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Abstract
In the field of deep learning, the attention mechanism, as a technology that mimics human perception and attention processes,
has made remarkable achievements. The current methods combine a channel attention mechanism and a spatial attention
mechanism in a parallel or cascaded manner to enhance the model representational competence, but they do not fully consider
the interaction between spatial and channel information. This paper proposes a method in which a space embedded channel
module and a channel embedded space module are cascaded to enhance the model’s representational competence. First,
in the space embedded channel module, to enhance the representational competence of the region of interest in different
spatial dimensions, the input tensor is split into horizontal and vertical branches according to spatial dimensions to alleviate
the loss of position information when performing 2D pooling. To smoothly process the features and highlight the local
features, four branches are obtained through global maximum and average pooling, and the features are aggregated by
different pooling methods to obtain two feature tensors with different pooling methods. To enable the output horizontal and
vertical feature tensors to focus on different pooling features simultaneously, the two feature tensors are segmented and
dimensionally transposed according to spatial dimensions, and the features are later aggregated along the spatial direction.
Then, in the channel embedded space module, for the problem of no cross-channel connection between groups in grouped
convolution and for which the parameters are large, this paper uses adaptive grouped banded matrices. Based on the banded
matrices utilizing the mapping relationship that exists between the number of channels and the size of the convolution kernels,
the convolution kernel size is adaptively computed to achieve adaptive cross-channel interaction, enhancing the correlation
between the channel dimensions while ensuring that the spatial dimensions remain unchanged. Finally, the output horizontal
and vertical weights are used as attention weights. In the experiment, the attention mechanism module proposed in this paper
is embedded into the MobileNetV2 and ResNet networks at different depths, and extensive experiments are conducted on the
CIFAR-10, CIFAR-100 and STL-10 datasets. The results show that the method in this paper captures and utilizes the features
of the input data more effectively than the other methods, significantly improving the classification accuracy. Despite the
introduction of an additional computational burden (0.5 M), however, the overall performance of the model still achieves the
best results when the computational overhead is comprehensively considered.
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Introduction

The attention mechanism allocates different weights to dif-
ferent input elements, enabling the model to focus more
accurately on important information, thereby improving
the model performance. In practical applications, atten-
tion mechanisms are widely used in fields such as natural
language processing [1], computer vision [2], and image pro-
cessing [3].

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-024-01445-9&domain=pdf
http://orcid.org/0000-0002-8314-6448


Complex & Intelligent Systems

The channel attention mechanism [4–7] can adjust the
feature weight based on the importance of different chan-
nels, making the model more focused on features that are
beneficial to the task. The first proposed channel attention
mechanism module, SE-Net [4], performs channel attention
on the channel dimension relative to global operations. Based
on the SE-Net, ECA-Net [5] and GCT [6] add interrela-
tionships between channels. FCA-Net [7] extends the global
average pooling operation in the channel attention mecha-
nism to the two-dimensional discrete cosine transform form,
increasing feature diversity.

The computational cost of the channel attention mecha-
nism is relatively low, but the importance of spatial location
is ignored, resulting in insufficient attention given to local
features.

The spatial attention mechanism [8–10] assigns differ-
ent weights to information from different positions, and the
model focusesmore on regions that aremore important to the
task. RAM [8] builds a spatial attention mechanism based on
recurrent neural networks to enable the model to focus on the
most relevant parts when processing the input sequence. STN
[9] improves the accuracy of image classification via adaptive
spatial transformation. CCNet [10] enhances the semantic
information of features by establishing remote dependency
relationships based on spatial attention. The spatial atten-
tion mechanism ignores the channel information of the input
sequence or image, focusing too much on local information
and ignoring the global context. Additionally, when process-
ing natural language text with unstructured data, it is not as
effective as when processing structured data such as images.

The mixed attention mechanism [11–17] combines chan-
nel and spatial information to capture multiscale features and
improve model representational competence. BAM [11] and
HAM [12] cascade channels and spatial attention mecha-
nisms. The parallel channel and spatial attention mechanism
of CBAM [13] and scSE [14] enhance the feature expression
ability of convolutional neural networks. SA-Net [15] and
EPSA-Net [16] use convolutional kernels of different sizes
to process input feature maps before parallel connection,
allowing the model to have multiscale feature information.
Coordinated attention (CA) [17] cleverly embeds spatial
dimension information into the channel dimension and
aggregates features in two spatial directions while preserving
accurate positional information and spatial information from
different directions.

In summary, the channel attention mechanism [4–7] and
the spatial attention mechanism [8–10] focus on information
from different dimensions, respectively, which can affect the
attention given to local features. The mixed attention mech-
anism [11–17] enhances the representational competence of
the model through parallel or cascading; however, the intro-
duction of mixed attention increases model complexity and

requires carefully choosing how channels and space are com-
bined.

To solve the above problems, this paper proposes a novel
and effective attentionmechanismmodule, namely, the space
and channel mutually embedded attention mechanism. By
designing a cascade with a space embedded channel module
and a channel embedded space module, this paper compre-
hensively considers horizontal and vertical information in
the channel dimension. By introducing an adaptive channel
interaction mode, the channel correlation in different spa-
tial dimensions is strengthened, thus solving the problem
of channel and spatial attention mechanisms focusing on
information from different dimensions. The design ofmutual
embedding not only enhances the model’s comprehensive
representation of local features, but also avoids the complex-
ity of introducing mixed attention and eliminates the need to
finely select how channels and space are combined.

In the space embedded channel module, first, the input
intermediate feature tensor is split into two feature tensors in
the horizontal (C × 1×W ) and vertical directions (C ×H ×
1),which alleviates the loss of position informationwhenper-
forming 2D pooling. Next, to introduce the features extracted
by different pooling operations to increase the model’s diver-
sity for the input data, in this paper, the two feature maps are
sequentially through 2D maximum and average pooling to
obtain four sets of feature tensors ((C × 1 × W )avg, (C ×
1 × W )max , (C × H × 1)avg and (C × H × 1)max). Then,
to fuse the features extracted in the horizontal and vertical
directions to capture the information of the input data more
comprehensively, this paper merges the features in the hori-
zontal and vertical directions according to different pooling
methods to obtain two sets of feature tensors ((C × 1 × (W
+H))avg and (C × 1× (W +H))max). Finally, to preserve the
different spatial dimension information in the location, the
feature tensors ((C × 1 × (W + H))avg and (C × 1 × (W +
H))max) are split and subsequently merged in different direc-
tions to obtain two sets of feature tensors. Moreover, each set
of feature tensors is enabled to focus on the important regions
of the module while enhancing the semantic information of
the spatial location features.

In the channel embedded space module, first, the feature
vectors of the horizontal and vertical dimensions output from
the space embedded channel module are considered as two
parallel inputs, and tensor transformation is performed to
convert the two-dimensional tensor into a one-dimensional
tensor. Next, to strengthen the correlation between channel
dimensions in different spatial dimensions, banded matrices
are introduced on the basis of grouped convolution to reduce
the number of parameters, and the convolution kernel setting
is approximated to be consistent with the input and output
dimensions of the ECA-Net method. Subsequently, the two
sets of feature tensors output from the channel adaptive inter-
action module of the 1D banded matrix are extended to the
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spatial dimension by unsqueezing to obtain the channel fea-
tures. Afterwards, a Sigmoid operation is performed to adjust
the attention weights, limiting their range to between (0,1)
to generate the attention weights of the channel dimensions
in different spatial dimensions. Then, the expansion opera-
tion is used to expand in the height and width dimensions to
match the size of the input original feature tensor in prepara-
tion for subsequent elementwise multiplication operations.
Finally, an elementwise multiplication operation is used to
output the result of the input original tensor adjusted with
attention weights in the horizontal and vertical directions,
allowing the model to more adaptively focus on information
from different positions and spatial dimensions in the input
tensor.

Main contributions:

(1) To our knowledge, this paper is the first to interactively
embed channel and spatial attention. The interaction
between channel and spatial attention enhances the
model’s representational competence.

(2) A space embedded channel module is constructed to
enhance the representational competence for objects of
interest. This module embeds the horizontal and vertical
directions into the channel dimension, smooths image
information and highlights local features through global
maximum and average pooling, thus comprehensively
considering feature information from different direc-
tions.

(3) A channel embedded spacemodule is constructed, using
an adaptive grouped bandedmatrix to enhance the corre-
lation between channels in different spatial dimensions.
The attention weights of the generated channel dimen-
sions in different spatial dimensions are utilized to
multiply elementwise with the original feature tensor to
adjust the input tensor and make the model more adap-
tive in focusing on information from different channels
and spatial dimensions.

Related work

In this section, a brief overview of the image classification
network architecture based on convolutional neural networks
is provided. A detailed review of the algorithm inspiration
source in this paper, the CA [17] attention mechanism. The
algorithm in this paper is proposed based on the analysis of
the algorithm shortcomings.

Network engineering

“Network engineering” plays an important role in visual
research, and algorithms based on convolutional neural
networks such as LeNet [18], AlexNet [19], VGG [20],

Inception [21], ResNet [22] andMobileNet [23–25] are com-
monly used in tasks such as image classification, object
detection, and image segmentation in visual research. The
LeNet [18] algorithm demonstrates the effectiveness of con-
volutional neural networks in image classification tasks.
AlexNet [19] introduces a deeper network architecture and
adopts ReLU activation functions and Dropout regulariza-
tion to avoid gradient vanishing and overfitting problems.
Its design and innovation lay the foundation for more com-
plex networks such as VGG [20] and ResNet [22]. The
VGG [20] network structure is relatively simple, with a
16–19 layer deep model. ResNet [22] solves the gradient
vanishing and exploding problems in deep network train-
ing and can still achieve better performance even when
the network depth exceeds 100 layers. Typical examples
include ResNet18, ResNet56, ResNet110 and ResNet152.
The MobileNet [23–25] series of algorithms is suitable for
efficient and lightweight neural networks in mobile devices
and embedded systems to achieve better performance when
computing resources are limited.MobileNetV1 [23] replaces
the convolutions in VGG [20] with deep separable convolu-
tions, using ReLU6 as the activation function. MobileNetV2
[24] adds shortcut connections and expands the dimensional-
ity, and the convolutionuses linear activation insteadofReLU
on the output pointwise. MobileNetV3 [25] introduces the
inverted residual module and squeeze-and-excitation mod-
ule based on V2 [24], using Hard-swish as the activation
function.

In the experimental section of this paper, MobileNetV2
and various depths of ResNet are chosen to validate the
attentionmodule, evaluate its applicability to lightweight net-
works (such as mobile devices) and more powerful networks
(such as servers), and determine its effectiveness in different
environments.

Review and problem analysis of CA

The channel attention mechanism [4–7, 26] is an expression
of feature abstraction, while the spatial attention mechanism
[8–10, 27] is an enrichment of positional information. A sin-
gle attention mechanism cannot simultaneously satisfy the
acquisition of channel and positional information. Therefore,
researchers haveproposed amixed attentionmechanism [28],
which generates multiple attention feature maps from multi-
ple attentionmechanisms and then concatenates them [11, 12,
29] or parallels them [13, 14, 30] to obtain richer feature rep-
resentations. CA [17] cleverly attaches spatial information
to channels, which can be plug-and-played on lightweight
classification networks [31] with negligible computational
overhead. CA [17] provides a new approach for mixed atten-
tion mechanisms.
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The CA [17] algorithm first converts a three-dimensional
tensor F � [F1, F2,…,FC] ∈ RH×W×C into two two-
dimensional tensors ZH

C ∈ R
C×H×1 and ZW

C ∈ R
C×1×W

and computes the correlation between different dimensions
in Eqs. (1) and (2).

ZH
C (H ) � 1

W

∑

0≤i≤W

XC (H , i), ZH
C ∈ R

C×H×1 (1)

where C denotes the number of channels, H denotes the
height, and 1 denotes the width. Each channel corresponds
to a feature at a different vertical position. In height, each
channel represents different spatial information at different
horizontal positions.

ZW
C (W ) � 1

H

∑

0≤ j≤H

XC ( j , W ), ZW
C ∈ R

C×1×W (2)

where 1 denotes the height and W denotes the width. Each
channel corresponds to a feature at a different horizontal posi-
tion. At the width position, each channel represents different
spatial information at different horizontal positions.

The results are concatenated after global average pooling
of ZH

C ∈ R
C×H×1 and ZW

C ∈ R
C×1×W , then split backward

to obtain the new ZH
C ∈ R

C×H×1 and ZW
C ∈ R

C×1×W after
performing dimensionality reduction on the channels. Two
feature maps are obtained through Eq. (3), and the output of
the attention mechanism is the product of the feature maps.

{
gH � Sigmoid(FH (ReLU (F1∗1(ZH

C , ZW
C ))

gW � Sigmoid(FW (ReLU (F1∗1(ZH
C , ZW

C ))
(3)

In theCAalgorithm, the idea of splitting spatial dimension
information into two dimensions and embedding them into
channels is very novel and effective. However, the following
issues remain:

(1) Only global average pooling is performed after spatial
dimension splitting, and the loss of detailed local feature
information in the featuremapmakes itmore difficult for
the network to capture the local structure in the image.

(2) In the paper, only spatial dimension information is
embedded into the channels. Can channel information
be embedded in the spatial dimension?

(3) Processing channel information by dimensionality
reduction leads to data loss, while focusing primarily on
local interchannel relationships fails to capture longer-
range dependencies.

In response to the above issues, this paper proposes an
attentionmechanismmodulewith channel and spatial dimen-
sion information interaction. A combination of multiple

pooling units is used to provide greater feature richness than
single pooling; channels are divided into multiple groups
using banded matrices, treating each group as a specific
type of channel information. Keeping the spatial dimension
unchanged, each pixel can capture channel information from
different groups, thus embedding channel information into
the spatial dimension and avoiding the data loss problem
that would be caused by processing channel information in a
reduced-dimensional way through banded matrices. In pro-
moting information exchange between different dimensions,
more correlations are introduced into the model to enhance
feature representation competence.

Methodology

Assuming F � [F1, F2,…, FC] ∈ RC×H×W is used as the
intermediate feature map of the input tensor, the output is F’
� [F1’, F2’,…, FC’] ∈ RC×H×W . A schematic diagram of
the attention mechanism proposed in this paper is shown in
Fig. 1. The SPCII achieves interaction between channel and
spatial dimension information through two steps: embedding
spatial dimension information into the channel dimension
and embedding channel dimension information into the spa-
tial dimension. The following provides a detailed description
of SPCII.

Space embedded channel module

As shown in Fig. 1, the red solid line on the left side shows
the spatial dimension information embedded in the channel
module. Referring to the CA [17] algorithm, ZH

C and ZW
C

are obtained, and “where” is embedded into "what". That
is, the channel dimension remains unchanged and still repre-
sents different channel features; the spatial dimensions of the
horizontal and vertical directions are compressed to 1, and
different position information is embedded into the channel
dimension.

Because only average pooling is used in reference [17] to
preserve smooth image information, this paper refers to the
CBAM [13] attention mechanism to add maximum pooling
on the basis of average pooling, such as Eqs. (4) and (5).
The combination of the two helps to highlight local features
while preserving spatial smooth information.

{
FH
Avg � AvgPool(ZH

C (H ))

FH
Max � Max Pool(ZH

C (H ))
(4)

{
FW
Avg � AvgPool(ZW

C (W ))

FW
Max � Max Pool(ZW

C (W ))
(5)
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Fig. 1 Schematic diagram of the SPCII module

Then, two feature tensors obtained by the same pooling
method are combined in the horizontal and vertical direc-
tions to form two new feature tensorsConcat(FW

Avg , F
H
Avg) ∈

R
C×1×(H+W ) and Concat(FW

Max , FH
Max ) ∈ R

C×1×(H+W ).
The model simultaneously considers feature information
from different directions.

After Eq. (6) is applied, FHW ′
Avg and FHW ′

Max are obtained
through 2D convolution, batch normalization and activation
functionprocessing to obtain a richer outputwith higher-level
feature representation.

{
FHW ′
Avg � ReLU (BN (Conv2D(Concat(FW

Avg , F
H
Avg))))

FHW ′
Max � ReLU (BN (Conv2D(Concat(FH

Max , F
H
Max ))))

(6)

Finally, FHW ′
Avg and FHW ′

Max are segmented to obtain FH ′
Avg,

FW ′
Avg , F

H ′
Max and FW ′

Max . Note that the dimensions of FW ′
Avg and

FW ′
Max are transposed, and the horizontal and vertical dimen-

sions are swapped. The channels are then summed to improve
the ability of each branch to capture image features in Eq. (7).

{
fH � FH ′

Avg + FH ′
Max

fW � FW ′
Avg + FW ′

Max

(7)

In Eq. (7), the output of f H is (C, (HA + HM ), 1) and the
output of f W is (C, 1, (WA +WM )).

Channel embedded spacemodule

As shown in Fig. 1, the blue solid line on the right side shows
the channel embedded space module. This module takes the
feature vectors in the horizontal and vertical dimensions out-
put by the space embedded channel module as two parallel
inputs.

The inputs f H and f W are both two-dimensional tensors.
To embed the channels into different spatial dimensions, tak-
ing f H as an example, this paper defines a new tensor, new_h
� (HA + HM ) × 1, that shares data storage with the original

tensor, where each channel contains elements at the corre-
sponding positions in the original f H . The same goes for f W .

A tensor view transformation operation using Eq. (8)
adapts the input requirements of a one-dimensional convolu-
tion (C, new_h) with a convolution kernel of k, ensuring that
the input shape is correct.

{
fH .view( fH .si ze(0), new_h)

fW .view( fW .si ze(0), new_w)
(8)

The f H .view(…) tensor view transformation operation in
PyTorch is used and the view function acts to change the
tensor shapewithout changing the tensor elements. InEq. (8),
f H .size(0) denotes the channel dimension and new_h � (HA

+ HM ) × 1 denotes the height dimension.
This paper obtains the number of channels by C �

f H .size(0), which is used as the number of input and out-
put channels for 1D convolution.

With respect to the convolution kernel k, the 1D banded
matrix for adaptive cross-channel interactions (ACCI) from
the ECA-Net [4] algorithm is used to strengthen the corre-
lation between channel dimensions. The 1D convolution is
changed into a grouped convolution, which is divided into
several blocks, and each block is fully connected internally
with a parameter C2. There is no cross-channel connection
between groups, and the parameter is larger (the parameter
is C2/G), where G represents the number of groups in the
grouped convolution. Therefore, the banded matrix is intro-
duced as in Eq. (9), which reduces the parameter size (the
parameter at this point is k × C) while keeping the input and
output dimensions consistent and enhancing the correlation
between channels.

wG �

⎡

⎢⎢⎢⎢⎣

w1, 1 · · · w1, k 0 0 · · · · · · 0
0 w2, 2 · · · w2, k+1 0 · · · · · · 0
...

...
...

...
. . .

...
...

...
0 · · · 0 0 · · · wC ,C−k+1 · · · wC ,C

⎤

⎥⎥⎥⎥⎦

(9)
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There exists a mapping between C and k in Eq. (10), and
the relationship C � 2r×k−b is defined in reference [4]. To
ensure that the convolution kernel has a center point, the
convolution kernel size is forced to be an odd number and
the convolution kernel size is adaptively computed as k by
Eq. (10).

⎧
⎨

⎩
k%2 � 0 ⇒ k � ψ(C) �

∣∣∣ log2(C)
γ

+ b
γ

∣∣∣ − 1

k%2 � 1 ⇒ k � ψ(C) �
∣∣∣ log2(C)

γ
+ b

γ

∣∣∣
(10)

where r � 2 and b � 1.
Taking (C,k,1) as an input to the ACCI outputs a new one-

dimensional tensor C, namely, the relationship between the
channels.

In this paper, to extend the results of theACCI to the spatial
dimension to achieve a channel embedded spatial dimen-
sion, we use.unsqueeze(-1) to add a dimension to the last
dimension, i.e., (C, (HA + HM ), 1), matching the original
two-dimensional tensor. In the f W part, we use.unsqueeze( –
2) to add a dimension in the second to last position, i.e., (C,
1, (WA +WM )). The attention weights are adjusted by a Sig-
moid operation (the Sigmoid activation function in Eq. (11)),
which adjusts the range of the attention weights and limits
them to between (0, 1). The attention weights of the chan-
nel dimension in different spatial dimensions are generated.
The correlation between different channels is dynamically
adjusted by the weights of the banded matrix, allowing the
model to focus more flexibly on important channel informa-
tion in different spatial dimensions.

{
gH � Sigmoid(Conv1D_k( fH ))

gW � Sigmoid(Conv1D_k( fW ))
(11)

The outputs gH and gW are the channel information about
which positions the model should focus on horizontally and
vertically, respectively; that is, different channel information
is embedded in the spatial dimension. The.expand opera-
tion is used to expand gH and gW in the height and width
dimensions to match the dimension of the input FC for sub-
sequent elementwise multiplication operations. The output
of the attention block F ′

C (i , j) is given by Eq. (12).

F ′
C (i , j) � FC (i , j) × gHC (i) × gWC ( j) (12)

The output of the attention block is the result of the input
tensor FC being adjusted by the attention weights gH and gW
in the horizontal and vertical directions, respectively. The
attention block can more adaptively focus on information
from different positions and spatial dimensions in the input
tensor to improve performance in image processing tasks.

(a)

  
(b)                                                      (c)
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XAP XMPYAP YMP
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Fig. 2 SPCII Attention Generation. a SPCII attention b MobileNetV2
+ SPCII attention c ResNet + SPCII attention

SPCII attention generation

Figure 2a shows the SPCII attention mechanismmodule pro-
posed in this paper, which can be plug-and-played in any
CNN architecture, where XAP and YAP are the average
pooling operations in the horizontal and vertical directions,
XMP and YMP are the maximum pooling operations in the
horizontal and vertical directions, and XAP, YAP, XMP and
YMP are the tensors in the horizontal and vertical direc-
tions after splitting. The ACCI is the module for adaptive
cross-channel interactions in Sect. "Channel embedded space
module". Figure 2b shows the integration schematic of SPCII
and MobileNetV2 [24], and Fig. 2c shows the integration
schematic of SPCII and ResNet [22] (BasicBlock for exam-
ple).
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Experiments

Experiment setup

This paper implements experiments using thePyTorch toolkit
on the VScode platform. To evaluate the algorithms of
this paper, experiments are performed on standard datasets
CIFAR-10, CIFAR-100, and STL-10.During training, a stan-
dard SGD optimizer is used with a decay rate of 0.9, a
decay weight of 4E-5, and an initial learning rate of 0.05.
MobileNetV2 is used as the baseline with 200 epochs and a
batchsize of 64.

The CIFAR-10 [32] and CIFAR-100 [32] datasets both
contain 60,000 RGB images at 32 × 32 resolution. Among
them, 83.33% are used as the training set, and 16.67% are
used as the test set. The CIFAR-10 dataset contains 10 cate-
gories, and the CIFAR-100 dataset contains 100 categories.

The STL-10 [33] dataset contains 113,000 RGB images
with 96 × 96 resolution from ImageNet, and includes 10
categories. The training set contains 5000 images, the test set
contains 8000 images, and the unlabeled set contains 100,000
unlabeled images. Only the training and test sets of STL-10
are used in the experiments of this paper, and the unlabeled
dataset is not used.

To evaluate the performance advantages and disadvan-
tages of the method proposed in this paper, five methods are
compared: SE-Net (channel attention mechanism) [4], ECA-
Net (lightweight channel attention mechanism) [5], CBAM
(channel + spatial attention mechanism) [13], CA (space
embedded channel attentionmechanism) [17] and SPCII (the
mechanism proposed in this paper). In addition, since no
precedent using the same public dataset for validation has
been found in previous research, this paper achieves consis-
tency in the hardware environment and the network location
of module insertion, and retrains the model. The Parameters,
GFLOPs, and error rates reported in Tables 1, 2, 3, 4, 5, 6 are
the average results of 10 runs in the same environment.

Image classification on the CIFAR datasets

We conduct target classification experiments on the CIFAR-
10, STL-10 and CIFAR-100 datasets to evaluate the SPCII
attention mechanism module, following the training rules
and parameters mentioned in Sect. “Experiment Setup” and
embed the SPCII module into theMobileNetV2 (lightweight
network) and ResNetX (deep network) series of target
classification networks. First, SPCII is embedded into the
MobileNetV2 and ResNet18 backbone models. Then, the
ResNet depth is increased to observe the robustness of the
SPCII.

Table 3 Comparison between different CNN architectures on the STL-
10 dataset

Description Parameters
(M)

GFLOPs STL-10 Error
(%)

MobileNetV2
(Baseline)

2.237 0.326284 34.76

MobileNetV2
+ SE

2.258+0.94% 0.328+0.53% 34.96+0.58%

MobileNetV2
+ ECA

2.273+1.61% 0.352+7.88% 40.52+16.57%

MobileNetV2
+ CBAM

2.811+25.66% 0.345825+5.99% 38.45+10.62%

MobileNetV2
+ CA

2.682+19.89% 0.336191+3.04% 34.22–1.55%

MobileNetV2
+ Ours

2.682+19.89% 0.339166+3.95% 33.40–3.91%

ResNet18
(Baseline)

12.577 1.826 39.34

ResNet18 +
SE

11.187–11.05% 1.824–0.11% 36.38–7.52%

ResNet18 +
ECA

11.884–5.51% 1.825–0.05% 38.36–2.49%

ResNet18 +
CBAM

11.188–11.04% 1.825–0.05% 35.50–9.76%

ResNet18 +
CA

11.256–10.50% 1.826+0.00% 35.88–8.80%

ResNet18 +
Ours

11.256–10.50% 1.827+0.05% 35.12–10.73%

The best values under different descriptions are shown in bold

Table 5 Ablation experiment data for the space embedded channelmod-
ule

Description Parameter
(M)

GFLOPs CIFAR-10
Error (%)

MobileNetV2
(Baseline)

2.237 0.326284 17.98

+ CA 2.682+19.89% 0.336191+3.04% 17.80–1.00%

+ Ours(M +
C)

2.682+19.89% 0.336191+3.04% 17.77–1.17%

+ Ours(A + C) 2.682+19.89% 0.336191+3.04% 17.78–1.11%

+ Ours(M + A
+ C)

2.682+19.89% 0.339166+3.95% 17.20–4.33%

The best values under different descriptions are shown in bold

Comparison between different backbonemodels

The SPCII proposed in this paper is embedded into
MobileNetV2 and ResNet18, and its performance is com-
pared with that of representative SE (channel attention
mechanism) [4], ECA (lightweight channel attention mech-
anism) [5], CBAM (channel + spatial attention mechanism)
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Table 1 Comparison between different CNN architectures on the CIFAR-10 and CIFAR-100 datasets

Description Parameters (M) GFLOPs CIFAR-10 Error (%) CIFAR-100 Error (%)

MobileNetV2(Baseline) 2.237 0.326284 17.98 48.19

MobileNetV2 + SE 2.258+0.94% 0.328205+0.59% 17.53–2.50% 48.45+0.54%

MobileNetV2 + ECA 2.273+1.609% 0.352.068+7.90% 17.27–3.95% 48.02–0.35%

MobileNetV2 + CBAM 2.811+25.66% 0.345825+5.99% 17.60–2.11% 47.65–1.12%

MobileNetV2 + CA 2.682+19.89% 0.336191+3.04% 17.80–1.00% 47.24–1.97%

MobileNetV2 + Ours 2.682+19.89% 0.339166+3.95% 17.20–4.33% 47.07–2.32%
ResNet18 11.182 1.824 14.77 44.61

ResNet18 + SE 11.277+0.85% 1.824+0.00% 14.09–4.60% 43.02–3.56%

ResNet18 + ECA 12.577+12.48% 1.826+0.11% 15.27+3.39% 43.30–2.94%

ResNet18 + CBAM 11.256+0.66% 1.826+0.11% 13.93–5.69% 42.29–5.20%

ResNet18 + CA 11.256+0.66% 1.826+0.11% 13.93–5.69% 42.22–5.36%

ResNet18 + Ours 11.256+0.66% 1.827+0.16% 13.46–8.87% 42.06–5.72%

The best values under different descriptions are shown in bold

Table 2 Comparison between ResNet architectures with different depths on the CIFAR-10 and CIFAR-100 datasets

Description Parameters GFLOPs CIFAR-10 Error (%) CIFAR-100 Error (%)

ResNet20 11.228 1.824 16.43 41.61

ResNet20 + SE 11.234+0.05% 1.824+0.00% 16.22–1.28% 41.02–1.42%

ResNet20 + ECA 12.623+12.42% 1.826+0.11% 16.21–1.34% 44.30+6.46%

ResNet20 + CBAM 11.318+0.80% 1.825+0.05% 16.11–1.95% 41.29–0.77%

ResNet20 + CA 11.303+0.67% 1.826+0.11% 16.08–2.13% 40.22–3.34%

ResNet20 + Ours 11.303+0.67% 1.827+0.16% 15.99–2.68% 40.03–3.80%
ResNet32 21.336 3.678 15.32 40.67

ResNet32 + SE 21.497+0.75% 3.680+0.05% 14.35–6.33% 38.28–5.88%

ResNet32 + ECA 23.857+11.82% 3.682+0.11% 15.22–0.65% 39.58–2.68%

ResNet32 + CBAM 21.449+0.53% 3.681+0.08% 14.27–6.85% 37.60–7.55%

ResNet32 + CA 21.471+0.63% 3.683+0.14% 14.15–7.64% 36.04–11.38%
ResNet32 + Ours 21.471+0.63% 3.684+0.16% 14.17–7.51% 36.47–10.33%

ResNet56 23.713 4.132 16.29 37.58

ResNet56 + SE 26.244+10.67% 4.140+0.19% 16.27–0.12% 37.39–0.51%

ResNet56 + ECA 23.121–2.50% 4.141+0.22% 16.33+0.25% 37.33–0.67%

ResNet56 + CBAM 23.571–0.60% 4.140+0.19% 15.27–6.26% 36.98–1.60%

ResNet56 + CA 23.793+0.34% 4.160+0.68% 15.32–5.95% 36.55–2.74%

ResNet56 + Ours 23.793+0.34% 4.160+0.68% 15.22–6.57% 36.42–3.09%
ResNet110 41.361 7.616 13.12 36.37

ResNet110 + SE 41.666+0.74% 7.618+0.03% 12.96–1.22% 36.22–0.41%

ResNet110 + ECA 41.613+0.61% 7.623+0.09% 12.4–5.49% 36.22–0.41%

ResNet110 + CBAM 41.389+0.07% 7.620+0.05% 12.77–2.67% 36.32–0.14%

ResNet110 + CA 41.610+0.60% 7.625+0.12% 12.84–2.13% 36.21–0.44%

ResNet110 + Ours 41.610+0.60% 7.627+0.14% 12.00–8.54% 36.14–0.63%

The best values under different descriptions are shown in bold
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Table 4 Comparison between
ResNet architectures with
different depths on the STL-10
dataset

Description Parameters GFLOPs STL-10 Error (%)

ResNet20 17.2506 1.319 35.33

ResNet20 + SE 17.4088+0.92% 1.322+0.23% 37.73+6.79%

ResNet20 + ECA 19.4346+12.66% 1.322+0.23% 35.83+1.42%

ResNet20 + CBAM 17.4682+1.26% 1.335+1.21% 34.17–3.28%

ResNet20 + CA 17.8474+3.46% 1.326+0.53% 34.88–1.27%

ResNet20 + Ours 17.8474+3.46% 1.326+0.53% 33.62–4.84%
ResNet34 21.116 7.1199 40.49

ResNet34 + SE 21.277+0.76% 7.1211+0.02% 36.95–8.74%

ResNet34 + ECA 21.13+0.07% 7.1261+0.09% 37.26–7.98%

ResNet34 + CBAM 21.27+0.73% 7.1244+0.06% 37.10–8.37%

ResNet34 + CA 21.251+0.64% 7.1233+0.05% 36.51–9.83%

ResNet34 + Ours 21.251+0.64% 7.1238+0.05% 35.54–12.23%
ResNet56 23.592 4.132 50.92

ResNet56 + SE 26.060+10.46% 4.140+0.19% 50.25–1.32%

ResNet56 + ECA 63.790+170.39% 4.177+1.09% 49.69–2.42%

ResNet56 + CBAM 26.061+10.47% 4.141+0.22% 49.80–2.20%

ResNet56 + CA 25.446+7.86% 4.170+0.92% 49.22–3.34%

ResNet56 + Ours 25.446+7.86% 4.182+1.21% 49.02–3.73%
ResNet101 41.361 7.616 41.00

ResNet101 + SE 41.386+0.06% 7.618+0.03% 56.00+36.59%

ResNet101 + ECA 43.757+5.79% 7.620+0.05% 47.623+16.15%

ResNet101 + CBAM 41.389+0.07% 7.620+0.05% 67.22+63.95%

ResNet101 + CA 46.146+11.57% 7.942+4.28% 41.42+1.02%

ResNet101 + Ours 41.610+0.60% 7.627+0.14% 40.94–0.15%

The best values under different descriptions are shown in bold

Table 6 Ablation experiment data of the channel embedded spatial
module

Description Parameters
(M)

GFLOPs CIFAR-10
Error (%)

MobileNetV2
(Baseline)

2.237 0.326284 17.98

+ CA 2.682+19.89% 0.336191+3.04% 17.80–1.00%

+ Ours(M +
A)

2.682+19.89% 0.332205+1.81% 17.62–2.00%

+ Ours(M + A
+ C)

2.682+19.89% 0.339166+3.95% 17.20–4.33%

The best values under different descriptions are shown in bold

[13], andCA(space embedded channel attentionmechanism)
[17].

Table 1 clearly shows that the proposed SPCII mod-
ule improves the performance of the MobileNetV2 and
ResNet18 baseline networks on the CIFAR-10 and CIFAR-
100 datasets, further verifying its universality on different
network architectures.

With respect to the MobileNetV2 model on the CIFAR-
10 dataset, the SPCII module achieves a more significant
error rate reduction than do the other attention mechanism
modules, such as the SE, ECA, CBAM, and CA modules.
The SPCII module proposed in this paper has the lowest
error rate, which is reduced by 4.33% compared to that
of the baseline network. When the MobileNetV2 model is
applied to the CIFAR-100 dataset and the ResNet18 model
is applied to the CIFAR-10 and CIFAR-100 datasets, the
SPCII module effectively reduces the error rates by 2.32%,
8.87%, and 5.72%, respectively. The excellent performance
of this paper’s method in terms of classification accuracy
stems from the fact that the adaptability of SPCII enables
the model to focus on key regions in different spatial dimen-
sions, making it more effective at capturing the local features
and location information of the targets. In addition, on the
CIFAR-100 dataset, the SPCII module always performs well
on the MobileNetV2 and ResNet18 models, demonstrating
its robustness in handling datasets with multiple categories.

Furthermore, the impact of the SPCIImodule on themodel
parameters is also investigated. The results in Table 1 show
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that the parameter size of SPCII on the ResNet18 algo-
rithm is 11.256 M, which reduces the Parameters by 0.19%
and 11.82% compared to those of the SE and ECA algo-
rithms, respectively. Compared with ResNet18, the SPCII
increases the parameter by only 0.66%. This indicates that
while maintaining a relatively low parameter increase, the
SPCII algorithm achieves lower error rates on the CIFAR
dataset and higher GFLOPs than do the other algorithms.

Comparison between different ResNet depths

In this section, the robustness of the SPCII is demonstrated
by deepening the model depth of ResNet. As shown in
Table 2, the SPCII algorithm reduces the error rate by
2.68%, 7.51%, 6.57% and 8.54% compared to those of
the baseline algorithms ResNet20, ResNet32, ResNet56 and
ResNet101 on the CIFAR-10 data, respectively. On the
CIFAR-100 data, the SPCII algorithm reduces the error rate
by 3.80%, 10.33%, 3.09% and 0.63% compared to those of
the baseline algorithms ResNet20, ResNet32, ResNet56, and
ResNet101, respectively. Even though the model depth of
ResNet increases, the error rate of SPCII still decreases and
outperforms that of the other attention mechanism modules,
which fully demonstrates the power of SPCII. In Fig. 3, as
the ResNet depth gradually increases, the proposed SPCII
algorithm achieves a relatively low error rate with a slight
increase in parameter size and computational complexity,
demonstrating its performance advantage in deep networks.
The SPCII module introduces an adaptive channel interac-
tion mode, which can adaptively focus on information from
different positions and spatial dimensions in the input ten-
sor. In deep networks, it can better adapt to different levels
of feature representation and capture more complex features
and relationships.

Image classification on the STL-10 dataset

Target classification experiments are conducted on the STL-
10 dataset to evaluate the SPCII attention mechanism mod-
ule, following the training rules and parameters mentioned in
Sect. "Experiment Setup", and the SPCII module is embed-
ded into the MobileNetV2 and ResNetX series of target
classification networks. First, SPCII is embedded into the
MobileNetV2 and ResNet18 backbone models. Then, the
ResNet depth is increased to observe the robustness of the
SPCII.

Comparison between different backbonemodels

Table 3 shows the performance variations in MobileNetV2
and ResNet18 in terms of the number of parameters, compu-
tational complexity, and classification error rate on the STL-
10 dataset. In addition, the accuracy of the proposed SPCII

algorithm is better than that of other attention mechanism
modules, but the SPCII algorithm increases the parameter
size and computational complexity of MobileNetV2.

With respect to the MobileNetV2 model on the STL-
10 dataset, the SPCII module achieves a more significant
improvement in the error rate by 3.91%compared to the other
attention mechanismmodules, such as the SE, ECA, CBAM,
and CA modules. These findings show that the SPCII mod-
ule has significant performance advantages when applied
to lightweight networks and small training sets. A similar
trend is also verified in the ResNet18 model on the STL-10
dataset, and the SPCII module achieves an error rate reduc-
tion of 10.73%, further demonstrating its effectiveness in
lightweight networks. In addition, the results also show that
on the STL-10 dataset, the error rate of the MobileNetV2
model increases slightly when the SEmodule is added, while
adding the ECAmodule increases the error rate dramatically,
demonstrating that the use of channel attention or mixed
attention mechanisms is ineffective on lightweight networks
with small training sets. The small datasets fail to provide
sufficiently diverse samples, thus limiting the ability of the
model to learn rich feature representations. The effective-
ness of the embedded design in the CA and SPCII attention
mechanisms is well demonstrated.

Comparison between different ResNet depths

The training set size of the STL-10 dataset is much smaller
than that of the CIFAR dataset. Therefore, the model overfits
on the training set, leading to poor performance on the test
set. The robustness of the SPCII in the case of a small training
set is demonstrated.

As shown in Fig. 4, the error rate of SPCII decreases as the
model depth of ResNet increases. This trend indicates that
SPCII can still effectively improve the model performance at
deeper levels and be superior to other attention mechanism
modules at different depths.

In Table 4, the improvements in performance of SPCII rel-
ative to the baseline algorithmResNet (ResNet20, ResNet34,
ResNet56, and ResNet110) at different depths are shown. At
layer 20, compared with ResNet20, SPCII reduces the error
rate by 4.84%, and at layer 101, SPCII reduces the error
rate by 0.15% compared to that of ResNet110. In contrast,
other attention mechanism modules may degrade the accu-
racy in deep networks; in particular, SE, ECA, CBAM, and
CA lose 36.59%, 16.15%, 63.95%, and 1.02%, respectively,
of the accuracy. By observing the error rates of layers 20
to 101, SPCII can still achieve better performance than the
other algorithms. We comprehensively consider information
of the SPCII in both the horizontal and vertical directions and
introduce additional combination methods during the merg-
ing process tomore comprehensively understand the features
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Fig. 3 Performance comparison between different attention mechanisms on different depths of the ResNet architecture on the CIFAR dataset

in the images. The SPCII is still robust when the training set
is small and the network is deep.

Grad-CAM visualization result plots

To better compare the above results, Grad-CAM [34] is used
to visualize the results. The thermal map generated by Grad-
CAM can indicate the areas that the model focuses on in the
image, thereby helping to understand how the model makes
decisions. It is highly useful for local feature localization in
image classification tasks. As shown in Figs. 5 and 6, the
visualization results after adding SE, ECA, CBAM, CA and
SPCII toMobileNetV2 and ResNet20 for comparison, on the
STL-10 dataset are shown.

As shown in Fig. 5, SPCII is superior to the other algo-
rithms in terms of coverage in the Grad-CAM visualization
results ofMobileNetV2.As shown inFig. 6, SPCII is superior

at capturing classification details in the Grad-CAM visual-
ization results of ResNet20. In addition, the SPCII module is
able to guide the network to focus on more important overall
and detailed features while ignoring unimportant features.

For example, the third, fourth, and fifth columns in Fig. 5
are able to better focus on the head region of the target using
the attention mechanism proposed in this paper, enabling the
model to achieve a significant improvement in the recogni-
tion performance for specific categories. By introducing the
attention mechanism, the model can enhance the represen-
tation of key regional features in a targeted manner when
processing images, thus enhancing the accurate understand-
ing towards the target.

In the third, fourth, and fifth columns of Fig. 6, using the
attention mechanism proposed in this paper, more attention
can be given to more detailed parts, such as the nose, eyes,
and ears, and highlighting the key local information can help

123



Complex & Intelligent Systems

  
ResNet18 ResNet20 ResNet34 ResNet56 ResNet101

Algorithm

10

15

20

25

30

35

40

45

50
Pa

ra
m

et
er

s(
M

)

ResNet18
SE
ECA
CBAM
CA
Ours

21.1

21.15

21.2

21.25

21.3

21.35

ResNet18 ResNet20 ResNet34 ResNet56 ResNet101
Algorithm

1

2

3

4

5

6

7

8

G
FL

O
Ps

ResNet18
SE
ECA
CBAM
CA
Ours

7.12

7.122

7.124

7.126

ResNet18 ResNet20 ResNet34 ResNet56 ResNet101
Algorithm

30

35

40

45

50

55

60

65

70

S
TL

-1
0 

E
rr

or
(%

)

ResNet18
SE
ECA
CBAM
CA
Ours

41

41.5

42

Fig. 4 Performance comparison between different attention mechanisms on different depths of the ResNet architecture on the STL-10 dataset

improve the detection accuracy of the target category in com-
plex scenes.

Ablation studies

In the ablation experiments, the CIFAR-10 dataset is used,
and MobileNetV2 is used as the backbone model. We train
for 200 epochs using the parameters in Sect. "Experiment
Setup" and report on the classification errors, Parameters,
and GFLOPs of the test data. In Tables 5 and 6, MaxPool
is abbreviated as “M”, AvgPool is abbreviated as “A”, and
channel is abbreviated as “C”.

Space embedded channel module

To validate the effectiveness of this paper’s multiple pooling
unit combination in the space embedded channel module,
we conduct experiments on the CIFAR-10 dataset with

MobileNetV2(Baseline), + CA and elimination of differ-
ent pooling layers. As shown in Table 5, in the ablation
experimental data of “where” embedded in “what”, the algo-
rithms MobileNetV2(Baseline) + CA, + Ours(M + C), +
Ours(A + C) and + Ours(M + A + C) with the addition
of the attention mechanism module reduce the error rate by
1.00%, 1.17%, 1.11% and 4.33%, respectively, when com-
paredwith the baseline algorithm.This shows that themethod
of combining multiple pooling units proposed in this paper is
very effective at improving model performance. Compared
to MobileNetV2(Baseline), the models with the addition of
the attention module all achieve a significant reduction in the
error rate.

Compared to MobileNetV2(Baseline), the parameters
increased by 19.89% with the addition of the attention mod-
ule. Compared to MobileNetV2 (Baseline), adding the CA,
Ours(M + C), Ours(A + C), and Ours(M + A + C) attention
modules increases theGFLOPs by 3.04% and 3.95%, respec-
tively. Table 5 demonstrates that the method of combining
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Airplane Deer Car Cat Dog Ship Horse Truck

Fig. 5 Grad-CAM visualization result plots of MoblieNetV2 for par-
tial categories on STL-10. The horizontal rows represent the original
image, MobileNetV2, MobileNetV2 + SE, MobileNetV2 + ECA,

MobileNetV2 + CBAM, MobileNetV2 + CA, and MobileNetV2 +
SPCII images, respectively

multiple pooling units proposed in this paper is effective.
Adding the attentionmodule introduces additional additional
computational overhead, but increasing the model computa-
tional power by reducing the error rate is desirable.

Channel embedded space module

To validate the effectiveness of this paper in the channel
embedded space module, experiments are conducted on the
CIFAR-10 dataset with MobileNetV2(Baseline) and + CA
[17], and with or without the addition of the channel embed-
ded space module. As shown in Table 6, in the ablation
experimental data of “What” embedded into “Where”, the
algorithms MobileNetV2(Baseline) + CA, + Ours(M + A),
and + Ours(M + A + C) with the addition of the attention
module reduce the error rates by 1.00%, 2.00%, and 4.33%,
respectively, compared with MobileNetV2(Baseline). This

shows that the channel embedded space module proposed in
this paper is very effective in improving the model perfor-
mance. Compared to MobileNetV2(Baseline), the models of
adding the attention module all achieve a significant reduc-
tion in the error rate.

Compared to MobileNetV2(Baseline), the parameters
increase by 19.89% with the addition of the attention mod-
ule, and the GFLOPs increase by 3.04%, 1.81% and 3.95%
after adding the CA, + Ours(M + A) and + Ours(M +
A + C) attention modules, respectively. The results of the
ablation experiments demonstrate the effectiveness of the
channel embedded space module proposed in this paper on
the CIFAR-10 dataset, which is able to significantly reduce
the error rate of themodel. The effectiveness of themethod in
improving the performance of themodel is demonstrated, and
this method provides superior computational performance
compared to other modules.
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Airplane Deer Car Cat Dog Ship Horse Truck

Fig. 6 Grad-CAM visualization result plots of ResNet20 for partial
categories on STL-10. The horizontal rows represent the original
image, MobileNetV2, MobileNetV2 + SE, MobileNetV2 + ECA,

MobileNetV2 + CBAM, MobileNetV2 + CA, and MobileNetV2 +
SPCII images, respectively

Fig. 7 Grad-CAM visualization result plots of MobileNetV2 for air-
plane and dog categories on STL-10. The horizontal rows represent
the original image, MobileNetV2, MobileNetV2 + SE, MobileNetV2 +

ECA, MobileNetV2 + CBAM, MobileNetV2 + CA, and MobileNetV2
+ SPCII images, respectively
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Algorithm limitations

In this section, the limitations of the algorithm proposed in
this paper are analyzed through the above Grad-CAM visu-
alization result plots. In particular, Fig. 7 shows that the
algorithm cannot classify well when the target features to
be classified are not obvious or when the target is occluded.
Figure 7 shows the visualization results of MobileNetV2 on
the STL-10 dataset with the addition of SE, ECA, CBAM,
CA, and SPCII for comparison.

(1) The target features to be classified are not obvious. In
the first row of Fig. 7, on the STL-10 dataset, the air-
craft style is different from most styles of the aircraft
category in the dataset, there is a situation where the
features within the category are not obvious, and the
model may fail to determine which features are critical,
thus affecting its classification performance.

(2) The target to be classified is occluded. When one or
more parts of the target are occluded, themodel may fail
to capture the shape or key features of the target com-
pletely, leading to incorrect classification. In the second
row of Fig. 7, on the STL-10 dataset, the dog’s ears are
occluded, and the model is unable to obtain complete
target information, resulting in a classification failure.

Differences from existing algorithms

This section provides a detailed analysis of representa-
tive algorithms (SE (channel attention mechanism) [4],
ECA (lightweight channel attention mechanism) [5], CBAM
(channel + spatial attention mechanism) [13], and CA
(space embedded channel attention mechanism) [17]) in
terms of logical ideas, advantages, disadvantages, and mixed
approaches, and compares them with the proposed SPCII
algorithm. The specific differences are as shown in Table 7.

In terms of logical ideas and mixed approaches, the SPCII
algorithm differs from the SE, ECA and CBAM algorithms
in that it does not solely utilize channel or spatial attention
mechanisms in parallel or serially. Compared with the CA
algorithm, themethodproposed in this paper not only embeds
the spatial dimension into the channel information, but after
splitting the spatial dimension into horizontal and vertical
dimensions to be embedded into the channels, the obtained
channel information is embedded into the horizontal and ver-
tical spatial dimensions, respectively, to realize the mutual
embedding of the space and the channels.

In terms of advantages, compared with the SE, ECA,
CBAM and CA algorithms, the SPCII algorithm not only
considers the channel information in the spatial dimension,
but also adopts the method of non-dimensionality reduc-
tion to realize the cross-channel information interaction,

which enriches the interaction information between the spa-
tial dimension and channel information.

In terms of disadvantages, the SPCII algorithm increases
the number of parameters for network computation compared
to the SE, ECA, and CA algorithms but retains local and
global information, and enhances the interaction information
in the remote space.

In summary, the difference between the SPCII algorithm
proposed in this paper and other algorithms is that it focuses
on the interaction between channel and spatial information.
The SPCII algorithm embeds the spatial dimension into the
channel information, enriching the channel information in the
spatial dimension; the channel information is embedded into
the horizontal and vertical spatial dimensions, respectively,
and while considering the channel and spatial informa-
tion, the cross-channel interaction of non-dimensionality
reduction maintains the important relationship between the
channels. Other algorithms focus more on channel infor-
mation or spatial information, while the SPCII algorithm
effectively integrates and interacts with the two, considering
the interrelationship between channel and spatial informa-
tion.

Conclusion

To improve the performance of convolutional neural net-
work models in deep learning, this paper proposes a new
attention mechanism module (SPCII) with spatial percep-
tion and channel information interaction. SPCII cascades
a space embedded channel module and a channel embed-
ded space module. The space embedded channel module,
which embeds the horizontal and vertical dimensions into
the channel dimension, performs global maximum and aver-
age pooling, merges the maximum and average pooling, and
then splits them by the horizontal and vertical dimensions to
obtain two sets of clustering features in the horizontal and
vertical directions of the channels, effectively strengthening
the representational competence of the object of interest. The
channel embedded space module uses a channel interaction
model with an adaptive convolution kernel size and embeds
channel information into two spatial dimensions through 1D
convolution to obtain two attention maps. In addition, abla-
tion experiments are conducted on the CIFAR-10 dataset
with MobileNetV2 as the baseline target classification net-
work architecture, which demonstrate the effectiveness of the
space embedded channel module and the channel embed-
ded space module proposed in this paper. The SPCII is
subsequently compared with popular attention modules on
MobileNetV2 and various depths of ResNet architectures.
The experimental results show that the proposed SPCII algo-
rithm is optimal for improvingGFLOPs and accuracy despite
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Table 7 Comparison between different attention mechanism algorithms

Algorithm Logical idea Mixed approach Advantages Disadvantages

SE[4] Squeeze and excitation Channel attention
mechanism

Enhance important channels
Capture global information

Lack local information.
high model complexity
Long computational
time

ECA[5] Improve excitation module Channel attention
mechanism

Enhance important channels
Capture global information
Cross-channel interaction
of non-dimensionality
reduction

Lack long-distance
dependencies

CBAM[13] Predict channel and spatial
attention, respectively

Channel tandem spatial
attention mechanism

Focus on key regions.
Establish remote
dependencies
Rich channel and spatial
information

Overfocus on local
features
Increased network
computation and
complexity

CA[17] Split spatial dimension into
horizontal and vertical parts
and embed them into
channels

Space embedded channel
attention mechanism

Enrich channel information
in the spatial dimension,
remote spatial interaction
Low computational
overhead

Lack local feature
information
Process channel
information in a
dimensionality reduction
manner

SPCII Split spatial dimension into
horizontal and vertical parts
and embed them into
channels
Embed channel information
into spatial horizontal and
vertical dimensions,
respectively

Mutual embedding spatial
and channel attention
mechanism

Enrich the interaction
information between
spatial dimension and
channel information
Cross-channel interaction
of non-dimensionality
reduction
Remote spatial interaction

Increase the number of
network computing
parameters

a slight increase in parameter size, and it has strong robust-
ness for ResNet architectures at different depths. Finally, this
paper uses Grad-CAM to perform a visual display of differ-
ent attention modules on the STL-10 dataset. Finally, this
paper used Grad-CAM to visualize different attention mod-
ules on the STL-10 dataset. The visualization results indicate
that SPCII can more accurately focus the target classification
network model on the features of the target object, achiev-
ing the real meaning of the attention mechanism. However,
when the target features to be classified are not obvious or
occluded, the presence of specific styles and partial occlusion
of the target can affect the model performance, and future
research will concentrate on improving the model’s ability
to adapt to these challenges. At the same time, the model
will be inserted into more classification methods to verify its
effectiveness on more public datasets.
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