
Complex & Intelligent Systems
https://doi.org/10.1007/s40747-024-01428-w

ORIG INAL ART ICLE

MAFNet: dual-branch fusion network with multiscale atrous pyramid
pooling aggregate contextual features for real-time semantic
segmentation

Shan Zhao1 · Yunlei Wang1 · Xuan Wu1 · Fukai Zhang1

Received: 2 January 2024 / Accepted: 9 March 2024
© The Author(s) 2024

Abstract
Currently, many real-time semantic segmentation networks aim for heightened accuracy, inevitably leading to increased
computational complexity and reduced inference speed. Therefore, striking a balance between accuracy and speed has emerged
as a crucial concern in this domain. To address these challenges, this study proposes a dual-branch fusion network with
multiscale atrous pyramid pooling aggregate contextual features for real-time semantic segmentation (MAFNet). The first
key component, the semantics guide spatial-details module (SGSDM) not only facilitates precise boundary extraction and
fine-grained classification, but also provides semantic-based feature representation, thereby enhancing support for spatial
analysis and decision boundaries. The second component, the multiscale atrous pyramid pooling module (MSAPPM), is
designed by combining dilation convolution with feature pyramid pooling operations at various dilation rates. This design
not only expands the receptive field, but also aggregates rich contextual information more effectively. To further improve
the fusion of feature information generated by the dual-branch, a bilateral fusion module (BFM) is introduced. This module
employs cross-fusion by calculating weights generated by the dual-branch to balance the weight relationship between the
dual branches, thereby achieving effective feature information fusion. To validate the effectiveness of the proposed network,
experiments are conducted on a single A100 GPU. MAFNet achieves a mean intersection over union (mIoU) of 77.4% at
70.9 FPS on the Cityscapes test dataset and 77.6% mIoU at 192.5 FPS on the CamVid test dataset. The experimental results
conclusively demonstrated that MAFNet effectively strikes a balance between accuracy and speed.
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Introduction

Semantic segmentation is an important technique in the field
of computer vision, with the objective of assigning each pixel
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to a distinct semantic category within an image. Currently,
the application scenarios of semantic segmentation include,
but are not limited to, some practical application scenarios
such as autonomous driving [1] andmedical imaging analysis
[2]. The advent of the convolutional neural network (CNN)
marked the inception of early semantic segmentation net-
works like fully convolutional networks (FCN) [3] andU-Net
[4].

In particular, FCN demonstrated remarkable performance
in the field of semantic segmentation, marking a significant
breakthrough. However, the need formore high-performance
semantic segmentation networks became apparent as tech-
nology evolved. Additionally, existing networks fall short of
meeting the demands of general scenarios, given that achiev-
ing higher performance often requires substantial com-
putational resources, especially when relying on complex
backbone networks like ResNet101 [5]. ResNet101 is a deep
CNN with 101 layers, which addresses challenges related
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to gradient vanishing and exploding during deep network
training by introducing a residual learning architecture. Sim-
ilarly, DeepLabV3+ [6] is a powerful semantic segmentation
model that enhances segmentation accuracy by employing
techniques such as dilated convolutions and atrous spatial
pyramid pooling (ASPP). However, the computational cost
of these high-accuracy networks, involving hundreds of giga
floating-point operations per second (GFLOs), hinders their
suitability for general scenarios like autonomous driving
and intelligent transportation. However, some studies have
already offered potential insights into semantic segmenta-
tion issues in practical application scenarios. Employing
the repetitive process control in [7] can enhance batch pro-
cessing efficiency, potentially contributing practicality to
real-time semantic segmentation. Bipartite synchronization
in neural networks with event-triggered mechanisms in [8]
aims to enhance cooperative operations, with the potential
to optimize segmentation strategies. Reference [9] presents
a hysteresis-quantified control method for switched systems,
offering a potential solution for dynamic scenarios in real-
time semantic segmentation.

To address the challenge of high computational costs and
meet the real-world demand for network inference speed,
the development of real-time semantic segmentation is grad-
ually gaining attention. ENet [10], designed for low-latency
operations, offers comparable or superior accuracy to state-
of-the-art models. While ICNet [11] introduced a cascaded
feature fusion unit for high-quality segmentation results
with efficient inference speed. STDCNet [12] presented a
short-term dense concatenate module (STDCM), an efficient
network structure that progressively reduces the dimension
of feature maps. S2-FPN [13] proposed a scale-aware strip
attention module (SSAM) with low computational overhead
to collect remote context along the vertical axis by striping
operations and reduce computational cost.While thesemeth-
ods achieve commendable segmentation accuracy and speed,
striking a balance between accuracy and speed in real-time
semantic segmentation remains a challenging task.

To achieve this balance, some models employ lightweight
convolution structures to maintain relatively low computa-
tional complexity while achieving faster inference speeds.
ESPNet [14] introduced a novel convolutional module,
decomposing the standard convolution into a spatial pyra-
mid of pointwise and dilated convolutions. EfficientNet [15]
systematically exploredmodel scaling, constructing a simple
and efficient composite coefficient to regulate the relation-
ship between depth, width, and resolution of the network.
Fast-SCNN [16] proposed a shallow learning to downsample
module to extract low-level features quickly and efficiently.
Although these lightweight convolution structures enhance
speed and maintain relatively low computational complexity
to some extent, they often fall short of achieving the desired
accuracy.Additionally, lightweight structuresmay lead to the

loss of important features in input images, including spatial
detail information. Therefore, these issues must be consid-
ered when designing and optimizing lightweight semantic
segmentation networks. Additionally, the receptive field of
the network should be expanded, and richer spatial detail
information should be extracted.

Various solutions have been proposed to address the chal-
lenges posed by the aforementioned lightweight structures
while preserving richer spatial details. Among them, mul-
tiscale feature fusion stands out as a common strategy to
enhance semantic segmentation performance. This approach
integrates features from different hierarchical levels with the
goal of improving the accuracy and robustness of segmenta-
tion results. For instance, DDRNet [17] introduced the deep
aggregation pyramid pooling module (DAPPM) to enhance
context aggregation by combining continuous forward trans-
mission flows in Res2Net [18]. LBN-AA [19] proposed the
Distinctive Atrous Spatial Pyramid Pooling (DASPP) which
was designed according to the receptive field theory of the
human visual system [20] using dilated convolution with dif-
ferent rates to enlarge the receptive field for better context
information. Although these multiscale feature fusion mod-
ules enhance computational efficiency, their simple structure
may lead to the loss of fine-grained feature information,
potentially causing a drop in segmentation accuracy. PP-
LiteSeg [21] addressed this issue by introducing the simple
pyramid poolingmodule (SPPM). Thesemodules use simple
feature pyramid pooling to aggregate context information,
thereby improving segmentation accuracy with only a slight
increase in inference time. However, SPPM eliminates short-
cut branches and adopts simple addition operations between
elements, making it challenging to preserve the original fea-
ture map information.

To enhance segmentation accuracy while ensuring real-
time network performance, novel dual-branch network struc-
ture such as BiSeNet [22], BiSeNetV2 [23], DDRNet, and
RTFormer [24] have been proposed. BiSeNet introduced a
detail branch for extracting details and boundary information
and a semantic branch for capturing global context infor-
mation, retaining abundant spatial details. BiSeNetV2 built
upon the BiSeNet model, achieving improved performance
and real-time inference speed by enhancing the detail branch
and introducing a lightweight spatial branch. Additionally,
the recent DDRNet, adopting the dual-branch structure, has
demonstrated promising results. RTFormer efficiently col-
lected global context informationof high-resolution branches
through cross-resolution attention propagation, followed by
high-level knowledge learned from low-resolution branches.
These networks aim to provide multiscale feature fusion and
information recovery to enhance segmentation accuracy.

In this study, a dual-branch fusion network with multi-
scale atrous pyramid pooling aggregate contextual features
for real-time semantic segmentation (MAFNet) is proposed.
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While ensuring speed, this network improves accuracy by
deviating from traditional encoder–decoder structure by
adopting a dual-branch network structure. The semantic
branch is constructed using the STDC1 [12] backbone net-
work, while the spatial detail branch is constructed using the
lightweightRB [17]. For improved spatial-detail extraction, a
semantics guide spatial-detailsmodule (SGSDM) is designed
to enable accurate boundary extraction, fine-grained clas-
sification, and semantic-based feature representation, sup-
porting spatial analysis and decision boundaries. Drawing
inspiration from LBN-AA [19], a multiscale atrous pyra-
mid pooling module (MSAPPM) is introduced to extract
rich context information using different dilated convolution
and pooling operations. Finally, to balance the weight rela-
tionship between the dual-branch, a bilateral fusion module
(BFM) is designed to fuse dual-branch information effec-
tively by calculating feature information to generate weights.
The effectiveness of the designed modules is verified in the
final ablation experiments.

The main contributions of this paper can be summarized
as follows:

1. The SGSDM serves as a pivotal connector between dual
branches, seamlessly incorporating ordinary convolu-
tion, depth-wise separable convolution, and a sophisti-
cated activation function. This innovative module not
only excels in precise boundary extraction and fine-
grained classification, but also goes beyond by delivering
a distinctive semantic-based feature representation. This
feature representation is instrumental in supporting spa-
tial analysis and enhancing decision boundaries with
unparalleled accuracy.

2. TheMSAPPMismeticulously crafted, leveraging feature
pyramid pooling and dilated convolutions with dynam-
ically varying dilation rates. This strategic design not
only dramatically expands the network’s receptive field
but also skillfully aggregates rich context information,
resulting in a substantial boost in segmentation accuracy.

3. The revolutionary BFM is introduced with an advanced
cross-fusion strategy. This module ingeniously computes
feature information from the dual-branch architecture,
generating weights that effectively balance the intricate
relationship between the dual branches. The result is a
seamless aggregation of essential information from both
branches, optimizing overall performance.

4. Rigorous experiments are conducted on two prominent
datasets to underscore the effectiveness of MAFNet.
Operating on a single A100 GPU, MAFNet attains an
impressive 77.4% mean Intersection over Union (mIoU)
with a swift inference speed of 70.9 FPS on the chal-
lenging Cityscapes test dataset. Furthermore, MAFNet
achieves a remarkable 77.6% mIoU, coupled with an

impressive inference speed of 194.5 FPS on the demand-
ing CamVid test dataset. These experimental results
firmly establish MAFNet’s exceptional performance and
underscore its prowess in real-world applications.

Related work

In this section, some real-time semantic segmentation meth-
ods that are relevant to the work presented in this paper is
given.

Dual-branch network structure

The dual-branch network structure typically comprises two
parallel branches, each dedicated to distinct information
extraction and feature learning. Fusing or interacting with
these dual-branch features enables comprehensive utilization
of feature representation from different levels, enhanc-
ing model performance and accuracy. Currently, many
dual-branch networks have been proposed. Notable among
the existing dual-branch networks is BiSeNetV2 [23], an
improved version of the BiSeNet [22] model. Figure 1 shows
the backbone architecture of BiSeNetV2.

As depicted in Fig. 1, BiSeNetV2 consists of detail and
semantic branches. The detail branch requires a substantial
number of channels to encode spatial detail information. This
branch adopts a wide channel and shallow structure, avoid-
ing the use of a residual structure to maintain efficiency
and speed. Due to its large spatial size and wide channel
characteristics for feature representation, the detail branch
effectively extracts rich spatial details. On the other hand,
the semantic branch operates in parallel and is designed to
capture high-level semantics with lower channel capacity. It
employs a fast-downsampling strategy and global average
pooling to enhance feature representation and expand the
network’s receptive field. This design choice transforms the
semantic branch into a lightweight model capable of meeting
the requirements for a large receptive field and global context
information extraction.

Efficient backbone network STDCNet

Efficient backbone networks play a crucial role in improving
segmentation performance in real-time semantic segmenta-
tion models. These networks typically combine optimization
strategies for depth and width, considering both computa-
tional and storage resource constraints at the same time.
Consequently, the accuracy of semantic segmentation and
the ability to preserve details are enhanced with the learning
of more accurate and richer image feature representations,
enabling the model to better understand the semantic infor-
mation in the image.
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Fig. 1 The backbone
architecture of BiSeNetV2

Fig. 2 Overview of STDCM with a step size of 2

123



Complex & Intelligent Systems

STDCNet [12], an efficient backbone network, introduced
an STDCM to extract deep feature information with a scal-
able receptive field and multiscale. As illustrated in Fig. 2,
the STDCM structure employs a step size of two, where M
is the input channel dimension, and N is the output chan-
nel dimension. The kernel sizes of all blocks are set to three,
except for the first block, which is set to one. This is achieved
by progressively reducing the dimension of the feature map
and using the method of feature representation through their
aggregation. This not only removes the redundant terms in
the structure but also increases the effective receptive field
of the network.

Proposedmethod

In this section, an overview of MAFNet is provided first,
followed by the introduction of three modules of MAFNet:
SGSDM, MSAPPM, and BFM.

Overall network architecture

MAFNet is designed in this study, aims to overcome com-
mon challenges in semantic segmentation. Previous studies
such as BiSeNet [22], BiSeNetV2 [23], DDRNet [17] and
RTFormer [24], have demonstrated the effectiveness of the
dual-branch network structure for real-time semantic seg-
mentation. Therefore, inspired by the dual-branch network
structure, MAFNet is constructed with semantic and spatial
detail branches, as shown in Fig. 3a. The efficient back-
bone network STDC1 [12] serves as the semantic branch
for extracting semantic information. STDC1 consists of five
stages (from stage 1 to 5), with each stage using a down-
sampling rate of step 2 to halve the input resolution. The
spatial detail branch, is built with the lightweight RB [17],
has a residual interior structure, as shown in Fig. 3b. If
the input image is Fi ∈ R

H×W , the final output feature
map sizes for the semantic and spatial detail branches are
Fs ∈ R

H/32×W/32 and Fsd ∈ R
H/8×W/8, respectively. The

complete implementation process of MAFNet is described
in detail below.

The input image undergoes processing through the seman-
tic branch, which extracts overall semantic information.
When the semantic branch downsamples to 1/8 of the input
image, a spatial details branch is introduced to assist in
extracting spatial details. At this stage, the SGSDM is intro-
duced to facilitate better information exchange between the
two branches. SGSDM functions to extract semantic infor-
mation while guiding and preserving crucial spatial details.
The innovation of this module lies in its ability to effectively
promote interaction between global and local information,
providing robust support for subsequent processing stages.
Following this, immediately after the semantic branch, the

MSAPPM is introduced to compensate for the insufficient
contextual information extraction capability of the semantic
branch. In this processing flow, MSAPPM combines dilated
convolutions with different dilation rates and a feature pyra-
mid pooling structure to expand the network’s receptive field
and better aggregate contextual information. The introduc-
tion ofMSAPPM helps the network possess a more powerful
contextual awareness when processing semantic informa-
tion. In the next stage of the network, the BFM is connected
to better fuse features generated by the two branches. BFM
enhances the interaction between the two branches through a
cross-fusionmechanism, improving the network’s expressive
capability. The inclusion of this module enables the network
to more effectively integrate feature information from dif-
ferent branches. Finally, a segmentation head is connected
before the network’s output, as shown in Fig. 3c, predicting
the original image size after 8× upsampling.

In Fig. 3a, the structure of MAFNet reveals a synergis-
tic collaboration among various modules at different stages,
forming an efficient information processing workflow. This
detailed processing flow ensures each innovativemodule cor-
responds to specific processing stages, enhancing the overall
performance of the network. Table 1 presents the detailed
parameters of the proposed network, where Conv2d rep-
resents the Conv–BN–ReLU operation, OPR indicates the
operation, and K is the kernel size. S, R, and C denote the
stride, repeat times, and output channels, respectively. The
basic module of Stages 3, 4, and 5 is the STDC module.

Semantics guide spatial-details module (SGSDM)

Semantic and spatial detail information both play piv-
otal roles in image understanding. However, a previous
method [25] has employed convolution, followed by cross-
fusion or direct addition operations to improve performance.
While this method encourages complementary informa-
tion exchange between the semantic and spatial detail
branches, the fusionprocess introduces information conflicts,
especially when semantic differences or scale mismatches
between features exist. Given that semantic information aids
in extracting spatial details, it is crucial to employ a care-
fully designed fusion approach to enable themodel to possess
both semantic understanding and detail perception capabili-
ties simultaneously.

SGSDM is introduced for MAFNet to address these chal-
lenges, as shown in Fig. 4. This module achieves accurate
boundary extraction and fine-grained classification, provid-
ing semantic-based feature representation and supporting
spatial analysis and decision boundaries. Here, S represents
the sum function, wherein the multiplication of two elements
is performed first, followed by the sum operation, and UP
denotes the upsampling operation. The sum function can be
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Fig. 3 Overview of the designed MAFNet. a Architecture of MAFNet, b RB module and c Seg-Head

Table 1 Detailed structure of
MAFNet

Stage Output Semantic branch Spatial-details branch

OPR K S R C OPR K S R C

Input 512 × 1024 3

S1 256 × 512 Conv2d 3 2 1 32

S2 128 × 256 Conv2d 3 2 1 64

S3 64 × 128 Stage3 2 1 256 Conv2d 3 1 2 256

1 1

S4 32 × 64 Stage4 2 1 512 Conv2d 3 1 2 512

1 1

S5 16 × 32 Stage5 2 1 1024 Conv2d 3 1 1 1024

1 1

expressed by the following mathematical expression:

Fsum =
C∑

i=1

R
B×C×H×W , (1)

where Fsum ∈ R
B×H×W , B, C, H and W represent batch

size, number of channels, image height, and image width,
respectively.

The following steps are taken for the input feature Fs of
one semantic branch and the input feature Fsd of the spatial
detail branch. First, Fs undergoes a 1× 1Conv and batch nor-
malization for channel dimension reduction, followed by the
upsampling operation, resulting in features denoted as Fup1.
To fuse with the spatial detail features, depthwise separable
Conv and batch normalization with 3 × 3, and upsampling
operations are applied. The resulting feature map is denoted
as Fup2. For the spatial detail branch, the input feature Fsd

undergoes a 3 × 3 Conv and batch normalization, and the
resulting features aremultipliedwith Fup2. The Sum function
is then employed to sum the resulting feature maps, gener-
ating a new feature map, Fsum. The above process can be
expressed as the following equation:

Fup1 = UP(C1×1 (Fs)),

Fup2 = UP (DW3×3 (C1×1 (Fs))) ,

Fsum = Sum(C1×1 (Fsd) ⊗ Fup2), (2)

where C1×1 is the 1 × 1 Conv and batch normalization, and
DWC3×3 is the 3 × 3 depthwise separable convolution and
batch normalization. Up indicates the upsampling by bilinear
interpolation, andSum is the operation thatmultiplies the two
elements and then sums them up.

Instructive weights are generated by the Sigmoid func-
tion [26] and multiplied and added to the corresponding
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Fig. 4 Overview of SGSDM

branches. The mathematical expression for the Sigmoid acti-
vation function is given by the following formula:

y = 1

1 + e−x
. (3)

Finally, after a ReLU operation, the output is input to the
next stage. Throughout the process, the input to the spatial
detail branch remains 1/8 the size of the original image. This
complete implementation process not only achieves accu-
rate boundary extraction and fine-grained classification, but
also provides semantic-based feature representation to fur-
ther support spatial analysis and decision boundaries. The
output Fout of SGSDM can be expressed by the following
mathematical expression:

∂ = Sigmoid(Fsum)

Fout = R
((

∂ ⊗ Fup1
) ⊕ ((1 − ∂) ⊗ Fsd)

)
, (4)

where Sigmoid denotes the operation by the Sigmoid func-
tion, and R represents the ReLU activation function.

Multiscale atrous pyramid poolingmodule
(MSAPPM)

The context aggregation module is commonly used in the
field of image processing and computer vision. It provides a

broader semantic context, allowing themodel to better under-
stand the semantic relationships in the image. Additionally,
by expanding the receptivefield of themodel canbe expanded
to consider a wider range of contextual information, which
is important for processing images with multiscale structure
and semantic associations. This expansion of the receptive
field enables the model to better understand the context in
the image, leading to more accurate pixel classification and
segmentation.

To accurately achieve contextual semantic information in
images, this study drew inspiration from the context aggre-
gation proposed in [19] and designed MSAPPM, as shown
in Fig. 5. In this module, Pooling, UP, and Concatenate
represents the pooling, upsampling, and splicing operation,
respectively. Specifically, for an input feature map Fm, the
dimensionality is first reduced by a 1 × 1 Conv and batch
normalization. Subsequently, a 1 × 1 Conv and batch nor-
malization is applied from the left side, and the resulting
feature maps are used for subsequent information passing.
In parallel, a set of {1 × 1, 3 × 3, 5 × 5, 7 × 7} pool-
ing operations and dilation convolutions with dilation rates
r = {1, 8, 16, 32} are followed by upsampling to restore
the original size for subsequent concatenation operations.
Additionally, global average pooling, 1 × 1 Conv, and batch
normalization are concatenated in parallel to better capture
global context information.After passing through the parallel
connections, starting from the left side, the result is added to
the next branch to forma continuous forwardflowof informa-
tion. Simultaneously, a 3 × 3 Conv and batch normalization
is added after the addition to construct a hierarchical residual
connection for better integration of multiscale global context
information, and the output of each branch is denoted as Fi.
Therefore, for an input feature Fx of the MSAPPM parallel
branch, the output feature Fi of each branch can be expressed
by the following mathematical expression:

Fi =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C1×1 (Fx ) ; i = 1

C3×3
(
UP

(
DC3×3,r=20,3,4,5

(
Hpooling, j (Fx )

))

⊕Fi−1) ; 1 < i < n, j = 1, 3, 5, 7

C3×3
(
UP

(
C1×1

(
Hgpooling (Fx )

)) ⊕ Fi−1
) ; i = n,

(5)

where C3×3 represents the 3 × 3 Conv and batch normal-
ization. DC3×3,r=20,3,4,5 is the 3 × 3 dilated convolution and
batch normalization with dilation rate r. Hpooling, j represents
the size of the convolution kernel and is used to represent the
Pooling operation with k × k convolution kernel size, and
Hgpooling indicates a global average pooling operation of size
1 × 1.

Finally, the features generated above are concatenated,
denoted as Fcat, for further downstream propagation. The
concatenated feature map is connected to a 1 × 1 Conv and
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Fig. 5 Overview of MSAPPM

batch normalization, and a residual connection is performed
with the feature map Fx that enters the parallel branch. After
these operations, the output feature of MSAPPM denoted as
Fout, is obtained. This process can be expressed through the
following mathematical expression:

Fcat = Cat (Fi)

Fout = C1×1 (Fcat) ⊕ Fx , (6)

where Cat is the concatenation of the output features of each
branch Fi ground operation. The complete implementation
process of MSAPPM described above effectively expands
the network’s receptive field, and rich contextual information
can be aggregated.

Bilateral fusionmodule (BFM)

Semantic and spatial detail information provide different
types of information at different levels. Semantic informa-
tion mainly studies the semantic meaning and relationship
of objects, while spatial detail information provides detailed
information such as the location, shape, and size of objects.
Direct summation of these two types of information may
lead to information mixing or neglect because semantic and
spatial detail information differ in importance. Therefore,
assigning accurate weights for the direct summation is chal-
lenging, resulting in the excessive prominence or neglect of
certain information.

To effectively merge these two types of information, the
BFM is designed to fuse the feature information learned by
the dual-branch. The feature information of the dual-branch
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Fig. 6 Overview of BFM

is calculated to generate weights to control the weight rela-
tionship of the different branches. Thus, the importance of
semantic and spatial detail information in fusion can be flex-
ibly adjusted. Figure 6 shows an overview of BFM. For the
input feature Fs of one semantic branch and the input fea-
ture Fsd of the spatial detail branch, the following steps are
taken. First, Fs and Fsd are multiplied, and the resulting fea-
ture map is then summed using the sum function, denoted
as Fsum. Subsequently, Fsum undergoes a Sigmoid opera-
tion to generate weights for the corresponding branches.
These weights are multiplied by the features of the respec-
tive branches and added to the other branch. This method
eliminates some redundant operations found in other aggre-
gation modules and, through careful design, preserves the
cross-fusion approach. Meanwhile, a 3 × 3 Conv and batch
normalization are connected after each branch. Finally, the
feature maps generated by the two branches are added to
obtain the output of BFM, referred to as Fout. Therefore, the
output Fsd of BFM can be expressed by the following math-
ematical expression:

Fsum = Sum (Fs ⊗ Fsd)

∂ = Sigmoid (Fsum)

Fout = C1×1 (((1 − ∂) ⊗ Fs) ⊕ Fsd)

⊕ C1×1 ((∂ ⊗ Fsd) ⊕ Fs) , (7)

where Sigmoid denotes the Sigmoid function operation. The
complete implementation process of BFM described above
effectively enhances the interaction of information between
the two branches, thereby improving the network’s expres-
sive capability.

Experiments

To validate the performance of the designed method, exten-
sive training and ablation experiments are conducted in this
section. First, the dataset used in this study is introduced, and
the experimental setup is described in detail. Next, ablation
experiments performed to evaluate the performance impact
of the key components of the method designed are discussed.
Finally, MAFNet is compared with state-of-the-art methods
to demonstrate its generalization ability through qualitative
analysis.

Datasets

Cityscapes [1] This dataset is widely used for evaluating the
performance of semantic segmentation algorithms because it
provides rich annotated information andhigh-quality images.
It is composed of keyframes extracted from complete video
sequences of various cities [27]. It contains about 5000 high-
resolution street view images from 50 cities, each sized at
1024 × 2048, covering a variety of different urban scenes
such as downtown, residential areas, industrial areas, and
parks. The images are all manually annotated with 19 com-
mon semantic segmentation categories, including vehicles,
buildings, roads, and pedestrians. Additionally, the train-
ing, validation, and test sets consist of 2975, 500, and 1525
images, respectively.

CamVid [28] This dataset captures images from cars driving
on roads in Cambridge, UK, making it highly representa-
tive for studying urban traffic scene segmentation. Despite
its smaller size, CamVid is a popular choice for testing real-
time semantic segmentation models. The dataset contains
about 500 images with a resolution of 720 × 960, each man-
ually annotated with 11 common categories, including roads,
buildings, cars, and pedestrians. The training, validation, and
test sets comprise 367, 101, and 233 images, respectively.

Implementation details and evaluation

Training settings In the experiment, the training settings
closely align with [29]. On Cityscapes, stochastic gradient
descent (SGD) with a momentum of 0.9, an initial learning
rate of 0.05, and a weight decay of 0.0001 is utilized. This
configuration is chosen to facilitate rapid convergence in the
early stages of trainingwhilemitigating oscillations through-
out the training process. The “poly” learning rate scheduler is
implemented, along with a linear warmup [30] from 0.1 LR
to LR for the first 3000 iterations. During training, random
horizontal flipping, random scaling within the range [400,
1600], and random cropping of 512 × 1024 are employed,
as a specific image cropping method for segmentation [31]
yields better results. A reduced set of RandAug [32] opera-
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tions are used, including auto contrast, equalize, rotate, color,
contrast, brightness, and sharpness. Due to the critical impor-
tance of batch size selection for the overall performance of
the model [33], therefore, the cross-entropy loss is employed
with a batch size of 8. In MAFNet, the backbone network
is trained using weights pre-trained on the ImageNet [34]
dataset, while other components are trained using the default
initialization weights provided by PyTorch [35]. The train-
ing lasted for 500 epochs on a single A100 GPU, employing
mixed precision training for accelerated convergencewithout
sacrificing accuracy. For the test server submission, training
is conducted on the trainval set, and online hard example
mining (OHEM) [36] loss is used additionally.

On the CamVid, the training setup resembles Cityscapes,
but Cityscapes pre-trained model is employed due to the
smaller dataset size. Random horizontal flipping, random
scaling within the range [288, 1152], and random cropping
of 720 × 960 with a batch size of 12 are applied. RandAug
and class uniform sampling are excluded, and the training
span 200 epochs.

Inference settings During the inference stage, the model
is applied to maintain the original size of Cityscapes
(1024 × 2048) and CamVid (720 × 960). Inference speed
is measured on a single A100 GPU, utilizing PyTorch 1.10,
CUDA 11.3, cuDNN 8.0, TenserRT 8.4.0, and the Anaconda
environment. FP32 data accuracy is employed, batch size is
set to 1, and the inference speed protocol proposed in [37] is
used for measurement.

Evaluation The study utilizes a set of standard performance
evaluation indicators tailored to the semantic segmentation
task and specific research goals. The chosen metrics include
IoU,mIoU, alongwith considerations for computational effi-
ciency such asGFLOPs andmodel parameters (Params). The
specific calculation method of IoU is as follows:

IoU = TP

TP + FP + FN
, (8)

and the specific calculation method of mIoU is as follows:

mIoU = 1

k + 1

k∑

i=0

TP

TP + FP + FN
, (9)

where FN represents the number of negative categories with
incorrect prediction results, FP denotes the number of pos-
itive categories with incorrect prediction results, and TP is
the number of positive categories with incorrect prediction
results [38].

The rationale behind the selection of IoU and mIoU is
rooted in their effectiveness for quantifying pixel-wise seg-
mentation accuracy. A higher IoU and mIoU value signify
superior segmentation performance, indicating the model’s

Table 2 Ablation study of backbone

Backbone Params (M) GFLOPs mIoU (%) FPS

ResNet18 14.32 31.75 77.77 60.9

STDC1 12.00 22.30 78.54 70.9

STDC2 16.03 28.91 78.85 64.9

ability to accurately delineate semantic boundaries and cap-
ture intricate details. Additionally, the inclusion of GFLOPs
and model parameters serves to assess the computational
complexity of the proposed model. A higher value in
GFLOPs and Params suggests increased model complexity,
indicating potential resource requirements during deploy-
ment.

Ablation study

In this subsection, ablation experiments on the Cityscapes
dataset are conducted to explore the effectiveness of the
designed module.

Ablation of backbone

To validate the effectiveness of the STDC1 [12] backbone
network, ResNet18 [5] and STDC2 [12] methods are chosen
as comparative benchmarks, and the results are presented in
Table 2. To ensure a fair comparison, the same training set-
tings and complexity calculation methods are employed in
constructing the three backbone network models. Employ-
ing STDC1 as the backbone network an mIoU of 78.54%,
whereas replacing it with ResNet18 results in an mIoU of
77.77%. In comparison, the proposed method demonstrates
a 0.77% increase in mIoU, accompanied by a 1.4-fold reduc-
tion in computational complexity and an improvement in
inference speed. Notably, even when using STDC2 to con-
struct larger models, an mIoU of 78.85% is achieved. How-
ever, its computational complexity increases by 1.3 times
compared to STDC1. Hence, after conducting a thorough
analysis of backbone ablation studies and taking into account
factors such as segmentation accuracy, computational com-
plexity, and inference speed, the STDC1 backbone network
is chosen for building the designed MAFNet, demonstrating
its superior overall performance.

Ablation of SGSDM

The impact of spatial detail branches on the overall perfor-
mance of the network is explored, as shown in the first part
of Table 3. The first row, displaying the segmentation accu-
racy and computational complexity obtains solely with the
main backbone network, achieves an mIoU of 72.06%. The
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Table 3 Ablation study of
SGSDM

Semantic Spatial-detail Add Concat SGSDM OHEM mIoU (%) GFLOPs

√
72.06 9.25√ √
74.68 21.06√ √ √
78.00 22.14√ √ √
78.11 23.96√ √ √
78.54 22.30√ √ √ √
78.73 22.30

Fig. 7 Comparison of SGSDM visualization on the Cityscapes dataset

introduction of the spatial detail branch elevates the segmen-
tation accuracy to 74.68% mIoU. Since the semantic branch
focuses solely on high-level semantic information and lacks
the ability to extract low-level spatial detail information, the
addition of the spatial detail branch results in a significant
improvement of 2.62% mIoU in segmentation accuracy.

Following that, the effectiveness of SGSDM is validated.
Initially, the network is modified by removing the SGSDM to
be verified and replacing it with a simple addition operation,
yielding an mIoU of 78.00%. Furthermore, when replaced
with a concatenation operation, themethod achieves anmIoU

of 78.11%. Finally, using the designed SGSDM method in
this study results in an mIoU of 78.54%. The results indi-
cate that employing SGSDM better establishes a bridge for
information transfer between dual branches, improving seg-
mentation accuracy by 0.54% mIoU compared to the simple
addition method, with only a marginal increase in computa-
tional complexity. Compared to the concatenation method,
there is a 0.43% mIoU improvement and a reduction of 1.66
GFLOs in computational complexity. Figure 7 provides a
visual comparison of SGSDM on the Cityscapes dataset. In
Fig. 7a, the original RGB image is displayed, Fig. 7b shows
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Table 4 Performance of
MSAPPM with different
dilation rate strategies

Strategy Dilation rates mIoU (%) FPS

s0 (1,1,1,1) 77.69 72.1

s1 (1,1,2,2) 78.38 70.0

s2 (1,1,2,3) 77.81 68.3

s3 (1,1,3,3) 77.77 70.1

s4 (1,2,3,4) 78.05 70.3

s5 (1,2,4,8) 77.95 69.9

s6 (1,3,5,7) 78.14 69.7

s7 (1,4,8,16) 78.23 70.3

s8 (1,6,10,14) 77.95 70.2

s9 (1,8,16,32) 78.54 70.9

s10 (1,16,32,64) 78.37 70.3

the true labels of the original image, and Fig. 7c–g present
the predictions of semantic, spatial-detail, add, concatenate,
and the SGSDMmethod proposed in this study, respectively.
In Fig. 7, the third column highlights SGSDM’s superior
accuracy in predicting the terrain category. The experiments
and visualized results unequivocally affirm SGSDM’s effec-
tiveness, demonstrating that leveraging advanced semantic
information significantly enhances the comprehension of
low-level spatial details. Furthermore, SGSDM contributes
a semantic-based feature representation to the spatial detail
branch, reinforcing spatial analysis and decision boundaries.

Ablation of MSAPPMwith different dilation rates

To determine a set of optimal dilation rate parameters for
the MSAPPM, MSAPPMs with different dilation rates are
constructed, and the experimental results are presented in
Table 4.

A total of 11 networkswith different dilation rates are con-
structed, divided into two intervals. Here, s0 is the baseline
network, where dilated convolution is replaced with ordi-
nary convolution to build MSAPPM. s1–s6 are MSAPPM
with a smaller dilation rate, while s7–s10 areMSAPPMwith
a larger dilation rate. The experimental results show that s1
obtains the highest mIoU when using a smaller dilation rate,
reaching 78.38%, which proves that using different dilation
rates impacts the overall network. Subsequently, MSAPPM
with a large dilation rate are evaluated, and s9 obtains the
highest mIoU with 78.54%. These results show that the
accuracy of the entire network may be improved as the dila-
tion rate increases, but the increase in the dilation rate is
not infinite. For example, when the dilation rate is set to
s10, the mIoU is reduced by 0.17% compared to s9. Impor-
tantly, the dilation rate cannot be set too large due to the
special structure of dilated convolutions. If the dilation rate
is too large, some input image features will not be fully uti-
lized. Therefore, while ensuring the performance of semantic

segmentation, the dilated convolution with an appropriate
dilation rate should be selected, and it is necessary to avoid
setting too large dilation rates to prevent information loss. In
this study, s9 is finally selected as the dilation rate parameter
of MSAPPM.

Ablation and efficiency analysis of MSAPPM

After determining the internal structure of MSAPPM, an
ablation study on the entire MSAPPM is conducted, and
comparative experiments are performed using advanced con-
text aggregation methods to demonstrate the effectiveness of
MSAPPM in aggregating rich contextual information. The
experimental results are shown in Table 5.

(1) Ablation analysis: Initially, the baseline network is
designedwithout any context aggregationmodule, where
the output of the last stage of the backbone network
directly fuses with the output of the spatial detail branch.
From Table 5, it is observed that the addition of the
designed MSAPPM improves the mIoU from 75.93 to
78.54% for the baseline network, resulting in a 2.61%
increase in mIoU while only slightly elevating computa-
tional complexity and maintaining inference speed.

(2) Efficiency analysis: MSAPPM is also compared with
similar methods, such as PPM [40], PAPPM [41], and
DAPPM [17]. Compared to the baseline network, the
mIoU increases by 0.76%, 0.88%, and 1.13%, respec-
tively. Further analysis of results from the ablation experi-
ments reveals thatMSAPPMoutperforms these advanced
context extraction modules, enhancing segmentation
accuracy while maintaining high computational effi-
ciency. Figure 8 illustrates the effect of MSAPPM on
aggregating context information, with the first, second,
and third columns focusing on the motorcycle, truck, and
bus classes, respectively. Figure 8c illustrates that PPM
has the least satisfactory prediction performance, while
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Table 5 Ablation study of
MSAPPM

Baseline PPM PAPPM DAPPM MSAPPM mIoU (%) GFLOPs

√
75.93 21.49√ √
76.69 21.93√ √
76.81 21.46√ √
77.06 21.93√ √
78.54 22.30

Fig. 8 A visual interpretation of the different context extraction modules is shown using the Grad-CAM [39] method. Here, a original image, b
baseline, c PPM, d PAPPM, e DAPPM, and f MSAPPM
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Table 6 Ablation study of BFM

Method mIoU (%) GFLOPs

Baseline 77.83 22.02

+Concat 78.02 23.23

+FFM 78.26 22.30

+BFM 78.54 22.30

MSAPPM demonstrates a more balanced focus on the
regions of interest for the three mentioned categories.
This affirms the module’s enhanced ability to perceive
global context effectively. The experiments above indi-
cate that the designed MSAPPM in this study is an
effective method for context aggregation, allowing for
better exploration of latent contextual information and
thereby improving the model’s performance.

Ablation of BFM

In this subsection, an ablation study focusing on validating
BFMis conducted, emphasizing the crucial role of effectively
balancing semantic and spatial detail information generated
by the dual-branch network. Initially, features generated by
the two branches are fused using a simple addition operation,
serving as a baseline network, and are compared to BFM.
To enhance the credibility of BFM, splicing operations are
also chosen for comparison. The experimental results are
presented in Table 6, where baseline denotes an addition
operation, Concat involves a concatenation operation, and
FFM [12] represents the feature fusion module.

Table 6 reveals segmentation accuracies of 77.83%,
78.02%, 78.26%, and 78.54% mIoU for baseline, Concat,
FFM, and BFM methods, respectively. The proposed BFM
method has a 0.71% mIoU improvement compared to the
baseline. The BFM has a 0.52% mIoU improvement com-
pared to the concate method, with computational complexity
largely comparable between these twomethods. Lastly, com-
pared to the FFM method, BFM demonstrates a 0.28%
mIoU improvement while maintaining identical computa-
tional complexity. Figure 9 illustrates the visual comparison
results of BFM on the Cityscapes dataset: Fig. 9a shows the
original RGB image; Fig. 9b shows the true labels of the
original image; Fig. 9c–f present the predictions of baseline,
Concat, FFM, and the proposed BFM method, respectively.
From the second column in Fig. 9, BFM effectively captures
details within the truck category and accurately predicts spa-
tial positional information. The experiments above indicate
that the cross-fusion approach, achieved by separately calcu-
lating weights generated by the dual-branch, not only better
balances theweight relationship but also efficiently integrates
information fromboth branches. This demonstrates the effec-

tiveness of the BFM module in enhancing detail capture and
spatial prediction.

Comparison with state-of-the-art methods

In this section, MAFNet is compared with state-of-the-art
methods. The results on the Cityscapes and CamVid datasets
are given as follows.

Comparison on Cityscapes dataset

First, MAFNet is compared with nonreal-time segmenta-
tion algorithms such as DeepLab [42] and PSPNet [40],
and real-time segmentation algorithms such as ICNet [11],
ERFNet [43], DFANet-A [44], BiSeNet1 [22], BiSeNet2
[22], TD4-Bise18 [45], LBN-AA [19], BiSeNetV2-L [23],
SwiftNetRN-18 [46], HyperSeg-M [47], S2-FPN18 [13], and
STDC2-Seg75 [12]. Table 7 presents the segmentation accu-
racy and inference speed of the designed and state-of-the-art
methods on the validation and test sets on Cityscapes.

It is evident from Table 7 that MAFNet exhibits strong
overall performance, achieving a 78.5%mIoU on the valida-
tion set and 77.4%mIoU on the test set at an inference speed
of 70.9 FPS. The proposed method outperforms the ear-
lier DeepLab in terms of segmentation accuracy, parameter
quantity, and computational complexity. Although PSPNet
achieves an mIoU of 81.2% on the test set, it loses real-time
performance, limiting its practical application.

When compared to real-time approaches, MAFNet out-
performs STDC2-Seg75 by 1.7% mIoU on the validation
set and 0.6% mIoU on the test set in terms of segmenta-
tion accuracy. Against S2-FPN18, MAFNet achieves a 1.2%
mIoU improvement on the test set. Compared to HyperSeg-
M,MAFNet demonstrates superior performance with a 2.5%
mIoU increase on the validation set, a 1.6% mIoU increase
on the test set and a 34 FPS improvement in inference speed.
Against SwiftNetRN-18, MAFNet achieves a 1.9% mIoU
improvement on the test set and a 31.6 FPS increase in infer-
ence speed. Compared to BiSeNetV2-L, MAFNet surpasses
by 2.9% mIoU on the validation set and 2.1% mIoU on the
test set. Against LBN-AA, MAFNet outperforms by 3.8%
mIoU on the test set. Furthermore, MAFNet demonstrates
competitive performance against other real-time methods,
boasting the highest segmentation accuracy on both the test
and validation sets, coupled with reasonable parameter size,
computational complexity, and inference speed. Figure 10
presents a more visual comparison of the results, where the
red dashed line represents the real-time boundary, blue dots
represent state-of-the-art segmentation algorithms, and red
dots represent the proposed MAFNet.

Finally, Fig. 11 presents a color-annotated map of the
segmentation on the Cityscapes dataset: Fig. 11a shows the
original RGB image; Fig. 11b shows the Ground Truth of
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Fig. 9 Comparison of BFM visualization on the Cityscapes dataset

Table 7 Comparison with
state-of-the-art methods on the
Cityscapes dataset

Method Backbone Parameters (M) GFLOPs mIoU (%) FPS

Val Test

DeepLab [42] VGG16 262.1 457.8 – 63.1 0.3

PSPNet [40] ResNet101 250.8 412.2 – 81.2 0.8

ICNet [11] PSPNet50 26.5 28.3 – 69.5 30.3

ERFNet [43] No 2.1 27.7 – 69.7 41.7

DFANet-A [44] Xception A 7.8 3.4 – 71.3 100.0

BiSeNet1 [22] Xception39 5.8 14.8 69.0 68.4 105.8

BiSeNet2 [22] ResNet18 49.0 54.0 74.5 74.7 62.1

TD4-Bise18 [45] BiseNet18 – – 75.0 74.9 47.6

LBN-AA [19] MobileNetV2 6.2 49.5 – 73.6 51.0

BiSeNetV2-L [23] No 5.2 118.5 75.8 75.3 47.3

SwiftNetRN-18 [46] ResNet18 11.8 104.0 75.4 75.5 39.3

HyperSeg-M [47] EfficientNet-B1 10.1 7.5 76.2 75.8 36.9

S2-FPN18 [13] ResNet18 17.8 29.1 76.6 76.2 67.6

STDC2-Seg75 [12] STDC2 22.2 54.9 77.0 76.8 97.0

MAFNet STDC1 12.0 22.23 78.7 77.4 70.9
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Fig. 10 Comparison of
MAFNet with some
state-of-the-art methods on the
Cityscapes test dataset

Fig. 11 Visualization results with different methods on the Cityscapes dataset
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Table 8 Comparison with
state-of-the-art methods on the
CamVid dataset

Method Extra data mIoU (%) FPS

LBN-AA [19] – 68.0 39.3

BiSeNet2 [22] IM 68.3 116.3

TD4-Bise18 [45] IM 72.6 25.0

SFNet [48] IM 73.8 36

STDC2-Seg75 [12] IM 73.9 97.0

S2-FPN18 [13] IM 68.7 124.2

S2-FPN34 [13] IM 71.0 107.2

S2-FPN34M [13] IM 73.9 55.5

VideoGCRF [49] C 75.2 –

MSFNet [50] IM 75.4 91.0

BiSeNetV2 [23] C 76.7 124.5

MAFNet C 77.6 192.5

the original image; Fig. 11c–e shows the prediction results
of BiSeNet2, S2-FPN18, and MAFNet, respectively. Green
rectangles are used to highlight some regions with good seg-
mentation. It is evident from Fig. 11 that MAFNet is better at
recognizing traffic lights, traffic signs, trees, and sidewalks.
In contrast, BiSeNet2 and S2-FPN18 struggle to recognize
the rough outline and even completely fail to recognize the
above categories.

In conclusion, MAFNet exhibits excellent performance
on the Cityscapes dataset, showcasing its superiority in key
metrics such as real-time performance and segmentation
accuracy compared to various real-time and non-real-time
segmentation algorithms. Notably, MSAPPM plays a cru-
cial role in extracting contextual information, contributing
to MAFNet’s outstanding performance. BFM effectively
achieves the fusion of high-level semantic and low-level
spatial details, further enhancing the network’s overall seg-
mentation performance. Lastly, SGSDM excels in precise
boundary extraction and fine-grained classification, playing
a supportive role in spatial analysis and decision boundary
determination for the network.

Comparison on CamVid dataset

To further validate MAFNet, a comparison with state-of-the-
art methods on the CamVid dataset is conducted, including
LBN-AA [19], BiSeNet2 [22], TD4-Bise18 [45], SFNet
[48], STDC2-Seg75 [12], S2-FPN18 [13], S2-FPN34 [13],
S2-FPN34M [13], VideoGCRF [49], MSFNet [50], and
BiSeNetV2 [23]. Table 8 presents the segmentation accu-
racy on the CamVid test dataset and the inference speed,
where IM represents the ImageNet dataset and C represents
the Cityscapes dataset. The original image size of 720× 960
is maintained as input to the model during the training of the
CamVid dataset. Additionally, the pre-trainedmodel weights
on Cityscapes are used.

Table 8 presents a clear overview of MAFNet’s perfor-
mance on the CamVid dataset, achieving a 77.6% mIoU at
an inference speed of 192.5 FPS. In contrast, various state-of-
the-art methods, such as LBN-AA, BiSeNet2, TD4-Bise18,
SFNet, STDC2-Seg75, S2-FPN18, S2-FPN34, S2-FPN34M,
VideoGCRF, MSFNet, and BiSeNetV2, achieved 68%,
68.3%, 72.6%, 73.8%, 73.9%, 68.7%, 71.0%, 73.9%, 75.2%,
75.4% and 76.7% mIoU, respectively. These results show

Table 9 IoU (%) for 11 classes on Camvid test set

Method Bui Tree Sky Car Sig Roa Ped Fen Pol Side Bic mIoU(%)

BiSeNet1 [22] 82.2 74.4 91.9 80.8 42.8 93.3 53.8 49.7 25.4 77.3 50.0 65.6

BiSeNet2 [22] 83.0 75.8 92.0 83.7 46.5 94.6 58.8 53.6 31.9 81.4 54.0 68.7

LBN-AA [19] 83.2 70.5 92.5 81.7 51.6 93.0 55.6 53.2 36.3 82.1 47.9 68.0

S2-FPN18 [13] 83.0 77.2 91.8 88.9 48.2 95.7 56.4 43.4 32.4 84.8 62.5 69.6

S2-FPN34 [13] 85.3 77.4 91.7 91.2 49.6 95.7 59.1 46.8 33.2 85.4 66.5 71.0

S2-FPN34M [13] 86.0 78.8 92.6 92.2 56.2 96.0 67.1 47.3 42.1 86.8 70.7 74.2

MAFNet 89.2 81.5 92.7 89.2 60.6 96.1 72.3 69.1 43.3 87.7 71.6 77.5

The bolded values in columns 2–12 indicate the highest values of the class IoU (%) metric for each column, while the bolded value in the last
column indicates the highest mIoU (%) metric among the compared methods. This approach highlights the superiority of our proposed method
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Fig. 12 Visualization results with different methods on the CamVid dataset

that MAFNet outperforms some state-of-the-art methods by
0.9–9.6% in terms of segmentation accuracy, maintaining
competitive inference speed. In theTable 9, the superior accu-
racy of the proposed network is thoroughly validated by the
fact that the IoU for 10 out of the 11 classes achieved the high-
est precision. This outcome underscores the effectiveness of
the network in accurately capturing and delineating seman-
tic classes, affirming its excellence in semantic segmentation
tasks on the Camvid dataset.

Figure 12 presents the segmented results of MAFNet
and three other methods (BiSeNet2, S2-FPN18, and S2-
FPN34M) on the CamVid dataset. Eleven classes of objects
are color-labeled for clarity, and a green dashed box high-
lights regionswith superior segmentation.OnlyMAFNet can
accurately recognize small objects such as poles, trees, pedes-
trians, cyclists, and traffic signs. BiSeNet2 shows theweakest
segmentation effect, particularly struggling with the recog-
nition of poles and trees. S2-FPN18 performs better than
BiSeNet2, identifying some object contours. S2-FPN34M,
a larger model, exhibits more distinct object features but
struggles to clearly identify overall shape and position infor-
mation. MAFNet stands out by accurately identifying object
shapes and positions, highlighting the spatial detail branch’s
ability to retain location information. The comprehensive

comparison of experimental results on the CamVid dataset
confirms that MAFNet excels in balancing segmentation
accuracy and inference speed, showcasing the superiority of
the key modules designed in this study.

Conclusions

In this study, a real-time semantic segmentation network,
MAFNet, is designed based on a dual-branch network struc-
ture to optimize the trade-off between accuracy and speed
in real-time semantic segmentation. The design includes an
SGSDM that not only enables accurate boundary extraction
and fine-grained classification but also provides semantic-
based feature representation to support spatial analysis
and decision boundaries. Additionally, to address the lim-
ited receptive field problem of the proposed network, an
MSAPPM is designed using an effective combination of
dilated convolution and a feature pyramidpooling structure to
aggregate rich contextual information. The BFM is designed
to balance weight relationships between the dual branches,
using feature information of the dual branch to generate
weights for cross-fusion. Through extensive experiments and
qualitative analysis, the effectiveness of theMAFNetmethod

123



Complex & Intelligent Systems

is proved. Future workwill focus on exploringmore effective
ways of information interaction between dual-branch net-
works, potentially incorporating attention mechanisms, and
a more in-depth discussion on balancing accuracy and speed
in real-time semantic segmentation networks.
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