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Abstract
With the rapid development of the Internet, there are a large number of high-dimensional multi-label data to be processed in
real life. To save resources and time, semi-supervised multi-label feature selection, as a dimension reduction method, has been
widely used in many machine learning and data mining. In this paper, we design a new semi-supervised multi-label feature
selection algorithm. First, we construct an initial similarity matrix with supervised information by considering the similarity
between labels, so as to learn a more ideal similarity matrix, which can better guide feature selection. By combining latent
representation with semi-supervised information, a more ideal pseudo-label matrix is learned. Second, the local manifold
structure of the original data space is preserved by the manifold regularization term based on the graph. Finally, an effective
alternating iterative updating algorithm is applied to optimize the proposed model, and the experimental results on several
datasets prove the effectiveness of the approach.

Keywords Feature selection · Multi-label learning · Manifold regularization · Latent representation · Similarity matrix

Introduction

With the advent of the information explosion era, a large
amount of multi-label data are widely used in many machine
learning tasks. For example, text classification [1, 2], bioin-
formatics [3], gene expression, speech recognition, image
recognition [4], etc. Depending on the data, each instance
can be assigned to several different categories simultane-
ously. For example, in text classification, each documentmay
belong tomultiple themes, such as society, economy, culture,
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and even politics; in image recognition, an image can always
be labeled with multiple labels at the same time, such as blue
sky, white clouds, big trees, rivers, etc; a gene is associated
with several functional categories, such as “metabolism”,
“energy”, “cellular biogenesis”, etc. To deal with thesemulti-
labeled data, multi-label learning [5–9] has emerged and
received increasing attention from scholars.

Due to the rapid development of the Internet, most of
the real-life data are high-dimensional, and processing such
high-dimensional data directly is both time-consuming and
computationally unreliable. Therefore, researchers extract
a small amount of features by reducing dimensionality to
remove irrelevant, redundant, and noisy information, to alle-
viate the computational burden brought by high-dimensional
information. There are two traditional dimensionality reduc-
tionmethods: feature extraction [10, 11] and feature selection
[12–14]. Feature extraction is to project features into a new
low dimensional space, while feature selection is to select
a subset of features to minimize redundancy and maximize
the correlation with the target. Since feature selection can
maintain the original features, but only remove some features
that are considered redundant, it has better readability and
interpretability, so multi-label feature selection has attracted
extensive attention of scholars.
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However, in practical applications, obtaining data labels
is expensive and time-consuming [15]. For example, in text
classification, we must traverse the entire list of multiple
labels to find a set of all possible labels in an article. Manu-
ally labeling each article with all labels requires a significant
amount of time, effort, and resources. Therefore, more and
more scholars want to use a large amount of unlabeled data
and limited labeled data to improve the learning performance.
Semi-supervised learning methods have been widely used in
single-label learning environments to effectively use unla-
beled data to improve generalization performance [16–19]
with good results. Therefore, semi-supervised learning will
also be an appropriate strategy to address the lack of labeled
data inmulti-label feature selection. In practical applications,
some scholars have borrowed the advantages of this method
and applied it to practice, achieving good results. [20, 21].

The existing semi-supervised learning mainly learns in
two ways: one is to use label propagation to assist the super-
vision method [22, 23]. Another approach is to use label
information as a constraint in unsupervised methods [24,
25]. The semi-supervised multi-label feature selection algo-
rithm considers the relationship between samples and labels
and between labels on the basis of semi-supervised learning.
Guo et al. [26] proposed a semi-supervised multi-label fea-
ture learning method based on label extension discriminant
analysis by extending single-label propagation tomulti-label,
taking into account label correlation betweenmultiple labels.
Xu et al. [27] proposed a semi-supervised multi-label fea-
ture selection that maintains the consistency of feature label
space by combining feature selection with semi-supervised
multi-label learning. This method captures reliable and dis-
criminative local information in the projected feature space
by constructing an improved similarity matrix, and uses this
information to optimize the correlation in the predicted label
space, thereby ensuring the consistency of the feature label
space. Zhang et al. [28] proposed a semi-supervised multi-
label feature selection (SMLFS) that preserves local logistic
information. This method combines the logistic regression
model with graph regularization and sparse regularization to
form a joint framework for semi-supervised multi-label fea-
ture selection; Lv et al. [29] integrated manifold learning and
adaptive global structure learning into the semi-supervised
feature selection framework and proposed a semi-supervised
multi-label feature selection (SFAM) based on adaptive
structure learning and manifold learning. For label similarity
and data point similarity, semi-supervised learning and label
space representation learning using two different graphs at
the same time have received some attention [30]. Inspired by
this, Kraus et al. [31] proposed a semi-supervisedmulti-label
regression based on Laplace operator by combining the least
squares term, semi-supervised regularization term andmulti-
label regularization extension, and explored the similarity of

multi-label data on the basis of semi-supervised framework
through graph Laplace matrix.

Although most semi-supervised multi-label feature selec-
tion uses graphs to preserve the local structure of data, affinity
graphs in previousmethods are only used to preserve the local
geometric structure, and the potential information implied
in graphs has not been fully mined and utilized. To solve
this problem, this paper proposes a sparse semi-supervised
multi-label feature selection based on latent representation
(SSLR).

First, supervisory information is added in building the ini-
tial similaritymatrix tomake the built initial similaritymatrix
more desirable. Then, the similarity matrix S is learned by
the established initial similaritymatrix Ã. Since there is a dis-
tance between the learned similarity matrix S and the given
initial similaritymatrix Ã, learn the optimal similaritymatrix
through the Frobenius norm, and mine the potential infor-
mation implied in the optimal similarity graph, decompose
it into the product of the pseudo-label matrix F and its trans-
posed FT . And it can complete the update of the dynamic
manifold diagram S. And to ensure the accuracy of known
labels, the constraint Fl = Yl is added in the text. Second,
considering that S andW should have similarmanifold struc-
tures, dynamic manifold diagrams are used to constrain W ’s
manifold structure. A new semi-supervised multi-label fea-
ture selection method is proposed by combining the sparse
regular term, latent representation, and dynamic graph to
constrain the learning of W . Finally, an alternating iterative
optimization algorithm was used to solve the target problem,
and the effectiveness of the proposed algorithm was veri-
fied on multiple datasets. Figure1 is the framework diagram
of this article. The main contributions of this article are as
follows:

(1) The use of latent correlation information as supervi-
sory information has not yet been used in multi-label feature
selection. Existing methods only learn latent information
directly from samples or label matrices, which is insufficient.
This cannot excavate the deep latent correlation of sam-
ples. The latent information mined from similar matrices in
the article includes both the grassroots latent information of
samples and the deep latent correlation information between
samples, more conducive to guiding model learning.

(2) Embedding latent representation learning into a semi-
supervised feature selection task exploits the correlation
between data samples to decompose the similarity matrix
into a product of the pseudo-label matrix and its transpose.

(3) Use dynamic manifold diagrams to constrain the man-
ifold structure of W .

(4) Make full use of the supervisory information. First,
the supervisory information is added to the creation of the
initial similarity matrix. Second, to ensure the accuracy of
the known labels, the known part of the pseudo label is the
same as the marked part of the real label.
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Fig. 1 Framework of this article

(5) A convergent alternating algorithm was designed to
optimize the proposed model, and experiments were con-
ducted on various datasets to verify the superiority of the
proposedmethod compared to other state-of-the-artmethods.

The rest of the paper is organized as follows. The first sec-
tion describes the related work, the second section describes
the model building process, the third section describes the
model solvingmethods and algorithms, and the fourth section
analyzes the experimental results and compares them with
seven other algorithms in order to demonstrate the advan-
tages of the algorithm in this paper.

Related work

Notations

In this paper, the sample data matrix is denoted as X =
[Xl , Xu] ∈ Rd×n , where Xl denotes the labeled data matrix,
Xu denotes the unlabeled data matrix. d and n denote the
feature dimension and the number of samples, respectively.

The true label matrix is denoted as Y =
[
Yl
Yu

]
∈ Rn×c, where

Yl ∈ Rl×c denotes the label matrix with the labeled data part,
where l and c denote the number of labeled samples and the
number of classes, respectively. If the i-th sample belongs to
the j-th class, then Yi j = 1, otherwise Yi j = 0. It is worth
noting that in multi-label data, a sample may belong to more
than one class. Yu ∈ Ru×c denotes the label matrix of the
unlabeled data part. The pseudo-label matrix is denoted as

F =
[
Fl
Fu

]
∈ Rn×c.

Notations: For any matrix M ∈ Rn×d , where mi,.

represent the vector of the i-th row of matrix M , m., j rep-
resents the vector of the j-th column of matrix M , and
mi, j represents the element of the i-th row, the j-th col-
umn of the matrix M ; The Forbenius norm of matrix M is

||M ||F =
√∑n

i=1
∑d

j=1m
2
i j , and the L2,1-norm of matrix

M is ||M ||2,1 = ∑n
i=1

√∑d
j=1m

2
i j = ∑n

i=1 ||mi,.||2;
The L2,0-norm of matrix M is expressed as ||M ||2,0 =∑n

i=1(
∑d

j=1m
2
i j )

0 = ∑n
i=1 ||mi,.||0. Tr(M) represents the

trace of matrix M . MT represents the transposition of matrix
M .

Latent representation

Latent representations can benefit many data mining and
machine learning tasks and have recently received increasing
attention, especially for network data. Latent representations
can be obtained from the similarity matrix of samples, since
the more similar two samples are, the more likely they are
to influence each other. Typically, the information repre-
sented is generated through nonnegative factorization [32].
The similaritymatrix A is decomposed into the product of the
nonnegative matrix Q and its transposed QT . The specific
form of this model is shown in Eq. (1).

min
Q≥0

‖ A − QQT ‖2F , (1)

where Q ∈ Rn×c is the latent representation of n data
instances, which is the latent representation matrix. c is the
number of categories, so Q is also the clustering structure of
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data, which can guide feature selection. The similaritymatrix
is constructed by Gaussian function and used to represent
the interconnection information between data. The similar-
ity matrix A is defined as Eq. (2).

A = exp

(
− ‖ x.,i − x., j ‖ .22

σ 2

)
. (2)

Expand OGSSL [33]

OGSSLadaptively learns S fromdata. If any two samples x.,i ,
and x., j are similar (i.e., their Euclidean distance is small),
they are more likely to have the same labels, so the weight
si j should be large. Otherwise, si j should be very small. If
si j = 0, it indicates that there is no correlation between x.,i

and x., j , therefore the following model is established.

min
S≥0

n∑
i, j=1

(‖ x.,i − x., j ‖22 si j + γ s2i j ). (3)

Intuitively speaking, we can project the above data into a
subspace where we can more accurately model data similar-
ity. Assuming that the subspace is identified by the projection
matrix W ∈ Rd×m , where m is the dimension of the
subspace. We force W to be row sparse to select more dis-
criminative features. Mathematically, we replace x.,i in (3)
with a linear combination WT x.,i (similarly, we replace x., j

withWT x., j and merge ||W ||2,1 into regularization; thus, we
can obtain the following objective function:

min
S,W

n∑
i, j=1

(‖ WT x.,i − WT x., j ‖22 si j + αs2i j ) + β ‖ W‖2,1.

(4)

Model establishment

In semi-supervised multi-label feature selection, the acquisi-
tion of label information is time-consuming and expensive.
Therefore, we hope to make full use of label information
to guide feature selection, so that more accurate and effi-
cient features can be selected. First, we add the supervision
information to the construction of the initial similaritymatrix
to construct a more accurate initial similarity matrix. When
building the initial similarity matrix, we need to measure the
pairwise similarity between the real labels in the marking
part through the Jaccard index (expressed in Pi j , the larger
Pi j , the more similar instances are). And the larger the pair-
wise constraint Pi j between labels, the larger the similarity

matrix Ãi j constructed. Therefore, the specific structure of
the similarity matrix is as follows:

Pi, j = |yi ∩ y j |
|yi ∪ y j | ,

Ãi j =

⎧⎪⎪⎨
⎪⎪⎩

Ai j
1.1−Pi j

Pi j ≥ 0.5,

Ai j Pi j Pi j < 0.5,

Ai j i > l or j > l.

(5)

However, if the constructed similarity matrix is not good
enough, it will affect its guidance of feature selection. There-
fore, this paper uses the constructed initial matrix similarity
Ã to learn similaritymatrix S, so as to guide feature selection.
In the following, we designed ablation experiments to verify
that the method we designed to learn the similarity matrix is
better than using the similarity matrix directly to guide fea-
ture selection. Secondly, to ensure the correctness of known
labels, we set Fl = Yl and obtain the objective function as
follows:

min
S,Fl=Yl

‖ S − Ã ‖2F . (6)

Based on the significance of latent representations, we
hope that the greater the similarity between two samples, the
more shared labels they have. Therefore, thematrix similarity
is decomposed into the product of the pseudo-label matrix
F and its transposed FT . And by combining latent repre-
sentations with semi-supervised information, a more ideal
pseudo-label matrix is learned, resulting in the following
objective function:

min ‖ S − Ã ‖2F +α ‖ S − FFT ‖2F
s.t 〈S, F〉 ≥ 0, Fl = Yl . (7)

Due to the latent representation of information generated
through nonnegative factorization, F ≥ 0. Where α is a
parameter that balances latent representation learning and
feature selection in the latent space.

With the development of spectral analysis and manifold
learning, many feature selection methods try to preserve
the local manifold structure, which is better than the global
structure. Therefore, the similarity matrix is critical to the
final performance of spectral methods. However, most meth-
ods simply construct a similarity matrix from the original
features containing many redundant and noise samples or
features. This will inevitably damage the learned structure,
and the similarity matrix is definitely unreliable and inaccu-
rate. Therefore, this paper will apply the adaptive process to
determine the similarity matrix with the probability neighbor
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through this algorithm [34]. In other words, we perform both
feature selection and local structure learning.

This article represents XW as the linear combination and
finds the best linear combination of the original features,
which can approximate a low dimensional manifold. Where
W ∈ Rd×m is the projection matrix, d and m are the orig-
inal dimension and projection dimension, respectively. And
considering that S andW should have similarmanifold struc-
tures, we can add a graph Laplace regularization term. Use
dynamic manifold diagrams to constrain the manifold struc-
ture of W . Therefore, the following objective function is
obtained:

min tr(WT XLSX
TW ) + λ ‖ S − Ã ‖2F +α ‖ S − FFT ‖2F

s.t 〈S, F〉 ≥ 0, Fl = Yl ,W
TW = I . (8)

Among them, we add the constraint WTW = I to ensure
that the original data are still statistically irrelevant after being
mapped to a low-dimensional space.

In recent years, sparse learning technology has been
widely used in feature selection models to obtain row sparse
weight matrix. Therefore, the sparse regularization term of
W is added in this paper to obtain a more sparse projec-
tion matrix W for feature selection. In this article, we use
the l2,1− norm regularization term to obtain the following
objective function:

min tr(WT XLSX
TW ) + λ ‖ S − Ã ‖2F

+ α ‖ S − FFT ‖2F +β ‖ W‖2,1
s.t 〈S, F〉 ≥ 0, Fl = Yl ,W

TW = I . (9)

In the objective function, the l2,1-norm regularization term
is used to constrain the sparsity of row W , while the l2,0-
norm regularization term is not used because the projection
matrix W learned using the l2,1-norm regularization term in
this model is more sparse. This article sets the number of
selected features to 50 and the projection dimension to 10
on the dataset Emotions. By comparing the sparsity of W
constrained by the l2,1-norm regularization term and the l2,0-
norm regularization term, the superiority of the l2,1-norm
regularization term in our model is verified. Due to the large
size of the dimension, it is difficult to observe, so we take
the first 20 rows of the projection matrix W . As shown in
Fig. 2, the darker the color, the sparser the image. Figure (a)
represents the initial visual image ofW , Figure (b) represents
the visual image ofW learned using the l2,1-norm, and Figure
(c) represents the visual image of W learned using the l2,0-
norm. Although both methods of learning W are sparse, it is
evident that using the l2,1-norm regularization term results
in a more sparse learning of W .

Model solution

In this article, we adopt an alternating iterative algorithm to
solve this problem.
1. Fix W and S, solve F

J (F) = min
Fl=Yl ,F≥0

α ‖ S − FFT ‖2F . (10)

Due to F =
[
Fl
Fu

]
, the above equation can be written as

equation (11)

J (F) = min
Fl=Yl ,F≥0

α ‖
[
Sll Slu
Sul Suu

]
−

[
Fl
Fu

] [
FT
l FT

u

]T ‖2F .

(11)

According to the Lagrange method, equation (11) can be
written as equation (12)

L(Fu) = min α(tr(Fl F
T
u Fu F

T
l − 2STul Fu F

T
l + FuF

T
l Fl F

T
u

− 2FuF
T
l Slu + FuF

T
u Fu F

T
u − 2FuF

T
u Suu))

+ tr(θFu
T ). (12)

According to the Kuhn–Tucker condition, for any i , j , there
is θi j Fi j = 0. Therefore, we obtain the following equation
by setting ∂L(F)

∂Fu
= 0:

(FuF
T
l Fl − STul Fl + FuF

T
l Fl − STlu Fl

+2FuF
T
u Fu − 2Suu Fu)i j (Fu)i j = 0. (13)

Through the optimization framework of nonnegative
quadratic problems, we can obtain the update formula for
each element (Fu)i j of Fu :

(Fu)i j ← (Fu)i j
(STul Fu + STlu Fl + 2Suu Fu)i j

(FuFT
l Fl + FuFT

l Fl + 2FuFT
u Fu)i j

,

(14)

Fl = Yl .

Therefore, we obtain the update formula for F as follows:

F =
[
Fl
Fu

]
. (15)

2. Fix F and S, solve W
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Fig. 2 Visual view of W obtained by different methods on the Emotions dataset

J (W ) = min
WTW=I

tr(WT XLSX
TW ) + β ‖ W‖2,1. (16)

Equation (16) can be equivalent to equation (17) by organiz-
ing it

J (W ) = min
WTW=I

tr(WT XLSX
T + βDW ), (17)

J (W ) = min
WTW=I

tr(WT RW ), (18)

where D is a diagonal matrix, Dii = 1
2||wi ||2 , R = XLSXT +

βD. The solution to such problem (18) is the eigenvector
corresponding to the minimum k eigenvalues of matrix R.

3. Fix F and W , solve S

J (S) = min
S≥0

tr(WT XLSX
TW )

+ λ ‖ S − Ã ‖2F +α ‖ S − FFT ‖2F , (19)

(19) we can be equivalent to equation (20)

J (S) = min
S≥0

‖ S − λA + αFFT − 1
4W

T X

α + λ
‖2F . (20)

Let T = λA+αFFT − 1
4W

T X
α+λ

, and the optimal solution to the
above equation is St+1 = max(T , 0).

Algorithm 1: SSLR

Input: data matrix X ∈ Rd×n , label matrix Y , projection
dimension m, select the number of features k, parameter
α, β, λ.
Initialization: random initialization W ∈ Rd×m , initialize
F to all 0 matrices.

1. Update process:

(a) Update Fu through the equation (14).
(b) Fl = Yl .
(c) Then, F is updated through updates to Fl and Fu .
(d) Update W , which is formed by k eigenvectors of

R = XLs XT +βD, corresponding to k minimum
eigenvalues.

(e) Update St+1 ← max(T , 0).

2. Perform steps (a)–(e) iteratively until the algorithm
converges.

Output: A feature subset of k selected features.

Generally, m < n,m < d, k < n, and k < d. Accord-
ing to the algorithm, during each iteration, the complexity
of updatingW is O(n2d), the complexity of updating S is
O(n2c), the complexity of updating F is O(u2c). Therefore,
the total time complexity is O(t(n2d + n2c + u2c)), where
t is the number of iterations, due to the small t-value, time
depends on the feature dimension d of the data and the num-
ber of samples n.
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Experiments and results

In this section, we introduced the dataset used, the compari-
son algorithm, and the evaluation indicators used to validate
the effectiveness of our algorithm. Use charts to illustrate the
results of different experiments.

Experimental data and comparative algorithms

To verify the effectiveness of the proposed algorithm, we
compared it with the following seven algorithms:
S2MFSHMRMR [35], S-CLS [36], 3-3FS [37], PMU [38],
SCLS [39], SSFS [40], SLMDS [41].

S2MFSHMRMR: Hessian energy semi-supervised
multi-label feature selection based on maximum correlation
and minimum redundancy.

S-CLS: A unified framework for semi-supervised multi-
label feature selection based on Laplacian fraction.

3-3FS: Semi-supervised multi-label feature selection based
on three-way data resampling integration method.

PMU: A multi-label feature selection algorithm based on
mutual information. Performmulti-label feature selection by
selecting the correlation between the selected feature and the
label.

SCLS: A multi-label feature selection method based on
extensible standards.

SSFS: Amulti-label feature selection with constraint poten-
tial structure shared items.

SLMDS: A multi-label feature selection that preserves
global label correlation and dynamic local label correlation
by preserving the graph structure.

Six commondatasetswere used in the experiment. Among
them, the Image and Scene datasets belong to the Image
dataset; Emotion belongs to the music dataset; Enron and
Computer belong to the text dataset; Yeast belongs to the
biological dataset. These data are all from (http://mulan.
sourceforge.net/datasets.html). Table 1 shows the specific
parameters of the dataset:

Experimental design

(1) Because some of the comparison algorithms are super-
visedmulti-label feature selection algorithms, the proportion
of labeled data in the training set of supervised multi-label
feature selection comparison algorithm is set to 1. In the
semi-supervised multi-label feature selection comparison
algorithm and the SSLR algorithm, the proportion of labeled
data in the training set is set to 0.2 and 0.4 respectively. There-

fore, compared to algorithms in label sets, it has significant
advantages.

(2) The nearest neighbor parameter of all feature selection
algorithms is set to k = 5, and the maximum iteration is set
to 50.

(3) In the ML-KNN algorithm, set the smoothing param-
eter S = 1 and the adjacent parameter k = 10.

(4) Adjust regularization parameters α and λ through
the “grid search" strategy. The search scope is set to
{10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 101, 102, 103, 104,
105, 106}, and the number of selected functions is set
to {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}. For all algorithms,
when the parameters are optimal, the best result is obtained
(each algorithm solves ten times to find the average).

Evaluating indicator

Let D ∈ Rn×d be the transpose of training set sample data
and Y ∈ Rn×c be the corresponding label set data. h(Di,.)

is a binary label vector, and ranki,.(q) represents the rank
predicted by label yq,..

(1) Hamming loss: The proportion of labels that are mis-
classified.

HL (D) = 1
n

n∑
i=1

1
m

∥∥h (
Di,.

)
	yi,.

∥∥
1,

where 	 is the sign of symmetric difference.
(2) Ranking loss: It is the proportion of labels in reverse

order.

RL (D) = 1
n

n∑
i=1

1
1Tm yi,.1Tm ỹi,.

∑
q:yqi,.=1

∑
q ′:yq′

i,.=0

(P),

where P = δ
(
ranki,. (q) ≥ ranki,.

(
q ′)), δ (z) are indi-

cator function, and ỹi,. is the complement of yi,. on Y .
(3) One error: There is no sample proportion of “predicted

most relevant labels” in the “real labels”.

OE (D) = 1
n

n∑
i=1

δ
(
yli,. = 0

)
,

where l = argminq∈[1,m] ranki,. (q).
(4) Coverage: How many steps does the “sorted labels”

need to bemovedon average to cover the real label correlation
set.

CV (D) = 1
n

n∑
i=1

arg max
q:yqi,.=1

ranki,. (q) − 1.

(5) Average precision: The proportion of tags with higher
correlation than specific tags in the ranking.

AP (D) = 1
n

n∑
i=1

1
1Tm yi,.

∑
q:yqi,.=1

∑
q′ :yq′

i,.=1

P

ranki,.(q)
.

Among these five evaluation indicators, only a higher
value of the metric of average accuracy indicates better algo-
rithm performance, while smaller values of other metrics
indicate better algorithm performance.
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Table 1 Description of
multi-label datasets

DID Datasets Domain Instances Features Labels Cardinality Density

1 Image Image 600 294 5 1.236 0.247

2 Emotions Music 593 72 6 1.869 0.311

3 Enron Text 1702 1001 43 3.378 0.064

4 Yeast Biology 2417 103 14 1.237 0.303

5 Scene Image 2407 294 6 1.074 0.179

6 Computers Text 5000 681 33 1.507 0.046

Table 2 Comparison of average
accuracy (%) of different
algorithms under each dataset
(scale of labeled data is 20%)

Datesets S2MFSHMRMR S-CLS 3-3FS PMU SCLS SSFS SLMDS SSLR

Image 71.44 69.83 68.80 70.02 67.64 72.08 70.88 72.52

Emotions 76.68 74.04 74.90 71.43 75.1 74.91 75.48 77.98

Enron 59.01 63.77 59.73 64.66 58.99 64.38 65.73 66.37

Yeast 75.15 74.76 74.82 75.23 73.07 73.12 75.14 75.63

Scene 78.58 76.52 79.02 78.97 70.41 77.27 74.74 81.68

Computers 60.59 60.75 61.17 60.92 61.22 60.59 61.07 62.11

Experimental results and analysis

In this section, it is mainly verified through charts that the
SSLR algorithm is superior to other comparative algorithms.
Tables 2 and 3 compare the average accuracy of different
algorithms for each dataset labeled with 20% and 40% sam-
ples in Table 1, respectively. The algorithm with the highest
average accuracy is represented in bold, while the subopti-
mal algorithm is represented by an underline. Tables 2 and
3 show the optimal results of the algorithm under optimal
parameters. When labeled 20% of the samples, it is easy to
see from Table 2 that our algorithm (LRSS) has higher aver-
age accuracy than the other seven comparison algorithms in
all six comparison algorithms. Especially on theEmotion and
Scene datasets, our algorithm outperforms the suboptimal
algorithm significantly. It can be easily seen fromTable 3 that
when 40% of the samples are labeled, the average accuracy
of our algorithm (LRSS) is higher than the other seven com-
parison algorithms among the six comparison algorithms,
especially on the Scene dataset, where our algorithm is sig-
nificantly better than the suboptimal algorithm 3-3FS.

Figure3 and Fig. 4, respectively, show the relationship
between the average precision of the seven comparison
algorithms, namely S2MFSHMRMR, S-CLS, 3-3FS, PMU,
SCLS, SSFS, SLMDS and our own algorithm (SSLR), and
the number of different feature selection under the samples
marked with 20% and 40% of the six data sets in Table 1.
It can be easily seen from the Fig. 3 that the algorithm of
this paper largely outperforms the other comparison algo-
rithms on all six datasets when 20% of the samples are
labeled. In particular, on the datasets Enron and Computer,
this paper’s algorithm outperforms the other comparison
algorithms regardless of the number of feature selections

taken.It can be easily seen from Fig. 4 that the algorithm in
this paper outperforms the other compared algorithms on the
datasets Enron and Computer when 40% of the samples are
labeled, regardless of the number of feature selections taken.
While on the dataset Emotion the results are a bit worse,
when the number of features is 5–20, the algorithm of this
paper is slightly worse than S2MFSHMRMR.

Figure5 shows the comparison of algorithm SSLR with
other comparison algorithms in the evaluation indicators of
hamming loss, ranking loss, coverage, and one error on the
dataset Scene and Yeast (the lower the result, the better).
From the graph, we can see that under other commonly used
evaluation indicators, SSLR performs better than other com-
parison algorithms.

As shown in Fig. 6, the horizontal axis represents the rank-
ing of the SSLR algorithm under each indicator; From left
to right, the performance of the algorithm is getting better
and better, with the best performing algorithm located at the
far right of Fig. 6. Meanwhile, we report the results of the
Bonferroni–Dunn test (α = 0.1) in the form of an average
rank graph, and the algorithm groups with no significant dif-
ferences are connected. If the difference in average ranking
reaches the critical value (CD) of the difference, there is a
significant difference. The calculation formula for CD is:

CD = qα

√
K (K+1)

6N .
In the formula: qα = 3.1640 (K = 8, α = 0.1); K

denotes the number of experimental algorithms; N denotes
the number of experimental datasets; CD = 4.4746
(K = 8, N = 6).

By observing Fig. 6, we found that SSLR did not show
significant differences in various indicators compared to
algorithms SLMDS and S2MFDHMRMR, but showed sig-
nificant differences compared to PMU and SSFS.
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Fig. 3 Comparison of average precision between different algorithms on each dataset (scale of labeled data is 20%)

Fig. 4 Comparison of average precision between different algorithms on each dataset (scale of labeled data is 40%)
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Table 3 Comparison of average
accuracy (%) of different
algorithms under each dataset
(scale of labeled data is 40%)

Datesets S2MFSHMRMR S-CLS 3-3FS PMU SCLS SSFS SLMDS SSLR

Image 72.07 69.50 71.34 70.02 67.64 72.08 70.88 72.75

Emotions 78.79 75.23 74.82 71.43 75.1 74.91 75.48 78.86

Enron 59.73 63.77 59.73 64.66 58.99 64.38 65.73 67.82

Yeast 75.55 74.98 75.02 75.23 73.07 73.12 75.14 75.63

Scene 76.55 76.65 80.21 78.97 70.41 77.27 74.74 82.07

Computers 60.59 60.76 61.21 60.92 61.22 60.59 61.07 62.77

Fig. 5 Comparison of SSLR and contrast algorithm on hamming loss, ranking loss,coverage and one error (the lower the result, the better)

Fig. 6 The form of average rank graph of Bonferroni–Dunn test results

123



Complex & Intelligent Systems

Fig. 7 Convergence of SSLR algorithm under different datasets. (The proportion of labeled data was 40%)

Fig. 8 Influence of different parameters α and λ on SSLR algorithm

Convergence analysis

In this section,weused experiments to verify the convergence
of the algorithm on some datasets, labeled 40% of instances,
and selected a feature count of 50. We fixed the number of
nearest neighbors to 10. The results are shown in Fig. 7. From
the results, we can see that our algorithm is effective and can
converge within 10 iterations of each dataset, and the rate of
convergence is very fast.

Parameter sensitivity analysis

In this section, we investigated the parameter sensitivity of
the SSLR algorithm. Our feature selection model includes
three algorithm parameters, namely α, β and λ. We use
the “grid search" strategy. α and λ fix the search area to
[10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 101, 102, 103, 104,
105, 106] and set other parameters to β = 104. Figure8
shows the sensitivity analysis of parameters α and λ on some
datasets in Table 1 for the algorithm SSLR, where our algo-
rithm tag is 40%, the number of features selected is 50, and
parameterβ is fixed. FromFig. 8,we can easily see that SSLR
is relatively stable on the dataset Yeast, and the average accu-
racy changes less with changes in parameters. However, the

dataset Emotions andScene aremore sensitive to parameterα
and λ in algorithm SSLR, and the optimal value of parameter
α on the dataset Emotions is[103, 106]. On the dataset Scene,
the optimal value for parameter α is [10−6, 10−4]. Different
parameters have different impacts on the SSLR algorithm
and varying degrees of sensitivity, which also proves that
each regularization term improves the performance of the
SSLR algorithm from different aspects.

Ablation experiment

In this section, to verify the effectiveness of the algorithm
proposed in this paper by combining latent representation
learning, dynamic manifold regularization, and sparse learn-
ing, a ablation experiment was designed to compare the
effectiveness of our algorithm with the removal of latent rep-
resentation learning, dynamic manifold learning, and sparse
regularization terms, respectively. The impact of these four
experiments on the dataset Images was compared in Table
4, and the results were displayed as the average accuracy of
the evaluation indicators. The first row of the table shows the
average accuracy of the LRSS algorithm in this paper, the
second row shows the average accuracy of removing poten-
tial representation terms, the third row shows the average
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Table 4 Comparison of average precision of ablation experiments under the number of feature selection on the dataset Image (the proportion of
marked data is 0.4)

Number of features 5 10 15 20 25 30 35 40 45 50

LRSS 65.58 68.38 70.18 70.59 71.29 71.79 71.71 72.29 72.42 72.15

Latent representation 64.05 66.50 69.07 70.08 70.34 71.25 70.53 70.67 71.00 71.64

Dynamic manifold terms 63.31 67.27 68.52 69.44 70.45 70.09 70.64 71.71 71.11 71.02

Sparse regularization terms 64.65 67.01 68.90 69.56 70.06 70.26 71.23 71.03 71.56 72.00

accuracy of removing dynamic popular regularization terms,
and the fourth item shows the average accuracy of remov-
ing sparse regularization terms.From Table 4, it can be seen
that the LRSS algorithm performs better than the ablation
experiment.

Conclusion

This paper proposes a sparse semi-supervised multi-label
feature selection algorithm based on latent representation.
First, semi-supervised information is added to construct the
initial similarity matrix to learn a more ideal similarity
matrix. Second, the latent information hidden in the optimal
similarity graph ismined and decomposed into the product of
the pseudo-labelmatrix and its transposition.And it can com-
plete the update of dynamic manifold diagrams. Finally, use
a dynamicmanifold graph to constrain themanifold structure
of the weight matrix. And compared with other comparative
algorithms on multiple datasets, experimental results have
proven the effectiveness of this algorithm.

The next step is to combine the model with non con-
vex optimization, so that it can be applied to data sets in
more fields, and more representative feature subsets can be
selected.
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