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Abstract
This paper studies the problem of differentially private bipartite output consensus in continuous-time heterogeneous multi-
agent systems (MASs) characterized by antagonistic interactions.A novel hybrid privacy-preserving event-triggered impulsive
consensus protocol is introduced to protect the agent’s initial information from disclosure, which involves a discrete-time
information transmission based on an event-triggering mechanism. Using stochastic Lyapunov method, sufficient conditions
have been obtained to achieve mean square bipartite output consensus with a guaranteed level of privacy. Furthermore, the
differential privacy of competitive agent pairs is exclusively secured by the proposed control scheme by injecting Laplace
noise. The protocol also effectively prevents Zeno behavior by imposing a lower bound for impulsive intervals under all
event-triggered conditions. A simulation example is provided to validate the effectiveness of the theoretical result.

Keywords Differential privacy · Bipartite output consensus · Heterogeneous multi-agent systems · Event-triggered impulsive
control

Introduction

With recent advancements in networking technology and
wireless communication, the consensus problem of multi-
agent systems (MASs) has received tremendous research
interest from various fields, such as mobile-robot systems
[1], wide-area networks [2], autonomous underwater vehi-
cles [3], etc. In practice, agents often exhibit both antagonistic
and cooperative relationships in many multi-agent networks,
which can be represented in terms of signed graphs. In this
case, the problem of bipartite consensus was introduced
as an important issue in the field of MASs, and several
research works have been obtained on this topic [4, 5]. It
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should be noted that previous results on bipartite consen-
sus have focused on homogeneous agents. However, the
dynamics of real-world systems are often different, and the
bipartite output consensus problem of heterogeneous MASs
deserves further attention. In this regard, a unified framework
for bipartite output synchronization of linear heterogeneous
agents was investigated in [6]. In [7], the bipartite out-
put consensus of heterogeneous linear MASs was studied
through the integration of event-triggered and adaptive con-
trol strategies, under both fixed and switching topologies.
Further, to improve the convergence rate, finite-time event-
triggered bipartite output consensus for heterogeneous linear
MASs was discussed in [8]. In [9], a distributed reduced-
dimensional observer was designed to estimate leader states
and system matrices, and an edge-based adaptive protocol
was proposed to ensure bipartite output synchronization. A
bipartite output formation control problemwas considered in
[10], where an adaptive distributed dynamic event-triggered
controller was proposed without requiring any global infor-
mation about the network. The above research hasmade great
contributions to the development of bipartite output consen-
sus, but they do not take into account the issue of privacy
leakage within these problems.
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Information sharing among agents to reach agreement
throughout the network is an essential element in solv-
ing consensus problems. However, directly sharing agent
states can compromise privacy and lead to the leakage of
sensitive information. As a result, privacy-preserving prob-
lems have become crucial in consensus algorithm design.
In recent years, several techniques, including homomorphic
encryption [11], state decomposition [12], output mask [13],
differential privacy [14] and monodirectional information
exchange [15], have been employed to ensure privacy in con-
sensus problems. Among these methods, differential privacy
is particularly notable due to its strong mathematical guaran-
tees and no assumptions regarding background knowledge of
the adversary [16, 17]. Numerous studies have applied differ-
ential privacy to consensus problems inMASs. A differential
private average consensus algorithm with an event-triggered
scheme is designed in [18] for discrete-time MASs. In [19],
the problem of resilient consensus with faulty agents over
digraphs is considered by employing a differentially pri-
vate mean-subsequence-reduced(MSR) method. In [20], the
author addressed the differentially private consensus problem
for general multivariable discrete-time MASs. A differen-
tially private consensus problem for cooperative–competitive
MASs was investigated in [21] where privacy only works for
competitive agents. By using Rényi divergence, a distributed
differentially private algorithmbased onGaussian noiseswas
developed in [22] to solve the output consensus problem.
In addition, the differentially private consensus problem has
been further developed in [23] for discrete-time MASs over
switching networks. The author first addressed the differen-
tially private average consensus ofMASswith positive agents
in [24] using non-decaying positive Gaussian noises. Very
recently, by injecting time-varying noises, a differentially
private bipartite consensus was investigated in [25]. How-
ever, little attention has been paid to the privacy-preserving
bipartite output consensus problem of heterogeneous MASs
so far.

It is noteworthy that the majority of existing literature
on differential private consensus has primarily focused on
discrete-time models, with less focus on continuous-time
MASs. Impulsive control [26], a method for converting con-
tinuous dynamics into discrete form, has been extensively
studied [27, 28]. However, these studies typically depend
on fixed or predetermined impulse sequences, which can be
conservative. Recent work [29] of differential private aver-
age output consensus in continuous-time MASs combining
periodic sampling with hybrid control to reduce communi-
cation loads, yet this discrete-time interaction scheme still
requires time-triggering, which may result in a high commu-
nication burden among agents. To overcome this issue, the
event-triggered impulsive control (ETIC) method was pro-
posed.Theprimary advantageofETIC is intelligent sampling
and transmission inside the communication network since the

impulsive sequence is determined by a well-designed event-
triggered mechanism. Leaderless quasi-synchronization of
heterogeneous MASs was investigated in [30] using cen-
tralized and distributed ETIC control strategies. In the case
of leader-following consensus problems, quasi-consensus
with random packet loss has been examined in [31] based
on Lyapunov theory. Building upon the ETIC method, the
leader-following problem for unknown nonlinear MASs
was considered in [32] with an improved event-triggering
function to reduce resource utilization. Moreover, leader-
following mean square consensus for stochastic MASs with
randomly occurring uncertainties and nonlinearities was dis-
cussed in [33]. A general ETICmethod was used to solve the
bipartite tracking output consensus problem for MASs with
a dynamic leader in [34] under switching topology and non-
zero control inputs. A two-layer distributed control scheme,
which includes an ETIC method and a fault-tolerant con-
troller, was provided in [35] to solve the containment control
problem of linear MASs with deception attacks and actuator
faults. To the best of our knowledge, the problem of differen-
tially private bipartite consensus for continuous-time MASs
under the ETIC method has not yet been addressed.

Based on a hierarchical hybrid framework, this paper
investigates the bipartite output consensus of continuous-
time heterogeneous MASs with differential privacy require-
ments. The main contributions of this work are as follows.
First, we design a novel privacy-preserving algorithm for
output average consensus in heterogeneous cooperative-
competitiveMASs. Comparedwith [25, 36] only considering
homogeneous MASs, we consider the heterogeneous MASs.
Second, the development and implementation of an impul-
sive controller that employs an event-triggered mechanism
is introduced. This novel method performs very efficiently
in terms of lower transmission and computation costs.
Moreover, a fixed lower bound on impulsive intervals was
proposed to prevent Zeno behavior. Compared with [22,
29], we design a control scheme that is a combination of
impulsive control and event-triggered control, which can
effectively save resources and generalize continuous-time
systems to discrete-time systems. Additionally, the commu-
nication topologies are generalized from unsigned graphs
[14, 19, 20] to signed graphs in our study. Finally, we demon-
strate that our algorithm ensures mean square convergence,
with privacy preservation only applied to competitive agents.

The structure of this article is as follows. The prelimi-
naries and problem formulation are given in “Preliminaries”
and “Problem formulation” sections, respectively. The main
results are given in “Main results” section,which includes the
design of the hybrid controller, and the analysis of consen-
sus and privacy. The simulation result is given in “Numerical
examples” and “Conclusion” sections concludes this article.
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Preliminaries

Notations

Denote the set of real numbers byR, the set of n- dimensional
real vectors byRn , and the set of n×n real matrices byRn×n .
In ∈ R

n×n is identity matrix. Denote ⊗ as the Kronecker
product. diag(·) represents a diagonal matrix. col(·) repre-
sents a concatenation. sign(·) denotes a sign function. ||x ||1
and ||x || denote 1-norm and 2-norm of vector x , respectively.
For matrix A, ||A|| denotes the 2-norm of A, ρ(A) denotes
the spectral radius of A. For a random variable X ∈ R, E[X ]
and Var [X ] denotes the expectation and variance.We denote
by X ∼ Lap(0, b) a zeromean random variable with Laplace
distribution and variance 2b2, and its probability density

function is given by L(x; b) = 1
2b e

− |x |
b . For a random vec-

tor Y ∈ R
n , cov(Y ) represents the covariance matrix.R(H)

denotes the range space of function H .For a set �, B(�)

denotes the Borel σ -algebra of �. For a subset P of real
numbers, inf(P) denotes the greatest real number that is less
than or equal to all numbers in P .

Graph theory

Let G = (V, E, A) be a signed digraph, where V =
{1, 2, . . . , N } is the set of vertices representing agents. E ⊆
V × V denotes the set of edges, and A = [ai j ] ∈ R

N×N is
the adjacency matrix of G, where ai j �= 0 ⇔ (vi , v j ) ∈ E
and ai j = 0 ⇔ (vi , v j ) /∈ E . Specifically, the interac-
tions between agent i and j is cooperative if ai j > 0
and competitive if ai j < 0. It is assumed that the digraph
with no self-loops, i.e., aii = 0, i ∈ {1 . . . , n} and sat-
isfies the digon sign-symmetry property ai j a ji ≥ 0. Let
Ni denote the neighbor set of the node i , that is, Ni =
{ j |(v j , vi ∈ E)}. The cardinality of Ni is |Ni |. A directed
path from agent i to agent j is a sequence of ordered edges
{(vi , vi1), (vi1 , vi2), . . . , (vil , v j )}. A signed directed graph
is said to contain a directed spanning tree if there is at least
one agent, which has a directed path to every other agent.
The in-degree and out-degree of agent i can be separately
defined as diin = ∑

j∈Ni
|ai j | and diout = ∑

j∈Ni
|a ji |.

A signed digraph G is balanced if diin = diout = di for
i ∈ {1 . . . , N }. For a balanced digraph, we denote the small-
est degree as dmin = min{di , i ∈ V}. A signed Laplacian
matrix L = [li j ] ∈ R

N×N is defined as L = D − A, where
D = diag(d1in, . . . , d

N
in ).

Definition 1 A signed digraph is structurally balanced if
there exists a bipartition of nodes V1 and V2 satisfying
V1 ∪ V2 = V and V1 ∩ V2 = ∅, such that ai j > 0, i, j ∈
Vq(q ∈ 1, 2) and ai j < 0, i ∈ Vq , j ∈ V3−q .

Related lemmas

Lemma 1 [37] The signed digraph is structurally balanced if
and only if there exists a gauge matrix S = diag(s1, . . . , sN )

with si ∈ {±1} such that As = SAS, where As = [|ai j |] ∈
R

N×N is a non-negative matrix and all off-diagonal entries
of Ls = SLS are non-positive.

Lemma 2 [38] If the symmetry matrix B ∈ R
n⊗n is positive

definite or positive semi-definite, then for an arbitrary matrix
A ∈ R

n⊗m, the following inequality holds

tr(AT BA) ≤ tr(AT A)tr(B). (1)

Problem formulation

Consider a MAS consisting of N continuous-time heteroge-
neous agents with the following dynamics:

{
ẋi (t) = Ai xi (t) + Biui (t),

yi (t) = Ci xi (t).
(2)

where xi ∈ R
ni , ui ∈ R

mi and yi ∈ R
l represent the system

state, the control input, and the measurement output, respec-
tively. Ai , Bi , and Ci are system matrices with compatible
dimensions.

Definition 2 The heterogeneousMASs (2) can achievemean
square bipartite output consensus if there exists a random
variable y∗ such that

lim
t→∞E

∥
∥yi (t) − si y

∗∥∥2 = 0, si ∈ {±1},∀i ∈ V. (3)

The objective of this article is to develop a distributed con-
troller that enables the system (2) to achieve mean square
bipartite output consensus while guaranteeing differential
privacy.

Inwhat follows,we introduce thedefinitions of differential
privacy used in this article.

Definition 3 [39] For any given vector σ ∈ R
l , two ini-

tial states y(0) = col(y1(0), y2(0), . . . , yN (0)) ∈ R
Nl and

y
′
(0) = col(y

′
1(0), y

′
2(0), . . . , y

′
N (0)) ∈ R

Nl are said to be
σ -adjacent if there exists an integer i0 ∈ V such that

||yi (0) − y
′
i (0)||1 ≤

{
||σ ||1, i = i0,

0, i �= i0.
(4)

Definition 4 [20] (Differential privacy) Given ε > 0, σ > 0
and any two σ -adjacent initial states y(0), y

′
(0), a random-

ized mechanism R
Nl → R(M) is ε-differentially private
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for any O ∈ B(R(M)), if

P[M(y(0)) ∈ O] ≤ eε
P[M(y

′
(0)) ∈ O], (5)

where ε is the privacy level.

Throughout this paper, the following assumptions should
be satisfied.

Assumption 1 The directed signed graph G is structurally
balanced and contains a directed spanning tree.

Assumption 2 All the matrices (Ai , Bi ), i = 1, . . . , N , are
stabilizable.

Assumption 3 All the matrices (Ai ,Ci ), i = 1, . . . , N are
detectable.

Assumption 4 For i ∈ V , there exists solution (�i , �i ), sat-
isfying the following equations:

{
0 = Ai�i + Bi�i ,

Ci�i = Il×l .
(6)

Main results

Hybrid event-triggered impulsive controller design

To achieve bipartite output consensus of (2), we design a
hybrid controller based on the approach in [29, 40] as follows:

⎧
⎪⎨

⎪⎩

ζ̇i (t) = ∑∞
k=1 γ

∑
j∈Ni

ai j (ϕ j (t)

−sign(ai j )ζi (t))δ(t − tk),

ui (t) = K1i xi (t) + K2iζi (t),

(7)

with
⎧
⎨

⎩

ϕ j (tk) = ζ j (tk) + 1−sign(ai j )
2 η j (tk),

η j,z(tk) ∼ Lap(0, c jqkj ), z ∈ (1, . . . , l),
(8)

where ζi (t) ∈ R
l is the reference state with ζi (0) = yi (0).

γ is the impulsive gain, K1i and K2i and are the control
parameters to be designed. δ(·) is the Dirac function, and tk
are the event-triggered impulsive instants for k = 1, 2, . . . ,
which satisfy 0 < t1 < t2 < · · · < with limk→∞ tk = +∞.
η j (tk) ∈ R

l is a random vector with each entry to be indepen-
dent and identically distributed (i.i.d.) Laplace distribution.

The MASs under the event-triggered impulsive control
strategy can be rewritten as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ui (t) = K1i xi (t) + K2iζi (t),

ζ̇i (t) = 0, tk ∈ (tk, tk+1),

ζi (tk) = ζi (t
−
k ) + γ

∑
j∈Ni

ai j (ϕ j (t
−
k )

−sign(ai j )ζi (t
−
k )).

(9)

Remark 1 It is evident that each agent only receives infor-
mation from its neighbors at the impulsive time instant. This
implies that information transfer between agents only occurs
at these discrete trigger times.

Denote A = diag(A1, . . . , AN ), B = diag(B1, . . . , BN ),
K1 = diag(K11, . . . , K1N ), � = diag(�1, . . . ,�N ), � =
diag(�1, . . . , �N ). Then, define the consensus error and the
following error as ζ̄i (t) = ζi (t)− 1

N

∑N
i=1 si s jζ j (t), x̄i (t) =

xi (t) − �iζi (t). Moreover, define ζ̄ (t) = col(ζ̄1(t), . . . ,
ζ̄N (t)), x̄(t) = col(x̄1(t), . . . , x̄N (t)) and η(t) = col(η1(t),
. . . , ηN (t)). Substituting (7) and (8) in (2), for t ∈ (tk, tk+1),
we have

˙̄ζ(t) = 0. (10)

Under Assumption 4 and K2i = �i − K1i�i , it holds that

˙̄x(t) = ẋ(t) − �ζ̇(t)

= Ax(t) + Bu(t) − 0

= (A + BK1)x(t) − B(� − K1�)ζ(t)

= (A + BK1)x̄(t).

(11)

Let M = IN − 1
N ss

T , for t = tk , from Eq. (9), we have

ζ̄ (tk) = (M ⊗ Il)ζ(tk)

= [(IN − γ L) ⊗ Il ]ζ̄ (t−k )

+ γ

2
[M(A − As) ⊗ Il ]η(t−k )

(12)

and

x̄(tk) = x(tk) − �ζ(tk)

= x̄(t−k ) + γ�(L ⊗ Il)ζ̄ (t−k )

− γ

2
[(A − As) ⊗ Il ]η(t−k ).

(13)

From (10)–(13), the closed-loop system with respect to ζ̄ (t)
and x̄(t) can be rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ̇i (t) = 0, t ∈ (tk, tk+1),

ζ̄ (tk) = [(IN − γ L) ⊗ Il ]ζ̄ (t−k )

+ γ
2 [M(A − As) ⊗ Il ]η(t−k ),

˙̄x(t) = (A + BK1)x̄(t),

x̄(tk) = x̄(t−k ) + γ�(L ⊗ Il)ζ̄ (t−k )

− γ
2 [(A − As) ⊗ Il ]η(t−k ).

(14)
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Denote Â = A + BK1, A∗ = A − As , it follows from (14)

that ζ̄ (t−k+1) = ζ̄ (tk) and x̄(t−k+1) = eÂ(t−k+1−tk ) x̄(tk), then

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ζ̄ (tk+1) = [(IN − γ L) ⊗ Il ]ζ̄ (tk) + γ
2 (MA∗

⊗Il)η(t−k+1),

x̄(tk+1) = eÂ(t−k+1−tk ) x̄(tk) + γ�(L ⊗ Il)ζ̄ (tk)

− γ
2 �(A∗ ⊗ Il)η(t−k+1).

(15)

Consensus analysis

In this subsection, we first prove that the output of each het-
erogeneous system converges to the average of the reference
states in the mean square. Then, we prove that heterogeneous
MASs are able to achieve mean square bipartite output aver-
age consensus.

Theorem 1 Under Assumptions 1–4, suppose there exists
positive definite matrix P ∈ R

Nl×Nl , positive definite matrix
Q ∈ R

n∗×n∗
with n∗ = ∑N

i=1 ni such that the following
inequalities

(
P [(IN − γ L) ⊗ Il ]T P

P[(IN − γ L) ⊗ Il ] P

)

> 0, (16)

(
Q (eÂt )T Q

QeÂt Q

)

> 0 (17)

hold, then

lim
t→∞E

∥
∥
∥
∥y(t) − 1

N
(ssT ⊗ Il)ζ(t)

∥
∥
∥
∥

2

= 0 (18)

and the event-triggered condition is designed as:

tk+1 = min{inf{t |t > tk + t, X̄ T
ζ (tk)W

T (t)

UW (t)X̄ζ (tk) > β X̄ T
ζ (tk)U X̄ζ (tk)}, tk + Tu},

(19)

where X̄T
ζ (t) = [

ζ̄ T (t) x̄ T (t)
]T
, W (t) =

[
W1 0
W2 W3(t)

]

,

W1 = (IN − γ L) ⊗ Il , W2 = γ�(L ⊗ Il), W3(t
−
k+1) =

eÂ(t−k+1−tk ), Tu > 0 is an upper bound of impulsive inter-
val and can be chosen large enough, t > 0 is a constant,
0 < β < 1, U ∈ R

N∗×N∗
with N∗ = ∑N

i=1 ni +Nl is a sym-
metric positive definite matrix such that WT (t+t)UW (t+
t) −U < 0.

Proof From (15), we have:

{
ζ̄ (tk+1) = W1ζ̄ (tk) + R1η(t−k+1),

x̄(tk+1) = W2ζ̄ (tk) + W3(t
−
k+1)x̄(tk) + R2η(t−k+1),

(20)

and the compact form of the above system can be described
by

X̄ζ (tk+1) = W (t−k+1)X̄ζ (tk) + Rη(t−k+1), (21)

where R = [
R1 R2

]T
, R1 = γ

2 (MA∗ ⊗ Il), R2 =
− γ

2 �(A∗ ⊗ Il).
Since conditions (16) and (17) hold, ρ(W1) < 1 and

ρ(W3(tk + t)) < 1, which means that ρ(W (tk + t)) < 1
and there must exist the symmetric positive definite matrix
U such that WT (tk + t)UW (tk + t) −U < 0.

Let V (k) = X̄ T
ζ (tk)U X̄ζ (tk), then we have V (k) =

V (k + 1) − V (k), and the expectation of V (k) is

E[V (k)] = E[X̄ T
ζ (tk+1)U X̄ζ (tk+1) − X̄ T

ζ (tk)U X̄ζ (tk)]
= E[X̄ T

ζ (tk)W
T (t−k+1)UW (t−k+1)X̄ζ (tk)

− X̄ T
ζ (tk)U X̄ζ (tk)

+ ηT (t−k+1)R
TU RηT (t−k+1)]

= E[X̄ T
ζ (tk)(W

T (t−k+1)UW (t−k+1) −U )X̄ζ (tk)]
+ tr(RTU R)E[ηT (t−k+1)η(t−k+1)]. (22)

LetV1(k) = X̄ T
ζ (tk)(WT (t−k+1)UW (t−k+1)−U )X̄ζ (tk) and

according to Lemma 2, we have

E[V (k)] = E[V1(k)] + tr(RTU R)E
[

N∑

i=1

l∑

z=1

ηTi,z(t
−
k+1)ηi,z(t

−
k+1)

]

≤ E[V1(k)] + tr(RT R)tr(U )E
[

N∑

i=1

l∑

z=1

ηTi,z(t
−
k+1)ηi,z(t

−
k+1)

]

. (23)

Then, enumerating and calculating the sums of both sides in
Eq. (23), we have as k → ∞

E[V (k)] − E[V (0)] ≤ E

[
k−1∑

t=0

V1(t)

]

+tr(RT R)tr(U )

N∑

i=1

2c2i
1 − q2i

Il . (24)

Using Schur complement, according to condition (16), con-
dition (17) and event-triggered condition (19), we have
V1(k) < 0 when tk+1 − tk > t . Then, we have
E[V1(k)] < 0,E[V (k)] ≥ 0. From (24), we can further
get that E[V (k)] and E[V1(k)] are both bounded. Conse-
quently, there must exist a positive real number 0 < r < 1
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such that

E[V (k + 1)] ≤ E

[

(1 − r)V (k) + tr(RT R)tr(U )

N∑

i=1

×
l∑

z=1

ηTi,z(t
−
k+1)ηi,z(t

−
k+1)

]

. (25)

As k → ∞, the contribution of the first term in (25) converge
to 0, and in the second term we have

∑N
i=1

∑l
z=1 E[ηTi,z

(t−k+1)ηi,z(t
−
k+1)] = 2

∑N
i=1 c

2
i q

2k
i Il which also converge to

0. Therefore, we conclude that E[V (k)] = 0 as k → ∞.
SinceU > 0 andE[V (k)] = 0,wehave limk→∞ E[X̄ζ (tk)]

= 0, which means that limk→∞ E[ζ̄ (tk)] = 0 and limk→∞
E[x̄(tk)] = 0. Then,

lim
t→∞E

∥
∥
∥
∥y(t) − 1

N
(ssT ⊗ Il)ζ(t)

∥
∥
∥
∥

2

= lim
t→∞E

∥
∥
∥
∥Cx(t) − C�ζ(t) + C�ζ(t) − 1

N
(ssT ⊗ Il)ζ(t)

∥
∥
∥
∥

2

≤ 2 lim
t→∞E ‖Cx(t) − C�ζ(t)‖2 + 2 lim

t→∞E ‖C�ζ(t)

− 1

N
(ssT ⊗ Il)ζ(t)

∥
∥
∥
∥

2

= 2 lim
t→∞E ‖Cx̄(t)‖2 + 2 lim

t→∞E
∥
∥ζ̄ (t)

∥
∥2

= 0. (26)

The proof is completed. ��

Theorem 2 Suppose Assumptions 1–4 hold and Ai + Bi K1i

is Hurwitz, the heterogeneous multi-agent system (2) will
achieve mean square bipartite output average consensus and
limt→∞ E||yi (t)−si y∗||2 = 0, where y∗ is a random vector,
E[y∗] = 1

N (1TN S ⊗ Il)y(t0).

Proof Based on Assumption 1, we have 1TN SL = 0. Accord-
ingly, it is derived from (9) that

(1TN S ⊗ Il)ζ(tk) = (1TN S(IN − γ L) ⊗ Il)ζ(t−k )

+γ

2
(1TN SA∗ ⊗ Il)η(t−k )

= (1TN S ⊗ Il)ζ(t−k )

+γ

2
(1TN SA∗ ⊗ Il)η(t−k )

= (1TN S ⊗ Il)ζ(tk−1)

+γ

2
(1TN SA∗ ⊗ Il)η(t−k ). (27)

By taking iterations, we can obtain that

(1TN S ⊗ Il)ξ(tk) =
∑

i∈V
siζi (t0)

+γ

2

k−1∑

p=1

(1TN SA∗ ⊗ Il)ηi (t
−
p ) (28)

which

lim
k→∞(1TN S ⊗ Il)ξ(t)

=
∑

i∈V
siξi (t0) + γ

2

∞∑

p=1

∑

i∈V

∑

j∈Ni

(ai j s j − ai j si )ηi (t
−
p )

=
∑

i∈V
siξi (t0) + γ

2

∞∑

p=1

∑

i∈V

∑

j∈Ni

(si − s j )|ai j |ηi (t−p ).

(29)

According to Theorem 1, we have

lim
t→∞E||yi (t) − si y

∗||2

≤ lim
t→∞E||yi (t) − 1

N
(1TN S ⊗ Il)ξ(t)||2

+ lim
t→∞E|| 1

N
(1TN S ⊗ Il)ξ(t) − y∗||2 = 0

(30)

with y∗ = 1
N

∑
i∈V siξi (t0)+ γ

2N

∑∞
p=1

∑
i∈V

∑
j∈Ni

ãi jηi
(t−p ), ãi j = (si − s j )|ai j |. By the fact that ηi (t

−
h ) are i.i.d.,

we have

E[y∗] = E

⎡

⎣ 1

N

∑

i∈V
siξi (t0) + γ

2N

∞∑

h=1

∑

i∈V

∑

j∈Ni

ãi jηi (t
−
h )

⎤

⎦

= 1

N

∑

i∈V
siξi (t0) = 1

N

∑

i∈V
si yi (t0). (31)

��

Remark 2 Because inTheorem1 there exists a constantt >

0 such that tk+1 − tk > t , then the Zeno behavior can be
naturally excluded.

Remark 3 Compared to the work in [15], which proposed an
alternating direction method of multiplier (ADMM) to solve
the consensus problem of reflection coefficients, the event-
triggered impulsive control strategy proposed in this paper
can mitigate limited communications resources. In addition,
compared with the monodirectional information exchange
method to safeguard information privacy, the implementa-
tion of differential privacy in this paper is independent of a
specific network structure or communication model, making
it more flexible to different systems.
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Privacy analysis

In this subsection, we analyze the εi privacy of the proposed
algorithm. First, we consider the initial states of an individ-
ual agent’s output y(0) = col(y1(0), y2(0), . . . , yN (0)) as
the private data. We then denote the sequence of reference
states χ(y(0), O) = {ζi (tk), i ∈ V, k = 0, 1, . . .} as the tra-
jectory of the system, and the sequence of transmitted states
O = {ϕi (tk), i ∈ V, k = 0, 1, . . .} as the observation of
the system. Define the randomized mechanism M(·) as a
stochastic map from the private data y(0) to an observation
sequence O .

Theorem 3 If the agent and its neighbors are in a com-
petitive relationship, the proposed algorithm can preserve
εi -differential privacy for agent i ∈ V with

εi = ||δ||1(1 − γ di )

ci (qi − 1 + γ di )
. (32)

Proof Because the observations O = {ϕi (t−k ), i ∈ V, k =
1, 2, . . .} for y(0) and y

′
(0) are the same, based on Eq. (9),

we have

ζ
y(0),O
i (t−k+1) = (1 − γ di )ζ

y(0),O
i (t−k ) + γ

∑

j∈Ni

ai jϕ j (t
−
k )

(33)

and

ζ
y
′
(0),O

i (t−k+1) = (1 − γ di )ζ
y
′
(0),O

i (t−k ) + γ
∑

j∈Ni

ai jϕ j (t
−
k ).

(34)

Therefore,

ζ
y
′
(0),O

i (t−k+1) − ζ
y(0),O
i (t−k+1)

= ζ
y
′
(0),O

i (tk) − ζ
y(0),O
i (tk)

= (1 − γ di )(ζ
y
′
(0),O

i (t−k ) − ζ
y(0),O
i (t−k ))

= (1 − γ di )
k(ζ

y
′
(0),O

i (t0) − ζ
y(0),O
i (t0)).

(35)

Define R = {χ(y(0), O), O ∈ O} and R′ = {χ(y
′
(0), O),

O ∈ O} are the set of possible in the observation setO.Mean-
while, let f (y(0), χ(y(0), O)) and f (y

′
(0), χ(y

′
(0), O)) as

the probability density function of the trajectories, respec-
tively. Given initial states y(0), the observation sequence
O = {ϕi (t−k ), i ∈ V, k = 1, 2, . . .} is unique defined by
the noise sequence {ηi (t−k ), i ∈ V, k = 0, 1, . . .} according
to (9). Then, the probability density function of observation

sequence O is given as follows

f (y(0), χ(y(0), O))

=
N∏

i=1

k∏

p=1

f (y(0), χ(y(0), O)i (t
−
p ))

=
N∏

i=1

l∏

z=1

k∏

p=1

L(Oi,z(t
−
p ) − χ(y(0), O)i,z(t

−
p ); bi (t−p )).

(36)

For a pair of private datasets, since they have the same obser-
vation up to time T , there exists a bijection h(·) : R → R

′

such that for χ(y(0), O) ∈ R, χ(y
′
(0), O) ∈ R

′
, it has

h(χ(y(0), O)) = χ(y
′
(0), O). Then, from (37) and using

the bijection h(·), one can get

f (y(0), χ(y(0), O))

f (y ′
(0), χ(y ′

(0), O))

=
∏N

i=1
∏l

z=1
∏k

p=1 L(Oi,z(t−p ) − χ(y(0), O)i,z(t−p ); bi (t−p ))
∏N

i=1
∏l

z=1
∏k

p=1 L(Oi,z(t
−
p ) − h(χ(y(0), O)i,z(t

−
p ); bi (t−p )))

=
∏l

z=1
∏k

p=1 L(Oi0,z(t
−
p ) − χ(y(0), O)i0,z(t

−
p ); bi0 (t−p ))

∏l
z=1

∏k
p=1 L(Oi0,z(t

−
p ) − h(χ(y(0), O))i0,z(t

−
p ); bi0 (t−p ))

=
k∏

p=1

e

||(Oi0 (t−p )−χ(y(0),O)i0
(t−p ))||1−||(Oi0 (t−p )−h(χ(y(0),O))i0

(t−p ))||1
bi0

(t−p )

≤
k∏

p=1

e

||(Oi0 (t−p )−χ(y(0),O)i0
(t−p ))−||(Oi0 (t−p )−h(χ(y(0),O))i0

(t−p ))||1
bi0

(t−p )

≤ e

∑k
p=1

||ζ ′
i0

(t−p )−ζi0
(t−p )||

ci0
q
p
i0 ≤ e

∑k
p=1

||δ||1(1−γ di0
)p

ci0
q
p
i0 . (37)

Subsequently, integrating both sides of (37) and letting k →
∞ yields

P[M(y(0)) ∈ O] ≤ e
||δ||1(1−γ di0

)

ci0
(qi0

−1+γ di0
)
P[M(y

′
(0)) ∈ O],

i0 ∈ V,

(38)

where i0 can be any agent in the network. The proof is now
complete. ��
Remark 4 Theorem 3 reveals that the privacy level εi is
related to the parameter ci , qi , and the degree di . Accord-
ing to (32), we find that greater ci , qi , and di give a smaller
εi , which may lead to better privacy protection.

Numerical examples

Example 1 Consider a MAS with six agents over a signed
graph G (see Fig. 1), where the red dashed lines and the
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21 3

4 5 6

Fig. 1 Structurally balanced signed graph G containing a spanning tree

blue solid lines separately indicate the antagonistic and
cooperative interactions. Since G is structural balanced,
V1 = {v1, v2, v3} and V2 = {v4, v5, v6} are two competi-
tive groups. The dynamics of (2) are provided as follows:

A1 = A3 = A5 =
[

1 0

−1 −1

]

, B1 = B3 = B5 =
[
1
0

]

,

C1 = C3 = C5 = [
0 1

]
,

A2 = A4 = A6 =

⎡

⎢
⎢
⎣

0 1 0

0 0 1

0 1 −2

⎤

⎥
⎥
⎦ , B2 = B4 = B6 =

⎡

⎣
0
0
1

⎤

⎦ ,

C2 = C4 = C6 = [
1 1 0

]
.

Based on (6), we can get the solution of that �1 =
�3 = �5 = [−1, 1]T , �1 = �3 = �5 = 1 and
�2 = �4 = �6 = [1, 0, 0]T , �2 = �4 = �6 =
−1. Then, we select the feedback gain matrices K11 =
[4.3,−1.32], K12 = [5.7,−3.4], K13 = [14,−35], K14 =
[37.2, 35.94, 8.5], K15 = [106, 68.7, 12.3], K16 = [176.4,
97.6, 15.2] such that Ai + Bi K1i are Hurwitz matrices.

The initial states are randomly selected from the inter-
val [0, 10] and let ci = 0.8, qi = 0.95, t = 0.02, γ =
0.15, β = 0.7. The corresponding results are presented in
Figs. 2, 3, 4 and 5. Figure 2 shows the output trajectories
yi (t) of all agents, demonstrating that outputs y1(t), y2(t)
and y3(t) in subgroup V1 converge to consensus, while out-
puts y4(t), y5(t) and y6(t) in subgroup V2 converge to the
opposite value. Figure 3 depicts the triggered instants for
agents 1-6. We can observe that the triggering instants of
each agent are finite, which verifies the exclusion of Zeno
behavior. As depicted in Fig. 4, the output errors of all agents
asymptotically converge to zero, thereby confirming that the
proposed control strategy achieves bipartite output consen-
sus for the heterogeneousMASs. Figure 5 reveals the relation
between privacy level εi and the parameter set (ci , qi , di ) for
γ = 0.15. It shows that εi decreases as ci , qi , and di increase,
which implies stronger privacy protection for agents with
more neighbors.

0 5 10 15

Times(s)

-4

-2

0

2

4

6

8

10
agent1 agent2 agent3 agent4 agent5 agent6

Fig. 2 The output trajectories yi (t) of six agents
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Fig. 3 Triggering instants under the proposed controller (7)
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Fig. 4 The bipartite output consensus errors of six agents

Example 2 Consider a MAS with four agents over a signed
graph G (see Fig. 6), where the red dashed lines and the
blue solid lines separately indicate the antagonistic and coop-
erative interactions. Since G is structural balanced, V1 =
{v1, v2} and V2 = {v3, v4} are two competitive groups. The
dynamics of (2) are provided as follows:

A1 =
[
1 −1

1 1

]

, A2 =
[
0.5 −1

0 1

]

,
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Fig. 5 The change of privacy level εi with respect to the parameter set
(ci , qi , di ) when γ = 0.15
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Fig. 6 Structurally balanced signed graph G containing a spanning tree
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Fig. 7 The output trajectories yi (t) of four agents

A3 =
[
1 −1

1 1

]

, A4 =
[
1 1

0 1

]

B1 =
[
1
0

]

, B2 =
[
1
0

]

, B3 =
[
1
0

]

, B4 =
[
1
1

]

C1 = [
1 1

]
,C2 = [

1 0
]
,C3 = [

2 1
]
,C4 = [

1 0.5
]
. (39)

Based on (6), we can get the solution of that�1 = [1, 0]T ,
�2 = [1, 0]T , �3 = [1,−1]T , �4 = [0, 2]T and �1 = −1,
�2 = −0.5, �3 = −2, �= − 2. Then, we select the feedback
gain matrices K11 = [6.3, 9.92], K12 = [7.2, 13.8], K13 =
[7.6, 12.95], K14 = [10.25,−3.65] such that Ai +Bi K1i are
Hurwitz matrices.
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Fig. 8 Triggering instants under the proposed controller (7)

0 5 10 15

Times

-5

-4

-3

-2

-1

0

1

2

3

4
agent1 agent2 agent3 agent4

Fig. 9 The bipartite output consensus errors of four agents
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Fig. 10 The change of privacy level εi with respect to the parameter
set (ci , qi , di ) when γ = 0.2

The initial states are randomly selected from the inter-
val [−5, 5] and let ci = 0.8, qi = 0.95, t = 0.02, γ =
0.2, β = 0.5. The corresponding results are presented in
Figs. 7, 8 and 9. Figure 7 shows the output trajectories yi (t)
of all agents, demonstrating that outputs y1(t), y2(t) in sub-
groupV1 converge to consensus, while outputs y3(t), y4(t) in
subgroup V2 converge to the opposite value. Figure 8 depicts
the triggered instants for agents 1–4. We can observe that the
triggering instants of each agent are finite, which verifies the
exclusion of Zeno behavior. As depicted in Fig. 9, the output
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errors of all agents asymptotically converge to zero, thereby
confirming that the proposed control strategy achieves bipar-
tite output consensus for the heterogeneousMASs. Figure 10
reveals the relation between privacy level εi and the parame-
ter set (ci , qi , di ) for γ = 0.2. It shows that εi decreases as ci ,
qi , and di increase, which implies stronger privacy protection
for agents with more neighbors.

Conclusion

In this paper, a differentially private bipartite output con-
sensus problem for continuous-time heterogeneous MASs
over signed topology is addressed. To handle this problem,
a novel hybrid impulsive controller is designed, where the
event-triggered mechanism is taken into account. In contrast
to the current time-triggered approach, a significant reduc-
tion in control accuracy and communication costs can be
achieved. Besides, the proposed control strategy avoids Zeno
behavior by enforcing a fixed lower bound on time intervals.
A formal analysis of the εi -differential privacy of the system
is also provided. Future work will focus on differentially pri-
vate bipartite output consensuswith dynamic event-triggered
control, switching topology, and privacy preservation of cell-
free networks. Moreover, privacy preservation in practice,
including protecting the privacy of traffic analysis and health
research, will be further studied to extend our proposed con-
trol scheme.
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