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Abstract
The human brain’s remarkable efficiency in solving puzzles through pictorial information processing serves as a valuable
inspiration for computational puzzle solving. In this study, we present a nucleation algorithm for automated puzzle solving,
developed based on statistical analysis of an empirical database. This algorithm effectively solves puzzles by choosing pieces
with infrequent and iridescent edges as nucleation centers, followed by the identification of neighboring pieces with high
resemblances from the remaining puzzle pieces. For the 8 different pictures examined in this study, both empirical data and
computer simulations consistently demonstrate a power-law relationship between solving time and the number of puzzle
pieces, with an exponent less than 2. We explain this relationship through the nucleation model and explore how the exponent
is influenced by the color pattern of the puzzle picture.Moreover, our investigation of puzzle-solving processes reveals distinct
principal pathways, akin to protein folding behavior. Our study contributes to the development of a cognitive model for human
puzzle solving and color pattern recognition.

Keywords Automated puzzle solving · Knowledge-based automation · Color pattern recognition · nucleation model

Introduction

The primary scientific objective of artificial intelligence
(AI) is to comprehend the underlying principles that drive
intelligent behaviors in natural systems and utilize this
knowledge to construct artificial systems capable of match-
ing natural abilities. Achieving this goal involves two distinct
approaches in developing automated algorithms for enabling
intelligent behaviors. One approach focuses on achieving
high performance in specific domains by employing meth-
ods such as brute-force, optimization-oriented, or domain-
specific solutions. A prime example of this performance-
driven approach is the program AlphaGo, which surpassed
professional Go players by combining Monte Carlo tree
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search, value and policy networks, and reinforcement learn-
ing [1]. This type of AI does not aim to replicate human
functioning but can excel in its designated tasks [2–7]. The
other approach seeks tomimic human behavior to attain com-
parable performance on cognitive tasks and comprehend the
underlying principles [8–11]. Some researchers have even
attempted to create computer models of the cognitive archi-
tecture of the human mind, a fascinating and crucial area of
AI [12]. Notable cognitive architectures include ACT-R [13],
Soar [14], and PRODIGY [15].

In this study, our objective is to investigate color pat-
tern recognition and decision-making processes employed by
humanpuzzle solvers. Puzzle solving has longbeen a beloved
pastime, encompassing various types of puzzles like jig-
saw puzzles, edge matching puzzles, and polyomino packing
puzzles. Interestingly, all three puzzle types are considered
NP-complete, and they can be converted into equivalent ver-
sions of each other [16]. This has piqued the interest of
researchers from different fields, including computer vision,
pattern recognition, and image processing, who have been
exploring the possibilities of automating puzzle solving using
computers.

The automatic puzzle-solving domain holds great poten-
tial for diverse applications. For instance, it can be employed
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in tasks such as speech descrambling [17], image descram-
bling [18], assembly of cracked oil paintings [19], reassem-
bling archeological remnants [20] and document fragments
[21], DNA/RNA modeling [22], and molecular docking for
drug design [23]. The study of automated puzzle solving has
opened up new avenues for innovative applications and has
garnered significant interest and attention across diverse sci-
entific disciplines.

The aim of our study is to create models that depict human
perception of color patterns and problem-solving skills. We
have developed an automated solver for rectangular piece
puzzles that mimics the problem-solving approaches used
by human solvers. Our investigation revolves around two
core research inquiries: (1)What factors guide human solvers
when choosing initial puzzle pieces? and (2) How skilled
are human solvers in identifying color patterns on puzzle
pieces? By tackling these questions, we aspire to enhance
our understanding of the cognitive mechanisms underlying
puzzle solving and contribute to the progress of automated
puzzle solvers that replicate human-like strategies.

The subsequent sections of this paper are structured as fol-
lows. Firstly, we provide an overview of the puzzle problem
and review existing research on solving puzzles. Secondly, in
Section "Methods", we present a nucleation model of puzzle
solving, followed by a detailed statistical analysis of edge
features of puzzle pieces using a puzzle-solving database of
human solvers. Additionally, we introduce a computer simu-
lation algorithm designed to replicate human puzzle-solving
processes based on the nucleation model and this statisti-
cal analysis. Moving on, Section "Results and Discussion"
discusses the outcomes of computer simulations, focusing on
the relationship between the average puzzle solving time and
the number of puzzle pieces, as well as visualizations of the
general puzzle-solving process. Finally, in Section "Conclu-
sions", we present our conclusions based on the findings and
discuss the implications of this research.

Problem definition

The puzzle problem involves correctly assembling all puz-
zle pieces to recreate the original picture. In our puzzle task,
the original picture is rectangular and divided into N smaller
rectangular pieces, each labeled based on its position in the
picture. At the beginning, the puzzle pieces are randomly
placed on the computer screen. While they can be moved,
rotation is not allowed.When two neighboring pieces are cor-
rectly placed next to each other, they merge to form a larger
piece and become inseparable. Solving the puzzle entails
finding the unique configuration of theseN pieces on the two-
dimensional array. Our approach exclusively emphasizes the
color factor during puzzle solving. The main objective is to
comprehend the importance of human pattern recognition in

puzzle solving and replicate the problem-solving strategies
used by human puzzle solvers.

Related work

In 1964, Freeman and Gardner proposed the first jigsaw
solver for apictorial 9 piece puzzles, focusing solely on the
shape of the pieces [24]. Their method, called partial bound-
ary curve matching, identifies critical points along the edges
and calculates how well the pieces fit together. Radack and
Badler also attempted puzzle solving using partial boundary
curve matching with polar coordinates [25].

Apart from curve matching methods, the image on puzzle
pieces plays a significant role in puzzle solving, especially
for human solvers. In 1994, Kosiba et al. developed the first
algorithm that utilized both image and shape information of
puzzle pieces to solve puzzleswith up to 54 pieces [26].Other
authors have also proposed similar algorithms based on both
shape and image, where they first assemble the frame pieces
and then employ a greedy algorithm to fill in the interior [27,
28]. These algorithms can handle puzzles with several hun-
dredpieces, but the reconstruction results are usually reported
for only one or a few images.

There has been a growing interest in pictorial puzzles
with pieces of rectangular shape [18, 29, 30]. In this case, a
puzzle solver utilizes the pictorial information on the pieces
to construct the original picture by correctly assembling all
pieces. Such a solver typically consists of twomainmodules:
a compatibility metric that uses a cost function to evalu-
ate the likelihood of a given pair of pieces being neighbors
in the original configuration, and an assembly algorithm
that determines the placement of pieces according to the
compatibility metric. Cho and coworkers discussed several
interesting applications of the rectangular piece puzzle in
image editing and synthesis.

Methods

In Sect. "A nucleation model of puzzle solving", we intro-
duce a puzzle-solving nucleation model as a key component
of our effort to create automated solvers that mimic human
behavior. We examine its time complexity, a crucial aspect
of our research. This model emulates the human approach
of commencing with a piece and gradually expanding it dur-
ing the puzzle-solving process. Moving to Sect. "Statistical
analysis of edges", we delve into the attributes of puzzle
pieces serving as nucleation sites. Our analysis draws on
data from an empirical database, detailed in the Supplemen-
tary Information, encompassing 8 puzzle pictures displayed
in Fig. 1. By combining insights from Sect. "A nucleation
model of puzzle solving" and "Statistical analysis of edges",
we present an automated puzzle solver in Sect. "Computer
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Picture 1

Picture 8

Picture 7

Picture 6

Picture 5

Picture 4

Picture 3

Picture 2

Fig. 1 Eight different pictures used to examine human perception of color patterns in puzzle solving. Among these pictures, two (pictures 1 and 2)
are portraits, two (pictures 3 and 4) are buildings, two (pictures 5 and 6) are animals, and two (pictures 7 and 8) are cartoons

simulation algorithm", specifically crafted to replicate the
general behaviors demonstrated by human solvers. Figure 2
illustrates the framework of this study.

A nucleationmodel of puzzle solving

In a puzzle composed of N non-rotatable rectangular pieces,
there exist N! potential arrangements when assigning each
piece to a position. As a result, employing a brute force algo-
rithm to solve the puzzle would demand O(N!) operations.

Alternatively, we can approach puzzle-solving using a
nucleation process combined with a trial and error approach.
Initially, we select an arbitrary puzzle piece to serve as the
nucleation site and then search for its neighboring piece with
the corresponding edge from the remainingN–1 pieces.Once
a correct choice is made, these two pieces are merged to
form a larger piece. Subsequently, there are N–2 choices
from the remaining pieces to fit one of the new edges for the
merged nucleation site. The overall number of trials required
to solve the puzzle is (N–1)+ (N–2)+ ···+ 1, which simpli-
fies to N(N–1)/2, leading to a time complexity of the order
N2. Notably, in this approach, puzzle-solving is achieved
without utilizing any color information on the puzzle pieces.
However, if color information is employed to assist in puzzle-
solving, the number of trials needed to solve the puzzlewould
likely be reduced. In the general, we anticipate a power law
relationship between the number of trials (T ) and the number
of puzzle pieces (N), denoted by T ∝ Nλ, where λ < 2. The

value of λ depends on the available color information on the
puzzle pieces.

Statistical analysis of edges

In computer simulations aimed at replicating human puzzle-
solving behavior, the statistical analysis of edge features
assumes a significant role. Specifically, features such as dis-
tinctive and iridescent edges in puzzle pieces are crucial for
mimicking human solvers effectively. Empirical evidence
indicates that during the initial stages of puzzle solving,
human solvers tend to select pieces that are less common
and exhibit greater color variation. These characteristics are
particularly important for successful edge matching.

To analyze the color pattern of a puzzle piece, as demon-
strated in Fig. 3a, we divide it into k2 sections, with each edge
containing k sections. In contrast to the RGB color space,
where most human solvers do not differentiate between sim-
ilar colors during the puzzle-solving process, we employ a
set of 16 colors (as shown in Fig. 3b) to represent color pix-
els within each section. This alternative color representation
allows us to symbolize color patterns effectively.

To facilitate our analysis, we define the set of edges as E
= {top-edge (1), bottom-edge (–1), left-edge (2), right-edge
(–2)}. We refer to the edge e (where e belongs to E) of piece
a and the edge -e of piece b as relative edges (a �= b) and
define the level of their resemblance as
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Individual participants produced experimental 

data while solving puzzles online.

We used Open Database Connectivity to gather 

experimental data into a SQL server database.

We examined experimental data to identify statistical 

properties of edges (distinction and color entropy) 

in solved puzzle pieces and establish their priority 

during the solving process.

We developed a nucleation algorithm to emulate 

human puzzle-solving, taking into account 

edge priority and other simulation parameters.

Utilizing the nucleation algorithm, we constructed 

an automated puzzle solver to investigate the impact 

of various parameters during the solving process.

The consistency between simulations and experiments

is assessed using Spearman’s � and R-square across 

a broad spectrum of parameters

Fig. 2 An outline of the framework for puzzle-solving utilizing
knowledge-based automation
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where
⇀

C a; e, calculated by tallying the number of pixels for
each color, denotes the color vector of the i-th section of
an edge x in piece a. Ra,b;e represents the degree of similar-
ity between two relative edges, indicating the likelihood of
a human solver attempting to match pieces (a, b) with the
edges (e, -e) during puzzle solving. Due to the imprecision
of human perception regarding color distribution on edges, if
Ra,b;e exceeds a threshold value Rt, the color patterns of two
edges are considered ‘similar”. The ambiguity of finding a
corresponding edge increases as the number of similar edges
for a particular edge grows. To quantify this, we introduce
the concept of the percentage of similar edges for edge e of
piece a, denoted as Pa; e ≡ Ma; e/N − 1, where Ma;e rep-
resents the count of similar edges and N is the number of

puzzle pieces. Additionally, we define the color variation of
an edge (e.g., edge e of piece a) using its color entropy as
follows:

Sa, e ≡ −
k∑

i=1

16∑

C=1

pa; ei ,C log
(
pa; ei ,C

)
, (2)

where pa; ei ,C is the probability distribution of colorC in section
i of edge e. An edge with a higher value of Sa;e exhibits more
iridescence, while an edge with Sa;e = 0 is monochromatic.

Our analysis of an empirical database, as presented in the
supplementary information, reveals that human solvers solve
puzzles effectively by preferentially selecting puzzle pieces
with distinctive (small Pa;e) and iridescent (large Sa;e) edges.
Notably, it is observed that human solvers commonly initi-
ate the puzzle-solving process by focusing on pieces with
distinctive edges (E1 = {edges with Pa;e ≤ 0.22}) and irides-
cent edges (E2 = {edges with Sa;e > 2.3}). Among these two
characteristics, distinctive edges appear to have amore signif-
icant impact on their selection strategy than iridescent edges.
As the puzzle-solving progresses, they gradually enlarge the
initially chosen piece. Based on the above observations, we
categorize the edges of puzzle pieces into three types: {A},
E1 ∩ E2; {B}, E1 − E2; and {C}, otherwise. In a typical
puzzle-solving process, it is reasonable for us to assume that
the likelihood of being a nucleation site follows the order:
P({A}) > P({B}) > P({C}).

To validate our assumption, we employed data mining
techniques, specifically association rules (X → Y), to calcu-
late the support and confidence for edges belonging to the
three sets to appear at the first stage of the puzzle-solving
process [31]. In this context, X represents possible edges of
type X= {A, B, or C} found in the empirical database, while
Y represents the solved edges observed at the first stage. We
calculated the support(X → Y) as σ(edges of type X at the
first stage)/σ(edges of all types in the database) and the confi-
dence(X→Y) as σ(edges of typeX at the first stage)/σ(edges
of type X in the database), where σ is the count of events.
Indeed, the results in Table 1 suggest that edges of type {A}
are more likely to appear at the first stage of puzzle solving
than those of type {B} or type {C}.

Computer simulation algorithm

To simulate the human puzzle-solving process, as illustrated
in the flow chart of Fig. 4, we developed an automated algo-
rithm to complete the puzzle task starting from a nucleation
site. This algorithm functions as follows by specifying the
picture ID, the number of puzzle pieces, and the parameter
values (Rt, α, k, pA, pB):
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Fig. 3 a Partition of a puzzle
piece into 36 sections. Each
piece contains 4 edges (top,
bottom, left, and right), and each
edge consists of 6 sections. b The
RGB definition of 16 colors used
to specify color patterns

Quan 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R 0 0 0 0 0 0 0 128 128 128 128 192 255 255 255 255

G 0 0 0 128 128 255 255 0 0 128 128 192 0 0 255 255

B 0 128 255 0 128 0 255 0 128 0 128 192 0 255 0 255

(a)

(b)

top edge

bottom edge left edge

right edge

Table 1 Association rule (X→Y) aswell as the support and confidence
for edges in sets {A}, {B}, and {C} to appear at the first stage of puzzle
solving process

X Y support confidence

Edges of type
{A}

Edges appear at the
first stage

0.08 0.36

Edges of type
{B}

Edges appear at the
first stage

0.06 0.21

Edges of type
{C}

Edges appear at the
first stage

0.03 0.07

1. The algorithm selects a picture from those in Fig. 1 and
divides it into N rectangular pieces.

2. For each edge, the algorithm calculates its value of Pa;e

and Sa;e.
3. Edges are categorized into three sets labeled as {A}, {B},

and {C} based on their Pa;e and Sa;e attributes.
4. To start solving, the algorithm picks a nucleation edge

with probabilities pA from {A}, pB from {B}, and 1– pA
– pB from {C}, where pA > pB > 1– pA – pB. This reflects
human limitations in discerning picture details.

5. The algorithm creates a list for relative edges of the
remaining pieces with Ra,b;e ≥ Rt and randomly selects
one edge to check if it corresponds to the chosen edge.

If no match is found, the selected edge is removed from
the list in subsequent attempts.

6. When a pair of corresponding edges is matched, they are
merged to form a larger piece, and the nucleation site
expands as more corresponding edges are found during
the puzzle-solving process.

7. The algorithm continues the process, selecting one edge
of the new piece based on Pa;e and Sa;e to find its cor-
responding edge. If none of the selected edges fit, the
algorithm selects another nucleation edge from the nucle-
ation site.

8. The above procedures continue until the puzzle is solved,
and the total number of attempts to solve the puzzle (T )
is recorded.

9. Towards the late stage of puzzle-solving, when an empty
list of relative edges (i.e., Ra,b;e < Rt ∀b) is encountered,
the algorithm reduces the threshold value to αRt, where
α < 1.

Figure 5 depicts a snapshot of the puzzle-solving pro-
cess using picture 8. Throughout the study, puzzles using the
eight pictures in Fig. 1 and the number of pieces N between
4 and 100 were considered. 30 computer simulations were
performed for each case, and all puzzle-solving processes
were recorded in a simulation database.
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Results and discussion

In this study,we employed eight different pictures fromFig. 1
for an automated puzzle solver to model human recognition
of color patterns [32]. These pictures included two portraits
(pictures 1 and 2), two buildings (pictures 3 and 4), two ani-
mals (pictures 5 and 6), and two cartoons (pictures 7 and
8). Among the pictures used, pictures 6 and 7 stand out
due to their inclusion of multiple objects, providing more
opportunities for multiple nucleation compared to pictures
that feature a single object. Unlike human solvers, who are
capable of employing multiple nucleation strategies to solve
puzzles, the current automated solver relied exclusively on a
single nucleation approach for puzzle-solving. In this study,
we will compare our simulation results with those from both
the dataset of 8 pictures and the dataset of 6 pictures (exclud-
ing pictures 6 and 7).

Our algorithmutilizes a nucleation rule for puzzle solving,
as illustrated in Fig. 4, which effectively simulates the solv-
ing process employed by human solvers. Unlike brute force
algorithms with an N! dependence, our approach shows a
power-law relation between the average solving time (T ) and
the number of pieces (N), denoted as T (N) ∝ Nλ. The value
of λ quantifies the efficiency in processing pictorial infor-
mation, with smaller values implying better puzzle-solving
efficiency.

For monochromatic puzzles lacking useful color informa-
tion (Figure S3), the measured value of λ is approximately
1.85 based on trial and error. However, for puzzle pictures
with specific color patterns, as shown in Fig. 6, the values
of λ fall within the range of 1.60 and 1.77 when using the
parameter set k = 6, Rt = 0.65, α = 0.55, and {pA, pB, pC}=
{94, 4, 2} (as percentages). The observed power-law behav-
ior in our simulations closely resembles the puzzle-solving
patterns of human solvers in the empirical database, where
the exponent λH ranges from 1.48 to 1.67. The inset of Fig. 6
demonstrates linear regressions of the data points of (λ, λH)
from the empirical database and computer simulations with
zero intercept, yielding λ = 1.06·λH with R2 = 0.79 for the
dataset of 8 pictures and λ = 1.05·λH with R2 = 0.85 for the
dataset of 6 pictures. This finding indicates that our simula-
tion algorithm successfully mimics human solvers in puzzle
solving.

In general, pictorial information within puzzle pieces can
provide valuable clues to solve the puzzle. The small val-
ues of λ for pictures 6 and 7 are attributed to the fact that
both pictures contain multiple objects, which act as helpful
hints during the puzzle-solving process. On the other hand,
pictures 5 and 8 have large values of λ because a significant
portion of the picture exhibits amonotonic color distribution.
It’s important to emphasize that our computer simulations
exclusively focused on solving processes with a single nucle-
ation site. In contrast, for pictures 6 and 7, human solversmay

Choose a nucleation edge from the options 

based on their respective probabilities

Select a picture ID and the number of puzzle pieces (N)

Nucleation size (Ns) = 1 and Number of attempts (T) = 0

Calculate P    and S     for each edge
a;e a;e

If (1) P    < 0.22 and (2)  S    > 2.3?
a;e a;e

Edges in set {A}

Yes for both 

(1) and (2)
Yes for (1)

but No for (2)
Otherwise

Edges in set {B} Edges in set {C}

p p

Create a list of relative edges with R      > R 
a,b;e

t

9.

Randomly select one from the list to check if it matches?

Yes No

T +1

Delete it from the list

Redo edge sets for the nucleation site

in step 2

Yes No

End

Ns +1

Ns = N?

Is the list empty?

No

Yes

6.

7.8.

No

R       �Rt t

Is the list empty?

Yes

A B 1 p
A

p
B

Fig. 4 Flow chart of the nucleation algorithm of the automated puzzle
solver

initiate multiple nucleation sites during the solving process.
This leads to the values of λH (1.48 and 1.48) being smaller
than the corresponding λ (1.61 and 1.60) for these pictures.
This observation raises an interesting topic for our future
investigation: exploring the performance of puzzle solving
with different strategies.

Figure 7 depicts the collapsed-data diagram of our auto-
mated solver for both datasets, comprising 8 pictures and
6 pictures. The horizontal axis depicts Spearman’s ρ value,
indicating the strength and direction of the monotonic rela-
tionship between our nucleation algorithm’s outcomes and
the experiment’s observations. The vertical axis illustrates
the R-squared value, assessing how well the model fits the
observed data. Combining both measures offers a more thor-
ough evaluation, capturing various aspects of the relationship
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Fig. 5 Snapshot of the puzzle
solving process with the
automated solver using the
nucleation algorithm

1 2 3 4 5
0

2

4

6

8

ln (N)

ln (T)

�H

�

1.5 1.6 1.7 1.8

1.5

1.6

1.7

1.8

picture 1

picture 8
picture 7
picture 6
picture 5
picture 4
picture 3
picture 2

T ~ N �

�

1.60 1.61 1.74 1.68 1.77 1.61 1.60 1.75

Picture 1 Picture 2 Picture 3 Picture 4 Picture 5 Picture 6 Picture 7 Picture 8

�
1.54 1.58 1.65 1.57 1.67 1.48 1.48 1.66H

Fig. 6 Average puzzle solving time as a function of N . A power-law
form with an exponent between 1.4 and 1.8 is found. The inset shows
an excellent agreement between the scaling exponents calculated from
simulations and their empirical values

between variables and overcoming individual measure lim-
itations. Data collection spanned a wide range within the
parameter space,with emphasis on k=6,Rt =0.65,α=0.55,
and {pA, pB, pC} = {90, 8, 2} (depicted by dashed circles).
Theoretically, for closelymimicking human solving patterns,
the optimal parameter range alignswith the upper-right quad-
rant of Fig. 7, highlighting a pronounced effect size. [33]

Overall, our automated solver exhibits a more pronounced
effect size when applied to the dataset containing 6 pictures,
which is predominantly influenced by a single nucleation
center. In this scenario, a stronger correlation between λ and
λH is observed, particularly with higher pA values. Further-
more, we noted an exceptionally robust correlation with ρ =
1.0 andR2 =0.94when slightly adjusting the k value in accor-
dancewithN (k = 7 forN = 2, 3, or 4, k = 6 forN = 5, 6, or 7,
and k= 5 forN = 8, 9, and 10), indicated as k(N). This adjust-
ment is driven by the reduction in color pixels within puzzle
pieces as N increases. Figure 7 illustrates the significant sen-
sitivity of our results to the parameters Rt and α, with the
correlation substantially diminishing as the parameter val-
ues (Rt, α) move away from (0.65, 0.55). Notably intriguing
is the observation that our simulations, conducted with large
Rt values (Rt > 0.7), exhibit a diminished correlation with
experimental results, primarily attributed to relatively small
λ values in comparison to λH. This discrepancy is logical,
as our automated solver demonstrates superior proficiency
in discerning color patterns compared to humans, especially
in scenarios involving large Rt. From a computational per-
spective, the solver proves significantly more efficient than
humans in puzzle-solving, leading to a weaker consistency
between simulations and experimental outcomes.

The process of puzzle solving, reminiscent of the endeavor
to find a specific configuration within a vast configura-
tion space, bears resemblances to protein folding. Levinthal
underscored the impracticality of an unfolded protein navi-
gating the entire conformation space at random and proposed
the existence of a distinct pathway to its native state. To
observe this phenomenon, we meticulously scrutinized all
puzzle-solving procedures, documenting the likelihood of
successfully solved puzzle pieces at each stage. Within this
framework, the puzzle-solving process is segmented into five
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{91,7,2}

{90,8,2}
{86,9,5}

R = 0.65, ��= 0.55, {90,8,2}

k = 6, ��= 0.55, {90,8,2}

k = 6, R = 0.65, {90,8,2}

k = 6, R = 0.65, ��= 0.55

8 pictures

t

t

t

6 pictures
R = 0.65, ��= 0.55, {90,8,2}

k = 6, ��= 0.55, {90,8,2}
k = 6, R = 0.65, {90,8,2}

k = 6, R = 0.65, ��= 0.55t
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t
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�
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moderate
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R = 0.85t

R = 0.9t

R = 0.8t R = 0.75t

R = 0.7t

R = 0.5t

R = 0.6t

R = 0.55t

R = 0.65t

Fig. 7 A collapsed-data diagram of the automated solver for both datasets, comprising 8 pictures and 6 pictures. The horizontal axis corresponds
to the Spearman’s ρ, while the vertical axis represents the R-squared value. Here k(N) signifies a slightly modified k value according to N

(a)

(b) Q = 0.2 Q = 1.0Q = 0.6 Q = 0.8Q = 0.4

Q = 0.2 Q = 1.0Q = 0.6 Q = 0.8Q = 0.4

Fig. 8 Principal trails to the native configuration for two 10 × 10 puzzles: a picture 1 and b picture 8. At each stage, only puzzle pieces having
greater than 26% probability of being solved during the stage are displayed
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equally distributed stages, each marked by the native contact
value (i.e., the percentage of completion) denoted as Q. This
study also unveiled prevalent pathways in puzzle solving, as
illustrated in Fig. 8. In this figure, we present puzzle pieces
from pictures 1 and 7, indicating a likelihood of being solved
at a stage surpassing 26% for each of the five stages. In the
case of picture 1 in Fig. 8a, the facial section is recognized
at the earliest stage (Q = 0.2) and functions as a nucleation
center for identifying the complete portrait. The background
surrounding the portrait in picture 1 features a uniform color
palette, leading to its resolution in subsequent stages. Simi-
larly, within Fig. 8b, the cartoon characters within picture 7
are identified during the initial stage, followed by the subse-
quent recognition of the uniform background. These central
pathways leading to puzzle solving are distinctly evident
across all eight pictures in Supplementary Figures S4 and
S5. Remarkably, the color pattern on puzzle pieces plays a
pivotal role in determining the trajectory toward the ultimate
solution. This observation aligns with the experimental find-
ings derived from the empirical database, as showcased in
Figure S6. However, as depicted in Figures S7 and S8, the
process of solving pictures 1 and 7 diverges in terms of the
number of potential nucleation centers. In contrast to picture
1, picture 7 incorporates multiple nucleation centers, result-
ing in several primary pathways to puzzle solving.

Conclusions

In this study, we have introduced a nucleation algorithm for
puzzle solving and utilized computer simulations to emulate
the puzzle-solving processes employed by human solvers.
Based on this study of the empirical puzzle-solving database,
we observed that puzzle solving of humans can be effectively
explained through a nucleation model, where puzzle pieces
with distinctive (small Pa;e) and iridescent (large Sa;e) edges
are commonly chosen as the nucleation site.

Our proposed automated solver assesses the efficiency of
human solvers in puzzle solving by adopting the nucleation
strategy and considering the pictorial information on puzzle
pieces. The average puzzle solving time follows a power-law
relationshipwithN ,with an exponent less than2.The specific
value of this exponent is influenced by the available pictorial
information in the puzzle picture. Interestingly, we speculate
on the similarity between the observed efficiency in finding
the puzzle solution from the vast number of configurations
and that of proteins folding into a unique native structure
while exploring the conformation space. Drawing inspiration
from Levinthal’s paradox in the protein folding problem, we
identify the principal pathways for a single nucleation center
or multiple nucleation centers in puzzle solving.

In summary, we statistically determined the preferential
selection of puzzle pieces based on their edge features and

introduced a nucleation algorithm to emulate the puzzle-
solving strategies used by humans. This approach notably
enhances the efficiency of solving jig swap puzzles by lever-
aging pictorial information from puzzle images. Given the
absence of shape information for individual pieces, this
problem formulation poses even greater challenges than
conventional jigsaw puzzles. Our study makes a valuable
contribution to developing an architectural model for under-
standing human recognition of color patterns and its potential
applications in problem-solving.
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