of the non-dominated solu-
tions is calculated, and the fitness values of solutions need to
be transformed before calculation. Denote the fitness values
of all solutions in the grid G which have the largest den-

sity as Fg = {F(NSl), F(NS>), -, F(NS|G|)}, where
|G| is the number of solutions in G. Transform Fg to
Fg/ = {FI(NS)), FI(NSy), -+, FI/(NSjg|)} by the fol-

lowing method:
FI(NS;) = F(NS;) — zuin (15)

where NS; is the i-th non-dominated solution in the grid
G,i =1,2,---,]|G|, F(NS;) and F/(NS;) are the fit-
ness values before and after the transformation of the i-th
non-dominated solution in the grid G, respectively, and
gt = (2 g o2,
ness value in each dimension of F. Then, the convergence
distance of the solutions is calculated by Eq. (16).

) represents the smallest fit-

ConD(NS;) = [F/(NS) 2 (16)

Procedure 2: Next, the optimal angle distance strategy
for external archive maintenance is described. As shown in
Eq. (17), the OAD consists of the ratio of the convergence dis-
tance of the non-dominated solution to the minimum angle,
hence, the solutions can be evaluated more comprehensively.
The smaller OAD value, the better quality of the solutions.
The OAD is defined as:

ConD(N S;)

NSjIél(i;r’lj#i<F(NSi), F(NS;))

OAD(NS;) =

(amn

@ Springer
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where F (N S;) and F (N S;) stand for the fitness values of the
solutions N S; and N S, respectively,and (F (N S;), F(NS;))
is the angle between the vectors F (N S;) and F (N S;).

At first, the initial population P and archive A are gen-
erated in the initialization stage of lines 1-2. After that,
CHLMOPSO begins the cycle of the population search pro-

Algorithm 3: The archive maintenance of optimal angle distance

Input: The updated population P, the archive A4, the predefined archive size N,.

Output: The updated archive 4.
1: Add the updated population to the archive 4;

2: Update the archive by Pareto dominance relationship firstly;
3: Calculate the density of particles by adaptive grid strategy;

4: while size(4) >N, do

5: Find the grid G with the most non-dominated solutions;

6: Translate the fitness values by Eq. (15);

7: Calculate the ConD values by Eq. (16);

8: Calculate the optimal angle distance of the solutions by Eq. (17);
9: Sort the OAD of the solutions in ascending order;

10: Remove the solutions with larger OAD values from grid G;

11: end while
12: return A4.

General framework of CHLMOPSO

The main components of CHLMOPSO are introduced in
detail above, namely the derivative treatment of pbest of
the stagnant particles, the adaptive adjustment of flight
parameters, the competitive hybrid learning strategy, and the
maintenance of external archive through the optimal angle
distance. The pseudo-code of CHLMOPSO is shown in Algo-
rithm 4.

cess in lines 3-8. In line 4, firstly, the pbest of stagnant
particles is derived by Algorithm 1. Then, in line 5, as
described in section "Adaptive strategy for parameters adjust-
ment", the flight parameters are adjusted adaptively with
respect to the evolutionary state of particles to balance the
exploration and exploitation abilities. Then, in line 6, the
competitive hybrid learning strategy in Algorithm 2 is used
to update the particles. Finally, in line 7, the optimal angle
distance of Algorithm 3 is used to effectively maintain the
archive. The above-mentioned evolutionary process is dupli-
cated until the maximum number of iterations is achieved
and the final archive A is output.

Algorithm 4: The general framework of CHLMOPSO

Input: N, N4, and T.
Output: The external archive 4.
: Initialize population P;
: Initialize an empty archive 4;
:while 7 <7 do
Update pbest using the Algorithm 1;

Update the winners and losers using the Algorithm 2;

Update the archive 4 using the Algorithm 3;

: end while

:return A.

1
2
3
4
S: Adjust the flight parameters adaptively according to Section 3.2;
6
7
8
9
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Fig.5 Approximation PF of eleven algorithms on DTLZ6 test problem
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test problems Problems N M D FEs
ZDT1 ~ZDT3 200 2 30 10,000
ZDT4 and ZDT6 200 2 10 10,000
UF1 ~ UF7 200 2 30 10,000
UF8 ~ UF10 200 3 30 10,000
DTLZ1 200 3 7 10,000
DTLZ2 ~ DTLZ6 200 3 12 10,000
DTLZ7 200 3 22 10,000
Table 2 1GD values of CMOPSO, NMPSO, MPSOD, MOPSOCD, MOPSO, and CHLMOPSO on 22 test problems
Problem IGD CMOPSO NMPSO MPSOD MOPSOCD MOPSO CHLMOPSO
ZDT1 A 3.1961e—3 3.2785e—2 9.7802e—2 2.3465e—2 7.3347e—1 3.0056e—3
S 4.79e—4 1.52e—2 4.15e—-2 5.03e-2 2.22e—1 1.18e—4
w A — — 2 —
ZDT2 A 2.9273e—-3 2.4506e—2 1.6670e—1 1.4050e—1 1.3435e+0 3.2928e—3
S 4.12e—4 2.33e-2 9.12e-2 1.8%—1 4.12e—1 1.71e—4
w + — - - -
ZDT3 A 3.8764e—3 8.9527e—-2 2.2761e—1 5.5138e—2 8.6668e—1 3.8435¢-3
S 8.76e—4 2.10e-2 1.44e—1 5.47e-2 1.96e—1 2.43e—4
w ~ — — — -
ZDT4 A 2.0282e+1 1.6472e+1 3.5312e+1 1.8825e+1 1.3601e+1 7.9258e—1
S 6.02e+0 9.5%+0 7.84e+0 7.24e+0 4.90e+0 1.37e—-1
W — — — — —
ZDT6 A 1.5779e-3 2.2303e—3 1.7975e—-2 3.5327e—3 3.1725e—1 2.4231e—3
S 2.90e—5 1.91e—4 1.20e—2 2.59e—3 1.02e+0 9.74e—5
w + + - — -
UF1 A 9.7306e—2 1.2996e—1 2.7838e—1 6.3427e—1 5.3461e—1 1.4149e—1
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Table 2 (continued)

Problem IGD CMOPSO NMPSO MPSOD MOPSOCD MOPSO CHLMOPSO
S 2.37e-2 3.09e—2 5.59e—2 1.20e—1 1.00e—1 1.42e—2
w + + - - -

UF2 A 6.4510e—2 8.2393e—2 1.1551e—1 1.4207e—1 1.0389e—1 8.0615e—2
S 6.97e—3 6.75¢e—3 8.13e—3 1.51e—2 9.48e—3 5.63e—3
w + ~ - - -

UF3 A 3.7866e—1 3.6336e—1 4.9795e—1 3.943%e—1 5.0913e—1 3.0547e—-1
S 4.46e—2 5.66e—2 1.44e—2 8.20e—2 2.30e—2 1.77e-2
W — — — — —

UF4 A 1.1398e—1 6.3932e—2 9.8983e—2 7.9956e—2 1.1184e—1 5.5948e—2
S 9.87e—3 7.39e—3 4.98¢—3 7.40e—3 1.69¢—2 1.28E-03
W — — — — —

UF5 A 9.3327e—1 1.6477e+0 2.7466e+0 3.7870e+0 3.3339¢e+0 1.6084e+0
S 2.24e—-1 3.92e—1 2.82e—1 5.12e—1 3.62e—1 2.00e—1
w + ~ — — _

UF6 A 3.9479e—1 6.6775e—1 1.3760e+0 2.8768e+0 2.2673e+0 7.1366e—1
S 6.16e—2 1.50e—1 2.16e—1 7.53e—1 4.23e—1 9.24e—2
W + ~ — — _

UF7 A 1.8428e—1 1.7558e—1 2.4152e—1 6.3686e—1 6.2616e—1 1.2309e—1
S 1.24e—1 1.16e—1 6.69e—2 1.51e—1 1.08e—1 1.67e—2
w — ~ — — -

UF8 A 5.9969¢e—1 4.6498e—1 5.4983e—1 7.5343e—1 4.0805e—1 2.9240e—1
S 8.23e—2 6.43e—2 4.63e—2 1.73e—1 3.97e—2 6.51e-2
w — — — — —

UF9 A 8.5292e—1 4.6245e—1 6.5764e—1 8.6314e—1 5.5987e—1 1.5506e—1
S 1.25e—1 7.05e—2 3.73e—-2 1.27e—1 4.57e—2 1.74e-2
%Y — — — — —

UF10 A 4.3049¢+0 1.5942e+0 4.0568e+ 4.9685e+0 2.1334e+0 8.3000e—1
S 5.86e—1 4.13e—1 3.16e—1 7.28e—1 2.91le—1 2.24e—-1
W — — — — —

DTLZ1 A 1.4001e+ 5.4379e+ 1.1087e+1 1.8504e+1 9.9132e+0 1.9836e+1
S 4.10e+0 3.13e+0 2.42e+0 4.02e+0 4.23e+0 4.59¢+0
W + + + ~ +

DTLZ2 A 4.1147e-2 5.598%e—2 4.4783e—2 9.1093e—2 5.4359e—-2 2.5435e—1
S 6.57e—4 1.92e-3 1.28e—3 7.83e—3 3.80e—3 3.95e—2
W + + + + +

DTLZ3 A 1.8571e+2 1.1626e+2 1.4668e+2 1.3602e+2 1.8989%¢+2 1.4550e+2

Experimental settings
Experimental comparison algorithms

For the sake of estimating the performance of CHLMOPSO
more objectively, ten algorithms are selected for comparison,
including five advanced MOPSOs (CMOPSO [30], NMPSO
[31], MPSOD [17], MOPSOCD [32], and MOPSO [9]) and
five competitive MOEAs (DGEA [33], NSGAIISDR [34],

@ Springer

SPEAR [35], MOEADD [36], and NSGAIII [37]). All rel-
evant parameters set by the comparison algorithms remain
consistent with the original references to guarantee the impar-
tiality of algorithm performance comparison. Each algorithm
runs independently for 30 times on each test problem, and
the average and standard deviation of the IGD and HV val-
ues are recorded. The experimental results of all algorithms
are implemented on an Intel(R) Core(TM) i7-6700 CPU
@ 3.40 GHz 3.40 GHz Windows 7 system by MATLAB
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Table 2 (continued)

Problem IGD CMOPSO NMPSO MPSOD MOPSOCD MOPSO CHLMOPSO
S 273e+1 1.76e+1 1.44e+1 4.02e+1 4.76e+1 2.93e+1
w — + ~ ~ -
DTLZ4 A 4.3279e—2 7.4004e—2 1.4083e—1 3.3113e—1 3.1068e—1 2.9143e—1
S 1.41e—3 8.83e—2 3.50e—2 4.6le—2 5.33e—2 3.58e—2
w + + + - ~
DTLZ5 A 4.6382e—3 7.1710e—3 5.6792e—2 3.4002e—2 8.5109e—3 1.2344e—2
S 3.64e—4 8.70e—4 5.94e—3 8.30e—3 2.64e—3 1.98¢—3
W + + — — +
DTLZ6 A 1.2468e—1 1.3457e—2 1.0284e+0 1.5378e—1 2.8161e+0 3.7187e-3
S 3.07e—1 3.54e—3 3.33e—1 3.13e—1 8.75e—1 3.39e—4
w ~ - - - -
DTLZ7 A 8.5583e—2 5.3346e—2 5.6886e—1 8.1282e—2 3.0066e+0 8.5440e—2
S 1.4de—1 3.10e—2 1.48e—1 3.55¢—2 7.0le—1 5.57e—2
w — + + ~ —
H—I~ 10/9/3 8/10/4 4/17/1 1/17/4 3/18/1 —
Best/all 9122 3122 0122 0/22 0/22 10722
Table 3 IGD values of DGEA,
NSGAIISDR, SPEAR. Problem IGD DGEA NSGAIISDR SPEAR ~ MOEADD NSGAII  CHLMOPSO
MOEADD, NSGAIIL and
CHLMOPSO on 22 test ZDTI A 12077e+0 12905e—1  1.8116e—1 1.1602e—1 1.0424e—1 3.0056e—3
problems S 2251  2.16e-2 257e—2  198e—2  1.60e—2  1.18e—4
W — — — — —
ZDT2 A 99849e—1 2.1416e—1  3.9212e—1 1.5974e—1 2.0l4le—1 3.2928e—3
S 38%—1  3.56e—2 118e—1  254e—2  443e—2  1.7le—4
W — — — — —
ZDT3 A 9.6505e—1 1.0455e—1  1.4539%—1 1.7759e—1 9.3487e—2 3.8435e—3
S 243e—1  l147e-2 135e—2  1.60e—2  1.62e—2  2.43e—4
W —_ — — — —
ZDT4 A 83958e+0 1.5269e+0  1.8607e+0 9.8417e—1 2.4152e+0 7.9258e—1
S 632+0  5.0le—1 6.67e—1  429e—1  824e—1  1.37e—1
W - - - ~ -
ZDT6 A 17504e—2 1.0253e+0  1.1952e+  6.662le—1 1.4526e+0 2.4231e—3
S 846e—2  20le—1 2.14e—1  1.66e—1  3.15e—1  9.7de—5
W — — — — —
UF1 A 69052e—1 1.4953e—1  1.5014e—1 1.5269e—1 1.5160e—1 1.4149e—1

R2021b. The PIatEMO [38] provides source codes of com-
parison algorithms.

Test problems

Moreover, we selected 22 test problems from three different
benchmark test suits, ZDT [39], UF [40], and DTLZ [41], to
test the performance of these algorithms. They have differ-
ent characteristics and complex Pareto front features, such

as concavity and convexity, multi-mode, disconnected, and
irregular PF shapes, etc., which can well verify the reliabil-
ity of the algorithm. There are relevant parameter settings
in Table 1, where FEs represents the maximum number of
evaluations.
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Table 3 (continued)

Problem IGD DGEA NSGAIISDR SPEAR MOEADD NSGAIII CHLMOPSO
S 1.37e—1 4.24e—2 2.95e—2 3.64e—2 3.86e—2 1.42e—-2
A% — ~ ~ ~ ~

UR2 A 1.7395e—1 8.5657e—2 7.4438e—2 7.3212e—2 8.1883e—2 8.06E-02
S 2.05e—2 5.44e-3 8.75e—3 5.32¢-3 5.39e—3 5.63e—3
w — - + + 5

UF3 A 5.7249e—1 4.8299e—1 4.3379e—1 4.6408e—1 4.7550e—1 3.0547e—1
S 3.94e—2 1.19e—2 1.15e—-2 1.21e—2 1.19e—-2 1.77e—-2
%Y — — — — —

UF4 A 1.2199e—1  9.9070e—2 8.6396e—2 9.0427e—2 9.5550e—2 5.5948e—2
S 8.84e—3 3.54e—-3 2.98e—3 2.82e—3 3.15e—3 1.28e—3
W — — — — —

UF5 A 3.0556e+0  1.3926e+0 1.1443e+0  1.3742e+0  1.3892e+0  1.6084e+0
S 4.62e—1 3.25e—1 1.57e—-1 2.70e—1 3.14e—1 2.00E-01
W — + + + +

UF6 A 2.2859+0 7.362le—1 7.1858e—1 8.1831e—1 7.5425e—1 7.1366e—1
S 7.18e—1 1.18e—1 2.85e—1 1.14e—1 1.72e—1 9.24e—2
W — ~ ~ — ~

UF7 A 7.4477e—1 2.0669e—1 1.9993e—1 1.6423e—1 1.9537e—1 1.2309e—1
S 1.40e—1 9.36e—2 8.14e—2 4.12e—2 8.00e—2 1.67e—2
W — — — — —

UF8 A 7.0365e—1 3.8627e—1 3.1851le—1 3.3305e—1 3.3350e—1 2.9240e—1
S 1.23e—1 4.0le—2 1.50e—2 2.53e—2 3.08e—2 6.51e—2
W — — — — —

UF9 A 7.2837e—1 5.0192e—1 4.7259e—1 5.2958e—1 5.0618e—1 1.5506e—1
S 9.36e—2 1.00e—1 4.71e-2 6.40e—2 4.58e—2 1.74e—2
W — — — — —

UF10 A 4.7449¢e+0  2.1774e+ 1.9678e+0  3.4898e+0 2.2698e+0  8.3000e—1
S 9.32e—1 5.75e—1 2.35e—1 4.50e—1 5.19e—1 2.24e—1
W — — — — —

DTLZI A 1.4659¢+1  5.2426e—1 9.8136e—1 1.3217e+0 9.2275e—1 1.9836e+1
S 7.84e+0 3.63e—1 3.81e—1 591e—1 3.44e—1 4.59e+0
w + + + + +

DTLZ2 A 1.1855e—1 4.2239e—1 4.3210e—2 3.9378e—2 3.9824e—2 2.54E-01
S 1.63e—2 4.28e—2 1.95e—3 4.62e—4 6.87e—4 3.95e—-2
w + - + + +

DTLZ3 A 1.1440e+2  2.1763e+1 2.9695e+1  4.3925e+1  3.3734e+1  1.4550e+2

Comprehensive performance evaluation indicators

The performance of algorithms is assessed by adopting
the extensively acknowledged inverted generational distance
(IGD) [42] and hypervolume (HV) [43]. The quality of the
Pareto optimal solution set that the algorithm ultimately gen-
erates is superior with the smaller IGD value (or the larger
HV value) of an algorithm.

@ Springer

Comparison of experimental results

In this paper, a competitive hybrid learning MOPSO is put
forward. We compared CHLMOPSO with other MOPSOs
and MOEA s to further assess its effectiveness and analyzed
the overall performance of CHLMOPSO from the following
aspects.
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Table 3 (continued)

Problem IGD DGEA NSGAIISDR SPEAR MOEADD NSGAIII CHLMOPSO
S 6.25e+1 6.85e+0 8.29e+0 8.10e+0 8.16e+0 2.93e+1
w + + + + +
DTLZ4 A 4.0165e—1 4.5289%¢—1 4.419%4e—2 4.0048e—2 4.1080e—2 2.91E-01
S 1.00e—1 1.38e—1 1.51e-3 7.72¢—4 7.15e—4 3.58e—2
w — - + + +
DTLZS A 5.9983e—2 3.0359e—2 22011e—2 2.3132e—2 7.0994e—3 1.2344e—2
S 1.12e—2 3.88e—3 1.85e—3 1.47e—3 6.75e—4 1.98e—3
w — - — - +
DTLZ6 A 2.1087e+0  1.2027e—1 1.3967e—1 1.3655e—1 4.7538e—2 3.72E-03
S 1.21e+0 7.99e—2 6.6le—2 8.73e—2 4.63e—2 3.39¢e—4
W — — — — —
DTLZ7 A 4.3938e+0 1.5527e—1 2.2097e—1 4.9782e—1 1.7125¢e—1 8.5440e—2
S 9.64e—1 2.34e-2 4.30e—2 3.15e—1 3.30e—2 5.57e-2
AV — — — — —
+/—/~ 3/19/0 3/17/2 6/14/2 6/14/2 6/13/3 —
Best/all 0/22 2/22 1722 3/22 1722 15/22
Table 4 HV values of CMOPSO,
NMPSO, MPSOD, MOPSOCD, Problem HV CMOPSO NMPSO MPSOD MOPSOCD MOPSO CHLMOPSO
MOPSO, and CHLMOPSO on
22 test problems ZDT1 A 7.1985e—1 6.8722e—1 5.7991e—1 6.9484e—1  9.0486e—2 7.2124e—1
S 7.5le—4 1.53e—2 5.69e—2 6.32e—2 8.72e—-2 1.44e—4
W — — — — —
ZDT2 A 4.4472e—1 4.2762e—1 2.4874e—1 3.2089e—1 1.0419e—3 4.4582e—1
S 7.09e—4 2.71e—-2 8.92e—2 1.50e—1 5.71e—-3 1.26e—4
W — — — — —
ZDT3 A 5.9946e—1 5.7217e—1 4.4330e—1 5.6876e—1  6.7854e—2 6.0007e—1
S 9.78e—4 8.19e—3 8.88e—2 3.84e—2 7.69e—2 6.33e—4
W — — — — —
ZDT4 A 0.0000e+0  0.0000e+0  0.0000e+0  0.0000e+0 0.0000e+0  1.3220e—1
S 0.00e+0 0.00e+0 0.00e+0 0.00e+0 0.00e+0 1.05e—1
A\ — — — — —
ZDT6 A 3.9034e—1 3.8983e—1 3.7443e—1 3.8848e—1 3.0174e—1 3.8935e—1
S 3.41e-5 1.65e—4 1.15e—2 2.59e—3 1.39e—1 1.64e—4
W + + — ~ —
UF1 A 5.7906e—1 5.2221e—1 3.4986e—1 7.4320e—2 1.4899%e—1 5.0017e—1

Comparison of IGD data

The average and standard deviation of the IGD values for
CHLMOPSO and other MOPSOs and MOEAs on 22 test
problems are displayed in Tables 2 and 3, respectively, and
are denoted by ‘A’ and ‘S’. The best IGD values are displayed
in bold. Furthermore, for the purpose of ensuring statistically
reliable conclusions, and the data of all algorithms are tested
for normality, it is found that some data do not conform to
the normal distribution, so we introduced a non-parametric

statistical hypothesis test to process the experimental results.
At the significance level of « = 0.05, the Wilcoxon rank sum
test [44] is utilized to evaluate if there are meaningful dif-
ferences between the algorithms. The corresponding symbols
‘+’, ‘=, and ‘&’ represent that the results of other algorithms
are apparently superior to CHLMOPSO, apparently inferior
to CHLMOPSO, and statistically similar to CHLMOPSO,
respectively.

The comprehensive performance of CHLMOPSO is supe-
rior to MOPSOs and MOEAs. In accordance with the results
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Table 4 (continued)

Problem HV  CMOPSO NMPSO MPSOD MOPSOCD MOPSO CHLMOPSO
S 2.02e-2 4.20e—2 6.04e—2 5.12e-2 6.90e—2 2.17e-2
W + + — — —

UF2 A 6.4205e—1 6.1909e—1 5.7659e—1 5.3607e—1  6.0304e—1 6.2844e—1
S 7.60e—3 6.67e—3 9.09e—3 2.07e—2 8.62e—3 5.74e—3
W + — — — -

UF3 A 2.7318e—1 2.7536e—1 1.7472e—1 2.3895e—1 1.6092e—1 3.3451e—1
S 3.26e—2 5.27e—-2 1.34e—-2 6.31e—2 1.64e—2 2.23e-2
W — — — — —

UF4 A 2.8584e—1 3.5965e—1 3.0804e—1 3.3164e—1  2.9249e—1 3.6438e—1
S 1.20e—2 1.07e—2 6.06e—3 9.26e—3 2.08e—2 2.22e-3
w - =~ — — -

UF5 A 8.3362e—3 0.0000e+0  0.0000e+0  0.0000e+0 0.0000e+0  0.0000e+0
S 2.38e—2 0.00e+0 0.00e+0 0.00e+0 0.00e+0 0.00e+0
W + S S S I~

UF6 A 1.4132e—1 3.3171e—2 0.0000e+0  0.0000e+0 0.0000e+0  3.0084e—3
S 6.86e—2 3.08e—2 0.00e+0 0.00e+0 0.00e+0 5.91e-3
W + + — — —

UF7 A 3.9666e—1 3.8885e—1 2.6557e—1 3.1819e—2  3.9082e¢—2 4.0005e—1
S 8.80e—2 9.28e—2 6.74e—2 4.70e—2 3.27e-2 2.28e—2
W ~ o — — —

UF8 A 1.2540e—2 2.9571e—1 5.6163e—2 1.2088e—2  1.7199e—1 3.3336e—1
S 1.42e—-2 3.07e—-2 2.10e—2 1.63e—2 3.6le—2 1.36e—2
W — — — — —

UF9 A 3.2290e—2  3.1536e—1 1.1635e—1 2.980le—2 1.9774e—1 5.9686e—1
S 3.48e—2 6.47e—2 2.74e—-2 3.78e—2 3.83e—2 2.08e—2
W — — — — —

UF10 A 0.0000e+0  0.0000e+0  0.0000e+0  0.0000e+0 0.0000e+0  1.1310e—1
S 0.00e+0 0.00e+0 0.00e+0 0.00e+0 0.00e+0 5.08e—2
W — — — — —

DTLZ1 A 0.0000e+0  0.0000e+0  0.0000e+0  0.0000e+0 0.0000e+0  0.0000e+0
S 0.00e+0 0.00e+0 0.00e+0 0.00e+0 0.00e+0
W =~ = =< =~ 5

DTLZ2 A 5.5929e—1 5.6939e—1 5.5152e—1 4.8237e—1 5.3133e—1 3.3691e—1
S 1.43e—-3 8.40e—4 2.56e—3 1.18e—2 8.12¢—3 2.23e—2
w + + + + +

of the Wilcoxon rank sum test from Table 2, among all
the 22 test problems considered, the comparison algorithms
CMOPSO, NMPSO, MPSOD, MOPSOCD, and MOPSO
perform significantly worse than CHLMOPSO on 9, 10, 17,
17, and 18 test problems, respectively, and obtain similar
results with CHLMOPSO on 3, 4, 1, 4, and 1 test prob-
lems, respectively. Additionally, as can be observed from
Table 3, CHLMOPSO is noticeably superior to the compar-
ison algorithms DGEA, NSGAIISDR, SPEAR, MOEADD,
and NSGAIII on 19, 17, 14, 14, and 13 of the 22 test prob-
lems, respectively, and similar results are obtained on 0, 2, 2,
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2, and 3 test problems, respectively. Moreover, the standard
deviations demonstrate that when compared with the other
comparison algorithms, CHLMOPSO has a certain advan-
tage in terms of stability.

The outcomes listed above demonstrate that CHLMOPSO
performs well on most of the test problems. This manifests
that the competitive hybrid learning strategy improves the
exploration ability and effectively balances the exploitation
and exploration abilities.
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Table 4 (continued)

Problem HV CMOPSO NMPSO MPSOD MOPSOCD MOPSO CHLMOPSO
DTLZ3 A 0.0000e+0  0.0000e+0  0.0000e+0  0.0000e+0 0.0000e+0  0.0000e+0
S 0.00e+0 0.00e+0 0.00e+0 0.00e+0 0.00e+0 0.00e+0
W % % % % ~
DTLZ4 A 5.5534e—1 5.6140e—1 4.2138e—1 2.6829e—1 3.3707e—1 3.3379e—1
S 3.22e—3 4.05e—2 4.39¢e—2 6.36e—2 5.78e—2 5.06e—2
w4+ + + - ~
DTLZ5 A 1.9886e—1 1.9794e—1 1.3831e—1 1.7376e—1 1.9385e—1 1.9102e—1
S 2.94e—4 5.13e—4 8.67e—3 8.25e—3 3.24e—3 1.92e—3
W + + - - +
DTLZ6 A 1.7301e—1 1.9790e—1 9.2771e—3 1.6595e—1 0.0000e+0  2.0034e—1
S 6.91e—2 8.53e—4 2.87e—2 6.43e—2 0.00e+0 3.19¢—4
\% ~ — — — —
DTLZ7 A 2.6796e—1 2.8071e—1 6.3204e—2 2.6597e—1 3.0175¢—3 1.4812e—1
S 1.38e—2 4.54e-3 3.76e—2 1.13e-2 1.65e—2 9.46e—3
W + + — + —
+/—/~ 9/9/4 7/10/5 2/17/3 2/16/4 2/16/4 —
Best/all 6/22 3/22 0/22 0/22 0/22 11/22
Table 5 HV values of DGEA,
NSGAIISDR, SPEAR. Problem HV ~DGEA  NSGAIISDR SPEAR  MOEADD NSGAI ~ CHLMOPSO
MOEADD, NSGAIII, and
CHLMOPSO on 22 test ZDT1 A 1.9351e—3 5.5501e—1 4.8905e—1 5.6540e—1 5.8600e—1 7.2124e—1
problems S 6.21e—3 2.35e—-2 2.35e-2 2.53e—-2 1.90e—2 1.44e—4
W — — — — —
ZDT2 A 1.5381e—2 1.9493e—1 7.9008¢e—2 2.3956e—1 2.1027e—1 4.4582e—1
S 6.44e—2 2.80e—2 5.65e—2 2.65e—2 3.54e—-2 1.26e—4
W — — — — —
ZDT3 A 4.7343e—2 5.3209e—1 5.0615¢—1 4.7779e—1 5.3934e—1 6.0007e—1
S 7.81e—2 1.12e—2 1.76e—2 1.52e—2 1.10e—2 6.33¢e—4
W — — — — —
ZDT4 A 0.0000e+0  3.0638e—3 8.3073e—3 4.0321e—2 0.0000e+0  1.3220e—1
S 0.00e+0 1.31e-2 3.31le-2 6.46e—2 0.00e+0 1.05e—1
W — — — — —
ZDT6 A 3.8245¢e—1 1.6484e—4 0.0000e+0 1.2111e—2 0.0000e+ 3.8935e—1
S 4.08e—2 9.03e—4 0.00e+0 3.10e—2 0.00e+0 1.6de—4
W — — — — —
Comparison of HV data In addition, CHLMOPSO performs better than the compar-

The outcomes of the best HV values in Table 4 are similar
to those of IGD values in Table 2. Compared with the five
MOPSOs, CHLMOPSO obtains 11 best HV values on 22
test problems. Moreover, CHLMOPSO performs better than
CMOPSO, NMPSO, MPSOD, MOPSOCD, and MOPSO
on 9, 10, 17, 16, and 16 test problems, respectively. Sim-
ilarly, Table 5 displays that CHLMOPSO acquires 13 best
HYV values on 22 test problems compared with five MOEAs.

ison algorithms DGEA, NSGAIISDR, SPEAR, MOEADD,
and NSGAIII on 18, 14, 14, 14, and 13 of 22 test problems,
respectively. In addition, from the comparison of standard
deviations of algorithms in the two tables, it can also be found
that CHLMOPSO has favorable stability.

All the above statistical results prove that CHLMOPSO
is still very competitive compared with the selected algo-
rithms. CHLMOPSO has better convergence and diversity in
contrast to the selected comparison algorithms on ZDT and
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Table 5 (continued)

Problem HV  DGEA NSGAIISDR SPEAR MOEADD NSGAIIL CHLMOPSO

UF1 A 6.7111e—2 4.9828e—1 5.0042e—1 4.9562e—1 4.9953e—1 5.0017e—1
S 6.22e—2 5.42e—-2 3.50e—2 4.63e—2 4.96e—2 2.17e-2
W — ~ > ~ ~

UF2 A 5.1016e—1 6.0810e—1 6.2421e—1 6.2448e—1 6.1408e—1 6.2844e—1
S 2.09e—-2 6.96e—3 8.61le—3 6.46e—3 6.23e—3 5.74e-3
W — — — — —

UF3 A 1.2160e—1 1.9201e—1 2.2046e—1 2.0287e—1 1.8933e—1 3.3451e—1
S 2.06e—2 1.10e—2 1.15e—-2 1.21e—-2 9.08e—3 2.23e-2
w — — — — —

UF4 A 2.777%9¢e—1 3.0741e—1 3.2396e—1 3.1892e—1 3.1258e—1 3.6438e—1
S 8.89e—3 4.45e—3 3.80e—3 3.09e—3 3.77e—-3 2.22¢-3
W _ — _ — _

UF5 A 0.0000e+0  5.6647e—4 0.0000e+0  0.0000e+0  8.3424e—6 0.0000e+0
S 0.00e+0 3.10e-3 0.00e+0 0.00e+0 4.57e—5 0.00e+0
VY% e P~ < =~ e

UF6 A 0.0000e+0  8.5768e—3 1.5075e—2 2.3512e—3 7.1497e—3 3.0084e—3
S 0.00e+0 1.38e—2 1.73e-2 5.47e—3 1.39e—2 591e—3
A\ — = + =~ =

UF7 A 2.1266e—2 3.3428e—1 3.4003e—1 3.5538e—1 3.3420e—1 4.0005e—1
S 3.57e-2 7.0le—2 6.04e—2 4.41e—-2 7.83e—2 2.28e—2
w _ — _ _ _

UF8 A 2.9674e—2 1.0868e—1 1.8583e—1 1.5408e—1 2.2705e—1 3.3336e—1
S 2.74e—-2 3.52e-2 2.43e—-2 3.70e—2 4.0le—2 1.36e—2
W — — — — —

UF9 A 8.6029¢e—2 2.3222e—1 2.7185e—1 2.1465e—1 2.4249¢e—1 5.9686e—1
S 5.66e—2 8.56e—2 4.81e—2 5.16e—2 4.07e—2 2.08e—2
W — — — — —

UF10 A 0.0000e+0  0.0000e+0 0.0000e+0  0.0000e+0  0.0000e+0  1.1310e—1
S 0.00e+0 0.00e+0 0.00e+0 0.00e+0 0.00e+0 5.08e—2
W — — — — —

DTLZI A 0.0000e+0  1.1409e—1 3.7883e—3 2.5080e—3 3.7897e—3 0.0000e+0
S 0.00e+0 2.02e—1 2.04e—-2 1.37e—-2 1.87e—2 0.00e+0
W ~ + ~ ~ ~

DTLZ2 A 4.2024e—1 2.9050e—1 5.5627e—1 5.6216e—1 5.6186e—1 3.3691e—1
S 2.64e—2 3.55e—-2 2.81e—3 1.44e-3 1.73e—3 2.23e—-2
w + + + + +

DTLZ3 A 0.0000e+0  0.0000e+0 0.0000e+0  0.0000e+0  0.0000e+ 0.0000e+0

UF test problems on 22 test problems, which may be due
to the competitive hybrid learning strategy of our proposed
algorithm can obtain a better performance guarantee.

Friedman rank test

In the above two sections, CHLMOPSO is compared with
MOPSOs and MOEAs in IGD indicator and HV indicator.
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Next, we also conduct the Friedman rank test [45] on the
results in Tables 2, 3, 4, 5 to further compare the overall
performance of CHLMOPSO and the selected comparison
algorithms, and the smaller value of the test result, the better.
Tables 6 and 7 show the Friedman rank test and ranking of
IGD and HV values of all algorithms on ZDT, UF, and DTLZ,
respectively. The minimum values of the Friedman test and
the minimum rankings in the tables are displayed in bold.



Complex & Intelligent Systems

Table 5 (continued)

Problem HV  DGEA NSGAIISDR SPEAR MOEADD NSGAIII CHLMOPSO
S 0.00e+0 0.00e+0 0.00e+0 0.00e+0 0.00e+0 0.00e+0
W ~~ ~ ~ ~ ~~
DTLZ4 A 2.1618e—1 3.0606e—1 5.5376e—1 5.6129e—1 5.6032e—1 3.3379e—1
S 8.43e—2 8.00e—2 3.55e—3 2.17e-3 1.71e-3 5.06e—2
w — ~ + + +
DTLZS A 1.4315e—1 1.7497e—1 1.8593e—1 1.8448e—1 1.9647e—1 1.9102e—1
S 1.88e—2 2.95e—3 1.50e—3 1.70e—3 7.71e—4 1.92e-3
w — — — - +
DTLZ6 A 1.7314e—2  1.0746e—1 1.0357e—1 1.0098e—1 1.7093e—1 2.0034e—1
S 5.33e—2 4.50e—2 3.70e—2 4.22e—-2 2.70e—2 3.19¢—4
W _ _ _ _ _
DTLZ7 A 6.6795e—7 2.1793e—1 1.9382e—1 2.0328e—1 2.0891e—1 1.4812e—1
S 3.66e—6 9.63e—3 1.25e—2 2.18e—2 1.29e—2 9.46e—3
W — + + + +
+/—/~ 1/18/3 3/14/5 4/14/4 3/14/5 4/13/5 -
Best/all 0/22 3/22 2/22 2/22 1/22 13/22
Table 6 Friedman rank test of IGD values of CHLMOPSO and all comparison algorithms
Algorithm ZDT: ZDT1-4, 6 UF: UF1-10 DTLZ: DTLZ1-7 Overall
Friedman test Rank Friedman test Rank Friedman test Rank Friedman test Rank
CMOPSO 3.20 2 4.90 4.86 5 4.50 3
NMPSO 4.20 3 3.50 2 4.14 2 3.86 2
MPSOD 7.40 8 8.10 8 7.86 9 7.86 9
MOPSOCD 4.60 4 9.20 10 7.57 8 7.64 8
MOPSO 9.00 11 8.10 8 8.00 10 8.27 10
DGEA 8.60 10 10.30 11 9.29 11 9.59 11
NSGAIISDR 6.80 6 5.80 7 5.86 6 6.05 7
SPEAR 7.80 9 3.70 3 4.71 4 4.95 5
MOEADD 6.00 5 4.80 4 4.43 3 4.95 5
NSGAIII 6.80 6 5.40 6 2.86 1 4.91 4
CHLMOPSO 1.60 1 2.20 1 6.43 7 341 1

Table 6 clearly demonstrates that CHLMOPSO carries out
significantly better than other algorithms on ZDT and UF
with respect to the ranking of IGD values, and its ranking of
the Friedman rank test is the first. Although the ranking on
DTLZ is not ideal, from the overall result, CHLMOPSO still
ranks first in Friedman rank test. Similarly, according to the
ranking of HV values in Table 7, CHLMOPSO ranks first
in Friedman rank test for both ZDT and UF test problems.
Although it ranks second in the overall ranking, it is also
second only to NMPSO. The aforementioned results illus-
trate that CHLMOPSO is considerably better overall than
the other ten algorithms on the chosen test problems.

Comparison of box plots

To intuitively compare the stability on three suits of
benchmark test problems ZDT, UF, and DTLZ, Fig. 2
exhibits statistical box plots of IGD values distribution
acquired by CHLMOPSO and other ten algorithms run-
ning independently for 30 times on some test problems.
Among them, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11
on the horizontal axis of the box plots are CMOPSO,
NMPSO, MPSOD, MOPSOCD, MOPSO, DGEA, NSGAI-
ISDR, SPEAR, MOEADD, NSGAIII, and CHLMOPSO in
turn. It can be observed from the box plots that the gap
between CHLMOPSO and CMOPSO is not obvious on

@ Springer



Complex & Intelligent Systems

Table 7 Friedman rank test of HV values of CHLMOPSO and all comparison algorithms

Algorithm ZDT: ZDT1-4, 6 UF: UF1-10 DTLZ: DTLZ1-7 Overall
Friedman test Rank Friedman test Rank Friedman test Rank Friedman test Rank

CMOPSO 3.00 2 4.55 4 4.00 3 4.02 3
NMPSO 4.00 3 3.40 2 3.00 1 341 1
MPSOD 6.80 6 8.05 8 8.00 10 7.75 9
MOPSOCD 4.60 4 8.25 10 7.00 8 7.02 8
MOPSO 9.20 11 8.05 8 7.57 9 8.16 10
DGEA 9.00 10 9.65 11 9.14 11 9.34 11
NSGAIISDR 7.00 7 5.85 7 6.43 6 6.30 7
SPEAR 7.70 9 4.50 3 5.57 5 5.57 5
MOEADD 6.20 5 5.80 6 5.00 4 5.64 6
NSGAIII 7.10 8 5.35 5 3.71 2 5.23 4
CHLMOPSO 1.40 1 2.55 1 6.57 7 3.57 2

Table 8 The comparison results of IGD and HV for CHLMOPSO and variant CHLMOPSO-I on 22 test problems

Problem M IGD HV

CHLMOPSO-I CHLMOPSO CHLMOPSO-I CHLMOPSO
ZDT1 2 3.0139e—3(1.44e—4)~ 3.0056e—3(1.18e—4) 7.2110e—1(1.85e—4) — 7.2124e—1(1.44e—4)
ZDT2 2 3.3054e—3(1.52e—4)~ 3.2928e—3(1.71e—4) 4.4578e—1(1.33e—4)~ 4.4582e—1(1.26e—4)
ZDT3 2 3.8524e—3(1.77e—4)~ 3.8435e—3(2.43e—4) 5.9993e—1(4.94e—4)~ 6.0007e—1(6.33e—4)
ZDT4 2 8.1314e—1(1.08e—1) — 7.9258e—1(1.37e—1) 1.0995e—1(7.40e—2) — 1.3220e—1(1.05e—1)
ZDT6 2 2.4320e—3(9.92e—5)~ 2.4231e—3(9.74e-5) 3.8930e—1(1.52e—4)~ 3.8935e—1(1.64e—4)
UF1 2 1.4226e—1(1.44e—-2)~ 1.4149e—1(1.42e-2) 5.0103e—1(2.04e—2)~ 5.0017e—1(2.17e—2)
UF2 2 7.3777e—2(6.41e-3) + 8.0615e—2(5.63e—3) 6.3726e—1(6.42e—-3) + 6.2844e—1(5.74e—-3)
UF3 2 3.0374e—1(2.40e—2)~ 3.0547e—1(1.77e—-2) 3.4276e—1(2.40e—2)~ 3.3451e—1(2.23e—-2)
UF4 2 7.4773e—2(1.05e—2) — 5.5948e—2(1.28e—-3) 3.4134e—1(1.29e—-2) — 3.6438e—1(2.22e—3)
UF5 2 1.7306e + 0(1.86e—1) — 1.6084e + 0(2.00e—1) 0.0000e + 0(0.00e + 0)~ 0.0000e + 0(0.00e + 0)
UF6 2 7.7582e—1(1.43e—1)~ 7.1366e—1(9.24e—2) 2.5555e—3(5.42e—3)~ 3.0084e—3(5.91e—3)
UF7 2 1.1930e—1(1.19e—-2)~ 1.2309e—1(1.67e—2) 4.0785e—1(1.69e—2)~ 4.0005e—1(2.28e—2)
UF8 3 3.1107e—1(9.08e—2)~ 2.9240e—1(6.51e—-2) 3.3247e—1(2.14e—2)~ 3.3336e—1(1.36e—2)
UF9 3 1.4107e—1(2.21e-2) + 1.5506e—1(1.74e—2) 6.0437e—1(3.30e—2)~ 5.9686e—1(2.08e—2)
UF10 3 9.1253e—1(1.27e—1) — 8.3000e—1(2.24e—1) 1.0046e—1(3.86e—2)~ 1.1310e—1(5.08e—2)
DTLZ1 3 1.9182¢ + 1(4.20e + 0)~ 1.9836e + 1(4.59¢ + 0) 0.0000e + 0(0.00e + 0)~ 0.0000e + 0(0.00e + 0)
DTLZ2 3 4.0765e—1(8.78e—2) — 2.5435e—1(3.95e—-2) 2.5244e—1(4.96e—2) — 3.3691e—1(2.23e—2)
DTLZ3 3 1.3540e + 2(4.05e + 1)~ 1.4550e +2(2.93e + 1) 0.0000e + 0(0.00e + 0)~ 0.0000e + 0(0.00e + 0)
DTLZ4 3 2.6406e—1(5.12e—-2) + 2.9143e—1(3.58e—2) 4.0001e—1(4.67e—2) + 3.3379e—1(5.06e—2)
DTLZ5 3 5.9102e—3(8.80e—4) + 1.2344e—2(1.98e—3) 1.9755e—1(8.83e—4) + 1.9102e—1(1.92e—3)
DTLZ6 3 3.9457e—3(4.02e—4) — 3.7187e—3(3.39¢—4) 2.0038e—1(3.64e—4)~ 2.0034e—1(3.19e—4)
DTLZ7 3 2.3626e—1(1.57e—1) — 8.5440e—2(5.57e—-2) 1.1244e—1(3.42e—-2) — 1.4812¢—1(9.46e—3)
+/— /= 4/7/11 — 3/5/14 —
Best/all 8/22 14/22 8/22 11/22
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Table 9 The comparison results of IGD and HV for CHLMOPSO and variant CHLMOPSO-II on 22 test problems

Problem M IGD

HV

CHLMOPSO-II

CHLMOPSO

CHLMOPSO-II

CHLMOPSO

ZDTI 2 2.9466e—3(1.03e—4)~ 3.0056e—3(1.18e—4) 7.2123e—1(1.51e—4)~ 7.2124e—1(1.44e—4)
ZDT2 2 3.3460e—3(1.83e—4)~ 3.2928e—3(1.71e—4) 4.4574e—1(1.82e—4) — 4.4582e—1(1.26e—4)
ZDT3 2 3.8261e—3(2.16e—4)~ 3.8435¢—3(2.43¢—4) 5.9992¢—1(4.83e—4)~ 6.0007e—1(6.33e—4)
ZDT4 2 8.0519e—1(1.25¢— 1)~ 7.9258e—1(1.37e—1) 1.1715e—1(8.91e—2)~ 1.3220e—1(1.05e—1)
ZDT6 2 2.4269e—3(1.0le—4)~ 2.4231e—3(9.74e—5) 3.8933e—1(1.6le—4)~ 3.8935¢—1(1.64e—4)
UFI 2 1.4265e—1(1.19e—2)~ 1.4149e—1(1.42e—2) 4.9932e—1(1.94e—2)~ 5.0017e—1(2.17e—2)
UFR2 2 7.9659e—2(5.89e—3)~ 8.0615¢—2(5.63¢—3) 6.2967e—1(5.81e—3)~ 6.2844e—1(5.74e—3)
UF3 2 3.0369e—1(2.17e—2)~ 3.0547e—1(1.77e—2) 3.4120e—1(2.37e—2)~ 3.3451e—1(2.23e—2)
UF4 2 5.6516e—2(1.26e—3) — 5.5948¢—2(1.28¢—3) 3.6385e—1(2.23e—3)~ 3.6438e—1(2.22¢—3)
UF5 2 1.7427¢ + 02.08e—1) —  1.6084e + 0(2.00e—1) 0.0000e + 0(0.00e + 0)~  0.0000e + 0(0.00e + 0)
UF6 2 7.2907e—1(1.04e— 1)~ 7.1366e—1(9.24e—2) 4.4645e—3(7.79e—3)~ 3.0084e—3(5.91e—3)
UF7 2 1.2292e—1(1.62e—2)~ 1.2309e—1(1.67e—2) 3.9977e—1(2.31e—2)~ 4.0005¢—1(2.28¢—2)
UFS 3 3.3039e—1(7.20e—2) — 2.9240e—1(6.51e—2) 3.3135e—1(9.11e—3)~ 3.3336e—1(1.36e—2)
UF9 3 1.5427e—1(1.38e—2)~ 1.5506e—1(1.74e—2) 5.9683e—1(1.74e—2)~ 5.9686e—1(2.08¢—2)
UF10 3 8.7244e—1(1.82e—1) — 8.3000e—1(2.24e—1) 1.0846e—1(5.62e—2)~ 1.1310e—1(5.08e—2)
DTLZI 3 2.1186e + 1(4.28¢ + 0)~  1.9836e + 1(4.59% + 0) 0.0000e + 0(0.00e + 0)~  0.0000e + 0(0.00e + 0)
DTLZ2 3 2.7146e—1(1.79e—2)~ 2.5435¢—1(3.95¢e—2) 3.2724e—1(1.20e—2)~ 3.3691e—1(2.23e—2)
DTLZ3 3 1.459%e + 2(3.36e + 1)~  1.4550e + 2(2.93¢ + 1) 0.0000e + 0(0.00e + 0)~  0.0000e + 0(0.00e + 0)
DTLZ4 3 2.9494e—1(3.76e—2)~ 2.9143e—1(3.58¢—2) 3.3416e—1(4.82e—2)~ 3.3379e—1(5.06e—2)
DTLZ5 3 1.1611e—2(1.75e—3)~ 1.2344e—2(1.98e—3) 1.9163e—1(2.21e—3)~ 1.9102e—1(1.92e—3)
DTLZ6 3 3.8207e—3(4.08c—4)~ 3.7187e—3(3.39¢e—4) 2.0039e—1(2.76e—4)~ 2.0034e—1(3.19¢—4)
DTLZ7 3 1.2107e—1(1.00e— 1)~ 8.5440e—2(5.57e—2) 1.3916e—1(2.36e—2)~ 1.4812e—1(9.46e—3)
+/— I~ 0/4/18 — 0/1/21 —

Best/all 7122 15/22 6/22 13/22

ZDT1,ZDT?2, and ZDT3. However, CHLMOPSO is slightly
superior to CMOPSO on ZDT1 and ZDT3 from the IGD
values in Table 2. On the most of other problems, the gaps
between CHLMOPSO and other algorithms are clear at a
glance. The IGD values of CHLMOPSO on the most test
problems are smaller, the abnormal values of experimental
data are less, and the gaps between the upper and lower quar-
tiles of CHLMOPSO are smaller, that is, the boxes are flatter.
These findings demonstrate that CHLMOPSO outperforms
the ten algorithms in terms of both solution outcomes and
algorithm stability.

Comparison of Pareto front

For the sake of displaying the optimization results of all algo-
rithms intuitively, the distribution of Pareto optimal solution
sets of CHLMOPSO and other ten comparison algorithms
on ZDT3, UF9, and DTLZ6 is shown in Figs. 3, 4, 5, respec-
tively. The distribution of Pareto optimal solution sets can
clearly demonstrate the convergence and diversity of algo-
rithms. It is obvious from Figs. 3, 4, 5 that the majority of

the selected comparison algorithms obviously lack conver-
gence and diversity on ZDT3, UF9, and DTLZ6, while the
performance of CHLMOPSO is relatively satisfactory.

In relation to the two-objective test problem ZDT3, the
approximate PF distribution obtained by all algorithms is
showcased in Fig. 3, only CMOPSO and CHLMOPSO
can approximate the true PF, and the distribution is rela-
tively uniform. Only a few solutions of NMPSO converge,
while other algorithms do not achieve satisfactory con-
vergence. Compared with the two-objective problems, the
three-objective problems have higher requirements for the
selected algorithms. In Fig. 4, comparing the distribution
of Pareto optimal solution set of each algorithm on UF9,
CHLMOPSO is well distributed near the true PF, while other
algorithms show obvious insufficient convergence and diver-
sity. In Fig. 5, although CMOPSO, NMPSO, MOPSOCD,
and CHLMOPSO all have good convergence on DTLZ6,
NMPSO and MOPSOCD still have the problem of insuf-
ficient diversity, and their Pareto optimal solution sets are
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Table 10 The comparison results of IGD and HV for CHLMOPSO and variant CHLMOPSO-III on 22 test problems

Problem M IGD

HV

CHLMOPSO-III

CHLMOPSO

CHLMOPSO-III

CHLMOPSO

ZDTI 2 3.0291e—3(1.09e—4)~ 3.0056e—3(1.18e—4)
ZDT2 2 3.3083e—3(1.59e—4)~ 3.2928e—3(1.71e—4)
ZDT3 2 3.8822e—3(2.34e—4)~ 3.8435e—3(2.43e—4)
ZDT4 2 7.7262e~1(1.30e—1)~ 7.9258e—1(1.37e—1)
ZDT6 2 2.4294e—3(1.22e—4)~ 2.4231e—3(9.74e—5)
UF1 2 1.6275e—1(1.81e—2) — 1.4149e—1(1.42e—2)
UR2 2 9.1963e—2(6.39e—3) — 8.0615e—2(5.63e—3)
UF3 2 3.2171e—1(1.15e—2) — 3.0547e—1(1.77e—2)
UF4 2 5.7146e—2(3.56e—3)~ 5.5948e—2(1.28e—3)
UF5 2 1.7074e + 0(1.28e—1) —  1.6084e + 0(2.00e—1)
UF6 2 7.1481e—1(6.32e—2)~ 7.1366e—1(9.24e—2)
UF7 2 1.4580e—1(1.88e—2) — 1.2309¢—1(1.67e—2)
UFS8 3 2.8275e—1(5.27e—2)~ 2.9240e—1(6.51e—2)
UF9 3 1.7955e—1(1.49e—2) — 1.5506e—1(1.7de—2)
UFI10 3 6.5069e—1(2.22e—1) + 8.3000e—1(2.24e—1)
DTLZI 3 2.1044e + 1(4.85¢ + 0)~  1.9836e + 1(4.59% + 0)
DTLZ2 3 1.0540e—1(1.29e—2) + 2.5435¢—1(3.95e—2)
DTLZ3 3 1.5338¢ +2(3.18¢ + 1)~ 1.4550e + 2(2.93e + 1)
DTLZ4 3 3.3727e—1(4.43e—2) — 2.9143e—1(3.58¢—2)
DTLZS 3 2.8324e—2(2.67e—3) — 1.2344e—2(1.98e—3)
DTLZ6 3 3.8226e—3(3.87e—4)~ 3.7187e—3(3.39¢—4)
DTLZ7 3 1.3562e—1(7.13e—2) — 8.5440e—2(5.57e—2)
+/— /I~ 2/9/11 —

Best/all 4122 18/22

7.2128e—1(1.33e—4)~
4.4576e—1(3.30e—4)~
5.9996e—1(3.47e—4)~
1.4919e—1(1.03e—1)~
3.8934e—1(1.72e—4)~
4.6944e—1(2.43e—2) —
6.1493e—1(7.41e—3) —
3.0984e—1(1.5%—2) —
3.6341e—1(4.72e—3)~
0.0000e + 0(0.00e + 0)~
3.8660e—4(1.08¢—3) —
3.6642e—1(2.68e—2) —
3.1063e—1(2.10e—2) —
5.5802e—1(2.07e—2) —
1.4199e—1(6.99e—2)~
0.0000e + 0(0.00e + 0)~
4.4415e—1(1.89e—2) +
0.0000e + 0(0.00e + 0)~
2.5120e—1(6.22e—2) —
1.7506e—1(3.59e—3) —
2.0031e—1(2.74e—4)~
1.3197e—1(1.43e—2) —
1/10/11

422

7.2124e—1(1.44e—4)
4.4582¢—1(1.26e—4)
6.0007e—1(6.33e—4)
1.3220e—1(1.05¢e—1)
3.8935¢—1(1.64e—4)
5.0017e—1(2.17e—2)
6.2844e—1(5.74e—3)
3.3451e—1(2.23e—2)
3.6438e—1(2.22¢—3)
0.0000e + 0(0.00e + 0)
3.0084e—3(5.91e—3)
4.0005¢—1(2.28¢—2)
3.3336e—1(1.36e—2)
5.9686e—1(2.08¢e—2)
1.1310e—1(5.08e—2)
0.0000e + 0(0.00e + 0)
3.3691e—1(2.23¢—2)
0.0000e + 0(0.00e + 0)
3.3379e—1(5.06e—2)
1.9102e—1(1.92e—3)
2.0034e—1(3.19e—4)
1.4812e—1(9.46e—3)

15/22

not evenly distributed. However, the convergence and distri-
bution of other algorithms are not ideal, so only CMOPSO
and CHLMOPSO have better distribution and convergence.

The above experiments demonstrate that CHLMOPSO
has more stable and significant performance than the selected
comparison algorithms. This shows that the proposed com-
petitive hybrid learning strategy can achieve significant
convergence while ensuring the uniform distribution of solu-
tions.

Comparison of IGD indicator convergence

Along with the quality of solutions, a vital measurement of
performance is the speed at which algorithms convergence.
Figure 6 depicts the convergence trajectories of the IGD
values generated through all algorithms following 10,000
evaluations on ZDT3, UF9, and DTLZ6. In contrast to the
ten comparison algorithms, CHLMOPSO has a swift conver-
gence speed. Additionally, it can be seen from the termination
state of each algorithm in the convergence process that
CHLMOPSO has the smallest IGD value, which more clearly

@ Springer

emphasizes that CHLMOPSO has remarkable convergence
performance. As can be recognized, the competitive hybrid
learning strategy proposed by CHLMOPSO can enhance the
convergence and search efficiency of the algorithm.

Ablation study

In CHLMOPSO, four key strategies are proposed to improve
the overall performance of the algorithm. With the aim of
investigating their respective contributions, we set up the
experiments to compare the performance of CHLMOPSO
with its four variants: (1) the CHLMOPSO without the
derivative treatment strategy of pbest (CHLMOPSO-D);
(2) the CHLMOPSO without adaptive flight parameters
(CHLMOPSO-II); (3) the CHLMOPSO without compet-
itive hybrid learning strategy (CHLMOPSO-III); (4) the
CHLMOPSO without optimal angle distance to maintain
external archive (CHLMOPSO-IV). The effectiveness of
these four strategies will be discussed in depth in this sub-
section.
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Table 11 The comparison results of IGD and HV for CHLMOPSO and variant CHLMOPSO-IV on 22 test problems

Problem M IGD

HV

CHLMOPSO-IV

CHLMOPSO

CHLMOPSO-IV

CHLMOPSO

ZDT1 2 4.4303e—3(1.42e—4) — 3.0056e—3(1.18e—4) 7.1981e—1(1.52e—4) — 7.2124e—1(1.44e—4)
ZDT2 2 4.5023e—3(1.59%¢—4) — 3.2928e—3(1.71e—4) 4.4397e—1(4.74e—4) — 4.4582e—1(1.26e—4)
ZDT3 2 5.7647e—3(3.57e—4) — 3.8435¢—3(2.43e—4) 5.9955e—1(5.40e—4) — 6.0007e—1(6.33e—4)
ZDT4 2 8.1630e—1(4.42e—2)~ 7.9258e—1(1.37e—1) 1.1124e—1(3.07e-2)~ 1.3220e—1(1.05¢—1)
ZDT6 2 4.3643e—3(3.84e—4) — 2.4231e—3(9.74e-5) 3.8729e—1(4.52e—4) — 3.8935e—1(1.64e—4)
UF1 2 1.4721e—1 (9.26e—3) — 1.4149e—1(1.42e-2) 4.9253e—1(1.33e—2)~ 5.0017e—1(2.17e—2)
UF2 2 8.1390e—2(4.41e—3)~ 8.0615e—2(5.63e-3) 6.2762e—1(4.61e—3)~ 6.2844e—1(5.74e—3)
UF3 2 3.0575e—1(1.26e—2)~ 3.0547e—1(1.77e—-2) 3.3638e—1(1.71e—-2)~ 3.3451e—1(2.23e-2)
UF4 2 5.6354e—2(9.44e—4)~ 5.5948e—2(1.28e—-3) 3.6388e—1(1.74e—3)~ 3.6438e—1(2.22e—3)
UF5 2 1.663% + 0(2.00e—1)~ 1.6084e + 0(2.00e—1) 0.0000e + 0(0.00e + 0)~ 0.0000e + 0(0.00e + 0)
UF6 2 6.8734e—1(7.03e—2)~ 7.1366e—1(9.24e—-2) 6.7091e—3(8.90e—3)~ 3.0084e—3(5.91e—3)
UF7 2 1.1882e—1(1.44e—2)~ 1.2309e—1(1.67e—2) 4.0530e—1(2.01e—2)~ 4.0005e—1(2.28e—2)
UF8 3 3.2839e—1(8.95e—2) — 2.9240e—1(6.51e—2) 3.3913e—1(9.63e—3)~ 3.3336e—1(1.36e—2)
UF9 3 1.4561e—1(1.58e—2)~ 1.5506e—1(1.74e—-2) 6.0908e—1(1.94e—2)~ 5.9686e—1(2.08e—2)
UF10 3 8.5876e—1(2.07e—1)~ 8.3000e—1(2.24e—1) 1.1374e—1(6.07e—2)~ 1.1310e—1(5.08e—2)
DTLZ1 3 1.9889%¢ + 1(4.45¢ 4 0)~ 1.9836¢ + 1(4.59¢ + 0) 0.0000e + 0(0.00e + 0)~ 0.0000e + 0(0.00e + 0)
DTLZ2 3 2.5625e—1(2.66e—2)~ 2.5435e—1(3.95¢-2) 3.3560e—1(1.86e—2)~ 3.3691e—1(2.23e—2)
DTLZ3 3 1.5729%¢ + 2(2.53e 4+ 1)~ 1.4550e + 2(2.93¢ + 1) 0.0000e + 0(0.00e + 0)~ 0.0000e + 0(0.00e + 0)
DTLZ4 3 2.8682e—1(3.50e—2)~ 2.9143e—1(3.58e—2) 3.4366e—1(4.00e—2)~ 3.3379e—1(5.06e—2)
DTLZ5 3 1.3134e—2(2.47e—-3)~ 1.2344e—2(1.98e—3) 1.9070e—1(2.23e—-3)~ 1.9102e—1(1.92e—3)
DTLZ6 3 6.1176e—3(1.58e—3) — 3.7187e—3(3.39¢—4) 1.9802e—1(1.55e—3) — 2.0034e—1(3.19¢e—4)
DTLZ7 3 9.3549e—2(6.29e—2)~ 8.5440e—2(5.57e-2) 1.4620e—1(1.07e—2)~ 1.4812e—1(9.46e—3)
+/— I~ 0/7/15 — 0/5/17 —

Best/all 4/22 18/22 7/22 12/22

In order to ensure the fairness in the comparison of
algorithm performance, the parameter settings of these four
variants are consistent with CHLMOPSO. The four variants
are tested on the ZDT, UF, and DTLZ test suites and run
independently for 30 times on each test problem to obtain sta-
tistical average and standard deviation (in parenthesis) results
with respect to the IGD and HV indicators. The comparison
results are presented in Tables 8, 9, 10, 11, the best results of
each test problem are shown in bold, and the Wilcoxon rank
sum test is performed to detect whether there are significant
performance differences between CHLMOPSO and the four
variants.

The experimental results indicate that CHLMOPSO per-
forms significantly better than its four variants on most of
the test problems, which confirms that the combination of the
four proposed strategies improves the comprehensive perfor-
mance of CHLMOPSO and has an important role in this algo-
rithm. Additionally, as can be seen from Tables 8, 9, 10, 11,
the variants CHLMOPSO-III and CHLMOPSO-IV perform
worse than CHLMOPSO relative to those of CHLMOPSO-I

and CHLMOPSO-II, which demonstrates that the proposed
competitive hybrid learning strategy and the optimal angle
distance strategy to maintain the external archive have made
relatively great contributions to CHLMOPSO. In the variant
CHLMOPSO-III, the performance of the competitive hybrid
learning strategy is more significant on UF test suite. And in
the variant CHLMOPSO-IV, the performance improvement
of the optimal angle distance strategy to maintain the external
archive is predominantly manifested on the ZDT test suite.
However, in terms of the overall results, after removing the
competitive hybrid learning strategy, the performance of vari-
ant CHLMOPSO-III is obviously worse, thus verifying that
the competitive hybrid learning strategy has the greatest con-
tribution to CHLMOPSO. This is because some studies have
shown that the update of particles through the competitive
mechanism in CSO can significantly increase the diversity
of population, thus avoiding premature convergence. And
our proposed competitive hybrid learning strategy combines
the updating strategy of CSO with that of MOPSO to achieve
a good equilibrium between convergence and diversity.
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Conclusion

For improvements in the comprehensive performance of
algorithm, a competitive hybrid learning MOPSO is put for-
ward. CHLMOPSO proposes an updating strategy of pbest to
derive pbest of the stagnant particles without evolution for the
purpose of enhancing the ability of particles to explore. Sub-
sequently, the flight parameters are transformed adaptively
in accordance with the evolutionary state of particles. In the
proposed competitive hybrid learning strategy, the algorithm
selects different updating strategies. Additionally, the opti-
mal angle distance strategy is applied to effectively maintain
the archive, thereby speeding up algorithm convergence.

On three suits of benchmark problems, the simulation
experiments compared CHLMOPSO with the selected MOP-
SOs and MOEAs. The IGD and HV indicators are utilized to
assess its performance as a whole, and two non-parametric
statistical tests, the Wilcoxon rank sum test and the Fried-
man rank test, are used to process experimental results. The
findings from the experiments also verify the effectiveness of
CHLMOPSO, which can better equilibrate the convergence
and diversity.

However, according to the experimental results, it can be
observed that the performance of the proposed CHLMOPSO
needs to be further improved on some MOPs (such as DTLZ)
with complex PF features that are multi-modal and concave.
In addition, it can also be concluded from the ablation exper-
iments that the adaptive parameters strategy in CHLMOPSO
does not make a significant contribution to the algorithm,
which may be due to the fact that the proposed adaptive
flight parameters strategy only takes into account the evolu-
tionary ability of the particles but not that of the population.
Therefore, in our future work, it will be meaningful to design
an adaptive parameters strategy that takes into account both
the evolutionary ability of the population and the particles
to obtain more accurate and better diversity of solutions
for the particles. This can better balance the global explo-
ration and local exploitation abilities of the algorithm to solve
concave and multi-modal MOPs. Furthermore, the effective
application of CHLMOPSO to solve practical problems such
as vehicle routing, network communication, and production
scheduling is also one of the future research.
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